def __init__(self, bert_large=False): super().__init__(bert_large) MUS = [-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0] SIGMAS = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.001] self.bert_ranker = VanillaBertRanker() self.simmat = modeling_util.SimmatModule() self.kernels = modeling_util.KNRMRbfKernelBank(MUS, SIGMAS) self.combine = torch.nn.Linear(self.kernels.count() * self.CHANNELS + self.BERT_SIZE, 1)
def __init__(self, bert_large=False): super().__init__(bert_large) NBINS = 11 HIDDEN = 5 self.bert_ranker = VanillaBertRanker() self.simmat = modeling_util.SimmatModule() self.histogram = modeling_util.DRMMLogCountHistogram(NBINS) self.hidden_1 = torch.nn.Linear(NBINS * self.CHANNELS + self.BERT_SIZE, HIDDEN) self.hidden_2 = torch.nn.Linear(HIDDEN, 1)
def __init__(self, bert_large=False): super().__init__(bert_large) QLEN = 20 KMAX = 2 NFILTERS = 32 MINGRAM = 1 MAXGRAM = 3 self.simmat = modeling_util.SimmatModule() self.ngrams = torch.nn.ModuleList() self.rbf_bank = None for ng in range(MINGRAM, MAXGRAM+1): ng = modeling_util.PACRRConvMax2dModule(ng, NFILTERS, k=KMAX, channels=self.CHANNELS) self.ngrams.append(ng) qvalue_size = len(self.ngrams) * KMAX self.linear1 = torch.nn.Linear(self.BERT_SIZE + QLEN * qvalue_size, 32) self.linear2 = torch.nn.Linear(32, 32) self.linear3 = torch.nn.Linear(32, 1)