コード例 #1
0
ファイル: lm.py プロジェクト: FrancescoE/MMT
    def train(self, corpora, lang, working_dir=".", log_file=None):
        LanguageModel.train(self, corpora, lang, working_dir, log_file)

        log = shell.DEVNULL

        try:
            if log_file is not None:
                log = open(log_file, "w")

            # Collapse all corpora into a single text file
            merged_corpus = os.path.join(working_dir, "merge")
            fileutils.merge([corpus.get_file(lang) for corpus in corpora], merged_corpus)
            input_se = os.path.join(working_dir, "static_input.se")
            temp = os.path.join(working_dir, "temp")
            arpa_file = os.path.join(working_dir, "static_lm.arpa")

            # Add start and end symbols
            with open(merged_corpus) as stdin:
                with open(input_se, "w") as stdout:
                    shell.execute([self._addbound_bin], stdin=stdin, stdout=stdout, stderr=log)

            # Creating lm in ARPA format
            command = [
                self._buildlm_bin,
                "-i",
                input_se,
                "-k",
                str(cpu_count()),
                "-o",
                arpa_file,
                "-n",
                str(self._order),
                "-s",
                "witten-bell",
                "-t",
                temp,
                "-l",
                "/dev/stdout",
                "-irstlm",
                self._irstlm_dir,
                "--PruneSingletons",
            ]
            shell.execute(command, stderr=log)

            # Create binary lm
            command = [self._compilelm_bin, arpa_file + ".gz", self._model]
            shell.execute(command, stderr=log)

        finally:
            if log_file is not None:
                log.close()
コード例 #2
0
ファイル: lm.py プロジェクト: gianlucadardia/MMT
    def train(self, corpora, lang, working_dir='.', log_file=None):
        LanguageModel.train(self, corpora, lang, working_dir, log_file)

        log = shell.DEVNULL

        try:
            if log_file is not None:
                log = open(log_file, 'w')

            # Collapse all corpora into a single text file
            merged_corpus = os.path.join(working_dir, 'merge')
            fileutils.merge([corpus.get_file(lang) for corpus in corpora],
                            merged_corpus)
            input_se = os.path.join(working_dir, 'static_input.se')
            temp = os.path.join(working_dir, 'temp')
            arpa_file = os.path.join(working_dir, 'static_lm.arpa')

            # Add start and end symbols
            with open(merged_corpus) as stdin:
                with open(input_se, 'w') as stdout:
                    shell.execute([self._addbound_bin],
                                  stdin=stdin,
                                  stdout=stdout,
                                  stderr=log)

            # Creating lm in ARPA format
            command = [
                self._buildlm_bin, '-i', input_se, '-k',
                str(cpu_count()), '-o', arpa_file, '-n',
                str(self._order), '-s', 'witten-bell', '-t', temp, '-l',
                '/dev/stdout', '-irstlm', self._irstlm_dir, '--PruneSingletons'
            ]
            shell.execute(command, stderr=log)

            # Create binary lm
            command = [self._compilelm_bin, arpa_file + '.gz', self._model]
            shell.execute(command, stderr=log)

        finally:
            if log_file is not None:
                log.close()
コード例 #3
0
ファイル: lm.py プロジェクト: FrancescoE/MMT
    def train(self, corpora, lang, working_dir=".", log_file=None):
        LanguageModel.train(self, corpora, lang, working_dir, log_file)

        log = shell.DEVNULL

        try:
            if log_file is not None:
                log = open(log_file, "w") if isinstance(log_file, str) else log_file

            # Collapse all corpora into a single text file
            merged_corpus = os.path.join(working_dir, "merge")
            fileutils.merge([corpus.get_file(lang) for corpus in corpora], merged_corpus)

            # Create language model in ARPA format
            arpa_file = os.path.join(working_dir, "lm.arpa")
            arpa_command = [
                self._lmplz_bin,
                "--discount_fallback",
                "-o",
                str(self._order),
                "-S",
                str(self.get_mem_percent()) + "%",
                "-T",
                working_dir,
            ]
            if self._order > 2 and self.prune:
                arpa_command += ["--prune", "0", "0", "1"]

            with open(merged_corpus) as stdin:
                with open(arpa_file, "w") as stdout:
                    shell.execute(arpa_command, stdin=stdin, stdout=stdout, stderr=log)

            # Binarize ARPA file
            binarize_command = [self._bbinary_bin, arpa_file, self._model]
            shell.execute(binarize_command, stdout=log, stderr=log)
        finally:
            if log_file is not None and isinstance(log_file, str):
                log.close()
コード例 #4
0
ファイル: lm.py プロジェクト: gianlucadardia/MMT
    def train(self, corpora, lang, working_dir='.', log_file=None):
        LanguageModel.train(self, corpora, lang, working_dir, log_file)

        log = shell.DEVNULL

        try:
            if log_file is not None:
                log = open(log_file, 'w') if isinstance(log_file,
                                                        str) else log_file

            # Collapse all corpora into a single text file
            merged_corpus = os.path.join(working_dir, 'merge')
            fileutils.merge([corpus.get_file(lang) for corpus in corpora],
                            merged_corpus)

            # Create language model in ARPA format
            arpa_file = os.path.join(working_dir, 'lm.arpa')
            arpa_command = [
                self._lmplz_bin, '--discount_fallback', '-o',
                str(self._order), '-S',
                str(self.get_mem_percent()) + '%', '-T', working_dir
            ]
            if self._order > 2 and self.prune:
                arpa_command += ['--prune', '0', '0', '1']

            with open(merged_corpus) as stdin:
                with open(arpa_file, 'w') as stdout:
                    shell.execute(arpa_command,
                                  stdin=stdin,
                                  stdout=stdout,
                                  stderr=log)

            # Binarize ARPA file
            binarize_command = [self._bbinary_bin, arpa_file, self._model]
            shell.execute(binarize_command, stdout=log, stderr=log)
        finally:
            if log_file is not None and isinstance(log_file, str):
                log.close()
コード例 #5
0
ファイル: phrasetable.py プロジェクト: gianlucadardia/MMT
    def train(self, corpora, aligner, working_dir='.', log_file=None):
        if os.path.isdir(self._model) and len(os.listdir(self._model)) > 0:
            raise Exception('Model already exists at ' + self._model)

        if not os.path.isdir(self._model):
            fileutils.makedirs(self._model, exist_ok=True)

        if not os.path.isdir(working_dir):
            fileutils.makedirs(working_dir, exist_ok=True)

        l1 = self._source_lang
        l2 = self._target_lang
        langs = (l1, l2)
        langs_suffix = l1 + '-' + l2

        mct_base = self._get_model_basename()
        dmp_file = mct_base + '.dmp'
        mam_file = mct_base + '.' + langs_suffix + '.mam'
        lex_file = mct_base + '.' + langs_suffix + '.lex'

        log = shell.DEVNULL

        try:
            if log_file is not None:
                log = open(log_file, 'a')

            # Clean corpus for training
            clean_output = os.path.join(working_dir, 'clean_corpora')
            fileutils.makedirs(clean_output, exist_ok=True)
            corpora = self._cleaner.clean(corpora, clean_output, (self._source_lang, self._target_lang))

            # Create merged corpus and domains list file (dmp)
            merged_corpus = ParallelCorpus(os.path.basename(mct_base), working_dir, langs)

            fileutils.merge([corpus.get_file(l1) for corpus in corpora], merged_corpus.get_file(l1))
            fileutils.merge([corpus.get_file(l2) for corpus in corpora], merged_corpus.get_file(l2))
            with open(dmp_file, 'w') as dmp:
                for corpus in corpora:
                    dmp.write(str(corpus.name) + ' ' + str(corpus.count_lines()) + '\n')

            # Create alignments in 'bal' file and symmetrize
            bal_file = aligner.align(merged_corpus, langs, self._model, working_dir, log_file)

            symal_file = os.path.join(working_dir, 'alignments.' + langs_suffix + '.symal')
            symal_command = [self._symal_bin, '-a=g', '-d=yes', '-f=yes', '-b=yes']
            with open(bal_file) as stdin:
                with open(symal_file, 'w') as stdout:
                    shell.execute(symal_command, stdin=stdin, stdout=stdout, stderr=log)

            # Execute mtt-build
            mttbuild_command = self._get_mttbuild_command(mct_base, dmp_file, l1)
            with open(merged_corpus.get_file(l1)) as stdin:
                shell.execute(mttbuild_command, stdin=stdin, stdout=log, stderr=log)

            mttbuild_command = self._get_mttbuild_command(mct_base, dmp_file, l2)
            with open(merged_corpus.get_file(l2)) as stdin:
                shell.execute(mttbuild_command, stdin=stdin, stdout=log, stderr=log)

            # Create 'mam' file
            mam_command = [self._symal2mam_bin, mam_file]
            with open(symal_file) as stdin:
                shell.execute(mam_command, stdin=stdin, stdout=log, stderr=log)

            # Create 'lex' file
            lex_command = [self._mmlexbuild_bin, mct_base + '.', l1, l2, '-o', lex_file]
            shell.execute(lex_command, stdout=log, stderr=log)
        finally:
            if log_file is not None:
                log.close()
コード例 #6
0
ファイル: cluster.py プロジェクト: FrancescoE/MMT
    def tune(self, corpora=None, tokenize=True, debug=False, context_enabled=True):
        if corpora is None:
            corpora = ParallelCorpus.list(os.path.join(self.engine.data_path, TrainingPreprocessor.DEV_FOLDER_NAME))

        if len(corpora) == 0:
            raise IllegalArgumentException('empty corpora')

        if not self.is_running():
            raise IllegalStateException('No MMT Server running, start the engine first')

        target_lang = self.engine.target_lang
        source_lang = self.engine.source_lang

        cmdlogger = _tuning_logger(4 if tokenize else 3)
        cmdlogger.start(self, corpora)

        working_dir = self.engine.get_tempdir('tuning')
        mert_wd = os.path.join(working_dir, 'mert')

        try:
            original_corpora = corpora

            # Tokenization
            tokenized_corpora = original_corpora

            if tokenize:
                tokenizer_output = os.path.join(working_dir, 'tokenized_corpora')
                fileutils.makedirs(tokenizer_output, exist_ok=True)

                with cmdlogger.step('Corpus tokenization') as _:
                    tokenized_corpora = self.engine.preprocessor.process(corpora, tokenizer_output, print_tags=False,
                                                                         print_placeholders=True,
                                                                         original_spacing=False)

            # Create merged corpus
            with cmdlogger.step('Merging corpus') as _:
                source_merged_corpus = os.path.join(working_dir, 'corpus.' + source_lang)
                with open(source_merged_corpus, 'wb') as out:
                    original_root = original_corpora[0].root

                    for corpus in tokenized_corpora:
                        tokenized = corpus.get_file(source_lang)
                        original = os.path.join(original_root, corpus.name + '.' + source_lang)
                        out.write(tokenized + ':' + original + '\n')

                target_merged_corpus = os.path.join(working_dir, 'corpus.' + target_lang)
                fileutils.merge([corpus.get_file(target_lang) for corpus in tokenized_corpora], target_merged_corpus)

            # Run MERT algorithm
            with cmdlogger.step('Tuning') as _:
                # Start MERT
                decoder_flags = ['--port', str(self.api.port)]

                if not context_enabled:
                    decoder_flags.append('--skip-context-analysis')
                    decoder_flags.append('1')

                fileutils.makedirs(mert_wd, exist_ok=True)

                with tempfile.NamedTemporaryFile() as runtime_moses_ini:
                    command = [self._mert_script, source_merged_corpus, target_merged_corpus,
                               self._mert_i_script, runtime_moses_ini.name, '--threads',
                               str(multiprocessing.cpu_count()), '--mertdir', os.path.join(Moses.bin_path, 'bin'),
                               '--mertargs', '\'--binary --sctype BLEU\'', '--working-dir', mert_wd, '--nbest', '100',
                               '--decoder-flags', '"' + ' '.join(decoder_flags) + '"', '--nonorm', '--closest',
                               '--no-filter-phrase-table']

                    with open(self.engine.get_logfile('mert'), 'wb') as log:
                        shell.execute(' '.join(command), stdout=log, stderr=log)

            # Read optimized configuration
            with cmdlogger.step('Applying changes') as _:
                bleu_score = 0
                weights = {}
                found_weights = False

                with open(os.path.join(mert_wd, 'moses.ini')) as moses_ini:
                    for line in moses_ini:
                        line = line.strip()

                        if len(line) == 0:
                            continue
                        elif found_weights:
                            tokens = line.split()
                            weights[tokens[0].rstrip('=')] = [float(val) for val in tokens[1:]]
                        elif line.startswith('# BLEU'):
                            bleu_score = float(line.split()[2])
                        elif line == '[weight]':
                            found_weights = True

                _ = self.api.update_features(weights)

            cmdlogger.completed(bleu_score)
        finally:
            if not debug:
                self.engine.clear_tempdir()
コード例 #7
0
ファイル: cluster.py プロジェクト: gianlucadardia/MMT
    def tune(self,
             corpora=None,
             tokenize=True,
             debug=False,
             context_enabled=True):
        if corpora is None:
            corpora = ParallelCorpus.list(
                os.path.join(self.engine.data_path,
                             TrainingPreprocessor.DEV_FOLDER_NAME))

        if len(corpora) == 0:
            raise IllegalArgumentException('empty corpora')

        if not self.is_running():
            raise IllegalStateException(
                'No MMT Server running, start the engine first')

        target_lang = self.engine.target_lang
        source_lang = self.engine.source_lang

        cmdlogger = _tuning_logger(4 if tokenize else 3)
        cmdlogger.start(self, corpora)

        working_dir = self.engine.get_tempdir('tuning')
        mert_wd = os.path.join(working_dir, 'mert')

        try:
            original_corpora = corpora

            # Tokenization
            tokenized_corpora = original_corpora

            if tokenize:
                tokenizer_output = os.path.join(working_dir,
                                                'tokenized_corpora')
                fileutils.makedirs(tokenizer_output, exist_ok=True)

                with cmdlogger.step('Corpus tokenization') as _:
                    tokenized_corpora = self.engine.preprocessor.process(
                        corpora,
                        tokenizer_output,
                        print_tags=False,
                        print_placeholders=True,
                        original_spacing=False)

            # Create merged corpus
            with cmdlogger.step('Merging corpus') as _:
                source_merged_corpus = os.path.join(working_dir,
                                                    'corpus.' + source_lang)
                with open(source_merged_corpus, 'wb') as out:
                    original_root = original_corpora[0].root

                    for corpus in tokenized_corpora:
                        tokenized = corpus.get_file(source_lang)
                        original = os.path.join(
                            original_root, corpus.name + '.' + source_lang)
                        out.write(tokenized + ':' + original + '\n')

                target_merged_corpus = os.path.join(working_dir,
                                                    'corpus.' + target_lang)
                fileutils.merge([
                    corpus.get_file(target_lang)
                    for corpus in tokenized_corpora
                ], target_merged_corpus)

            # Run MERT algorithm
            with cmdlogger.step('Tuning') as _:
                # Start MERT
                decoder_flags = ['--port', str(self.api.port)]

                if not context_enabled:
                    decoder_flags.append('--skip-context-analysis')
                    decoder_flags.append('1')

                fileutils.makedirs(mert_wd, exist_ok=True)

                with tempfile.NamedTemporaryFile() as runtime_moses_ini:
                    command = [
                        self._mert_script, source_merged_corpus,
                        target_merged_corpus, self._mert_i_script,
                        runtime_moses_ini.name, '--threads',
                        str(multiprocessing.cpu_count()), '--mertdir',
                        os.path.join(Moses.bin_path, 'bin'), '--mertargs',
                        '\'--binary --sctype BLEU\'', '--working-dir', mert_wd,
                        '--nbest', '100', '--decoder-flags',
                        '"' + ' '.join(decoder_flags) + '"', '--nonorm',
                        '--closest', '--no-filter-phrase-table'
                    ]

                    with open(self.engine.get_logfile('mert'), 'wb') as log:
                        shell.execute(' '.join(command),
                                      stdout=log,
                                      stderr=log)

            # Read optimized configuration
            with cmdlogger.step('Applying changes') as _:
                bleu_score = 0
                weights = {}
                found_weights = False

                with open(os.path.join(mert_wd, 'moses.ini')) as moses_ini:
                    for line in moses_ini:
                        line = line.strip()

                        if len(line) == 0:
                            continue
                        elif found_weights:
                            tokens = line.split()
                            weights[tokens[0].rstrip('=')] = [
                                float(val) for val in tokens[1:]
                            ]
                        elif line.startswith('# BLEU'):
                            bleu_score = float(line.split()[2])
                        elif line == '[weight]':
                            found_weights = True

                _ = self.api.update_features(weights)

            cmdlogger.completed(bleu_score)
        finally:
            if not debug:
                self.engine.clear_tempdir()
コード例 #8
0
ファイル: evaluation.py プロジェクト: gianlucadardia/MMT
    def evaluate(self, corpora, heval_output=None, debug=False):
        if len(corpora) == 0:
            raise IllegalArgumentException('empty corpora')
        if heval_output is not None:
            fileutils.makedirs(heval_output, exist_ok=True)

        target_lang = self._engine.target_lang
        source_lang = self._engine.source_lang

        logger = _evaluate_logger()
        logger.start(corpora)

        working_dir = self._engine.get_tempdir('evaluation')

        try:
            results = []

            # Process references
            with logger.step('Preparing corpora') as _:
                corpora_path = os.path.join(working_dir, 'corpora')
                corpora = self._xmlencoder.encode(corpora, corpora_path)

                reference = os.path.join(working_dir, 'reference.' + target_lang)
                source = os.path.join(working_dir, 'source.' + source_lang)
                fileutils.merge([corpus.get_file(target_lang) for corpus in corpora], reference)
                fileutils.merge([corpus.get_file(source_lang) for corpus in corpora], source)

                if heval_output is not None:
                    self._heval_outputter.write(lang=target_lang, input_file=reference,
                                                output_file=os.path.join(heval_output, 'reference.' + target_lang))
                    self._heval_outputter.write(lang=source_lang, input_file=source,
                                                output_file=os.path.join(heval_output, 'source.' + source_lang))

            # Translate
            for translator in self._translators:
                name = translator.name()

                with logger.step('Translating with %s' % name) as _:
                    result = _EvaluationResult(translator)
                    results.append(result)

                    translations_path = os.path.join(working_dir, 'translations', result.id + '.raw')
                    xmltranslations_path = os.path.join(working_dir, 'translations', result.id)
                    fileutils.makedirs(translations_path, exist_ok=True)

                    try:
                        translated, mtt, parallelism = translator.translate(corpora, translations_path)
                        filename = result.id + '.' + target_lang

                        result.mtt = mtt
                        result.parallelism = parallelism
                        result.translated_corpora = self._xmlencoder.encode(translated, xmltranslations_path)
                        result.merge = os.path.join(working_dir, filename)

                        fileutils.merge([corpus.get_file(target_lang)
                                         for corpus in result.translated_corpora], result.merge)

                        if heval_output is not None:
                            self._heval_outputter.write(lang=target_lang, input_file=result.merge,
                                                        output_file=os.path.join(heval_output, filename))
                    except TranslateError as e:
                        result.error = e
                    except Exception as e:
                        result.error = TranslateError('Unexpected ERROR: ' + str(e.message))

            # Scoring
            scorers = [(MatecatScore(), 'pes'), (BLEUScore(), 'bleu')]

            for scorer, field in scorers:
                with logger.step('Calculating %s' % scorer.name()) as _:
                    for result in results:
                        if result.error is not None:
                            continue
                        setattr(result, field, scorer.calculate(result.merge, reference))

            logger.completed(results, scorers)
        finally:
            if not debug:
                self._engine.clear_tempdir('evaluation')