def next_batch_test2(): train = DataSet('UCF', 'train1', 25) # profile.run("next_batch_test2()") # profile.run("next_batch_test()") # for i in range(480): # res = train.next_batch(500) # print(len(res),str(train.index_in_epoch_video), train.index_frame) # # for i in range(10): # print(random.randint(0, 1))
def next_batch_test(): train = DataSet('UCF', 'train1', 25) images, labels = train.next_batch(500)
# test.append(tmp2) # tmp = numpy.array(test) # print(tmp.shape) arr = [] for i in range(2): arr.append(numpy.arange(10)) # # for i in range(10): # numpy.random.shuffle(arr[0]) # numpy.random.shuffle(arr[1]) # print(arr) train = DataSet('UCF', 'train1', 25) begin_time = time.time() images, labels = train.next_batch(2) print(time.time() - begin_time, 's') print(images.shape) print(labels.shape) print(labels[0]) plt.imshow(images[0]) plt.show() def next_batch_test(): train = DataSet('UCF', 'train1', 25) images, labels = train.next_batch(500) def next_batch_test2(): train = DataSet('UCF', 'train1', 25)
import time import tensorflow as tf from scripts import DataSet import numpy import urllib.request # import os # os.environ["CUDA_VISIBLE_DEVICES"] = '0' sys.path.append("D:/graduation_project/workspace/models/research/slim") from scripts import my_vgg_16 as vgg slim = tf.contrib.slim checkpoint_path = 'D:/graduation_project/checkpoints/vgg_16.ckpt' txtName = 'D:/graduation_project/workspace/dataset/UCF101_train_test_splits/train1_feature_files/vgg16_fc7/' train = DataSet.DataSet('UCF', 'train3', 25, label_type='notonehot') total_frame = train.total_frame myinput = tf.placeholder(tf.float32, [None, 224, 224, 3]) logits, _ = vgg.vgg_16(myinput, num_classes=1000, is_training=False, jud='fc7') init = slim.assign_from_checkpoint_fn( checkpoint_path, slim.get_variables_to_restore(include=["vgg_16"])) beginTime = time.time() pre = 0 post = 9999 status = True with tf.Session() as sess: init(sess) for k in range(total_frame): if status is True: nowTxtName = txtName + str(pre) + '_' + str(post) + '.txt'
probabilities = tf.nn.softmax(logits) print(slim.get_model_variables()) # 从checkpoint读入网络权值 init_fn = slim.assign_from_checkpoint_fn(checkpoints_dir, slim.get_model_variables('vgg_16')) show_detail = False right_count = 0 with tf.Session() as sess: # 加载权值 begin_time = time.time() init_fn(sess) print('Loading: %.2fs' % (time.time()-begin_time)) test = DataSet.Test('UCF101', 'test1', 10) begin_time = time.time() for k in range(len(file_list)): file = file_list[k] ground_true = (file.split('.')[0]).split('_')[1] input_batch = test.test_an_video(source_folder + file) result = probabilities.eval(feed_dict={input: input_batch}) if show_detail: print('===================== ' + str(k) + ' ==================') seq = [] for x in range(result.shape[0]): prob = result[x, 0:] sorted_inds = [i[0] for i in sorted(enumerate(-prob), key=lambda x: x[1])] if show_detail:
def makeMatrix(self, ds, filterMin, filterMax, reorder): # getting data from FileLoader and creating the right format dataSetSort = DataSetSort() if reorder == 0: nodes = ds.getDoubleList(filterMin, filterMax, True) elif reorder == 1: dsCopy = DataSet(ds.getNodes()) dsCopy.makeUndirectionalAdd() nodes = dsCopy.getDoubleList(filterMin, filterMax, True) elif reorder == 2: dataSetSort.DesConnectionSort(ds) nodes = ds.getDoubleList(filterMin, filterMax, True) elif reorder == 3: dataSetSort.DesStrengthSort(ds) nodes = ds.getDoubleList(filterMin, filterMax, True) elif reorder == 4: nodes = ds.distanceMatrix(True) elif reorder == 5: dataSetSort.robinsonSort(ds) nodes = ds.getDoubleList(filterMin, filterMax, True) names = ds.getNames() yNames = names.copy() yNames.reverse() df = pd.DataFrame( nodes, columns=yNames, index=names) df.index.name = 'X' df.columns.name = 'Y' # Prepare data.frame in the right format df = df.stack().rename("value").reset_index() # Making the plot html file output_file("matrixPlot.html") # Creating the array containing the colors colorList = [] i = 0 while i < 256: color = wc.rgb_to_hex((255-(i-10), 255-(i-20), 255-(i-30))) colorList.append(color) i = i + 10 #colorList = [(23, 165, 137), (19, 141, 117), (40, 180, 99), (36, 113, 163) # , (31, 97, 141), (17, 122, 101), (46, 134, 193), (34, 153, 84)]#,(202, 111, 30), (186, 74, 0)] #colors = [] #for i in colorList: # color = wc.rgb_to_hex(i) # colors.append(color) colors = colorList # This part maps the colors at intervals mapper = LinearColorMapper( palette=colors, low=df.value.min(), high=df.value.max()) # Creating the figure p = figure( plot_width=500, plot_height=500, x_range=list(df.X.drop_duplicates()), y_range=list(df.Y.drop_duplicates()), # Adding a toolbar #toolbar_location="right", #tools="hover,pan,box_zoom,undo,redo,reset,save", x_axis_location="above") node_hover_tool = HoverTool(tooltips=[("Name X Axis", "@X"), ("Name Y Axis", "@Y"), ("Relation Strength", "@value")]) # plot.add_tools(node_hover_tool, BoxZoomTool(), ResetTool()) p.add_tools(node_hover_tool, TapTool(), BoxSelectTool(), BoxZoomTool(), UndoTool(), RedoTool()) p.toolbar_location = 'right' # Create rectangle for heatmap p.rect( x="X", y="Y", width=1, height=1, source=ColumnDataSource(df), line_color=None, fill_color=transform('value', mapper)) # Add legend color_bar = ColorBar( color_mapper=mapper, location=(0, 0), ticker=BasicTicker(desired_num_ticks=len(colors))) if len(list(df.X.drop_duplicates())) > p.plot_width / 10: p.xaxis.visible = False else: pass if len(list(df.Y.drop_duplicates())) > p.plot_height / 10: p.yaxis.visible = False else: pass p.xaxis.major_label_orientation = 'vertical' p.add_layout(color_bar, 'right') return p
import sys import time import tensorflow as tf from scripts import DataSet import numpy import urllib.request # import os # os.environ["CUDA_VISIBLE_DEVICES"] = '0' sys.path.append("D:/graduation_project/workspace/models/research/slim") from scripts import my_vgg_16 as vgg slim = tf.contrib.slim checkpoint_path = 'D:/graduation_project/checkpoints/vgg_16.ckpt' new_model_checkpoint_path = 'D:/graduation_project/workspace/checkpoints' train = DataSet.DataSet('UCF', 'train1', 25) input, label = train.next_batch(2) logits, _ = vgg.vgg_16(input, num_classes=1000, is_training=False, jud='fc7') init1 = slim.assign_from_checkpoint_fn( checkpoint_path, slim.get_variables_to_restore(include=["vgg_16"])) # init1 = slim.assign_from_checkpoint_fn(new_model_checkpoint_path + '\\model.ckpt-107', slim.get_variables("vgg_16")) # init2 = slim.assign_from_checkpoint_fn(new_model_checkpoint_path + '\\model.ckpt-108', slim.get_variables("vgg_16")) with tf.Session() as sess: # init1(sess) # fc8_biases = slim.get_variables("vgg_16/fc8/biases") # fc7_biases = slim.get_variables("vgg_16/fc7/biases") # print(fc8_biases) # print('fc8 biases pre: ', sess.run(fc8_biases[0:10])) # print('fc7 biases pre: ', sess.run(fc7_biases[0:10]))