コード例 #1
0
def register_data(im_src, im_dest, param_reg, path_copy_warp=None, rm_tmp=True):
    '''

    Parameters
    ----------
    im_src: class Image: source image
    im_dest: class Image: destination image
    param_reg: str: registration parameter
    path_copy_warp: path: path to copy the warping fields

    Returns: im_src_reg: class Image: source image registered on destination image
    -------

    '''
    # im_src and im_dest are already preprocessed (in theory: im_dest = mean_image)
    # binarize images to get seg
    im_src_seg = binarize(im_src, thr_min=1, thr_max=1)
    im_dest_seg = binarize(im_dest)
    # create tmp dir and go in it
    tmp_dir = tmp_create()
    os.chdir(tmp_dir)
    # save image and seg
    fname_src = 'src.nii.gz'
    im_src.setFileName(fname_src)
    im_src.save()
    fname_src_seg = 'src_seg.nii.gz'
    im_src_seg.setFileName(fname_src_seg)
    im_src_seg.save()
    fname_dest = 'dest.nii.gz'
    im_dest.setFileName(fname_dest)
    im_dest.save()
    fname_dest_seg = 'dest_seg.nii.gz'
    im_dest_seg.setFileName(fname_dest_seg)
    im_dest_seg.save()
    # do registration using param_reg
    sct_register_multimodal.main(args=['-i', fname_src,
                                       '-d', fname_dest,
                                       '-iseg', fname_src_seg,
                                       '-dseg', fname_dest_seg,
                                       '-param', param_reg])

    # get registration result
    fname_src_reg = add_suffix(fname_src, '_reg')
    im_src_reg = Image(fname_src_reg)
    # get out of tmp dir
    os.chdir('..')
    # copy warping fields
    if path_copy_warp is not None and os.path.isdir(os.path.abspath(path_copy_warp)):
        path_copy_warp = os.path.abspath(path_copy_warp)
        file_src = extract_fname(fname_src)[1]
        file_dest = extract_fname(fname_dest)[1]
        fname_src2dest = 'warp_' + file_src +'2' + file_dest +'.nii.gz'
        fname_dest2src = 'warp_' + file_dest +'2' + file_src +'.nii.gz'
        shutil.copy(tmp_dir +'/' + fname_src2dest, path_copy_warp + '/')
        shutil.copy(tmp_dir + '/' + fname_dest2src, path_copy_warp + '/')
    if rm_tmp:
        # remove tmp dir
        shutil.rmtree(tmp_dir)
    # return res image
    return im_src_reg, fname_src2dest, fname_dest2src
コード例 #2
0
def test_sequences(fake_3dimage_sct):
    """
    Test correct behaviour in some Image manipulation sequences
    """

    img = fake_3dimage_sct.copy()

    path_tmp = sct.tmp_create(basename="test_sequences")

    path_a = os.path.join(path_tmp, 'a.nii')
    path_b = os.path.join(path_tmp, 'b.nii')

    img.save(path_a)
    assert img.absolutepath is None

    img.save(path_b, mutable=True)
    assert img._path is not None
    assert img.absolutepath is not None
    assert img.absolutepath == os.path.abspath(path_b)

    img.save(path_a) \
     .change_orientation("RPI") \
     .save(path_b, mutable=True)
    assert img.absolutepath is not None
    assert img.absolutepath == os.path.abspath(path_b)
コード例 #3
0
def apply_transfo(im_src, im_dest, warp, interp='spline', rm_tmp=True):
    # create tmp dir and go in it
    tmp_dir = tmp_create()
    # copy warping field to tmp dir
    shutil.copy(warp, tmp_dir)
    warp = ''.join(extract_fname(warp)[1:])
    # go to tmp dir
    os.chdir(tmp_dir)
    # save image and seg
    fname_src = 'src.nii.gz'
    im_src.setFileName(fname_src)
    im_src.save()
    fname_dest = 'dest.nii.gz'
    im_dest.setFileName(fname_dest)
    im_dest.save()
    # apply warping field
    fname_src_reg = add_suffix(fname_src, '_reg')
    sct_apply_transfo.main(args=['-i', fname_src,
                                  '-d', fname_dest,
                                  '-w', warp,
                                  '-x', interp])

    im_src_reg = Image(fname_src_reg)
    # get out of tmp dir
    os.chdir('..')
    if rm_tmp:
        # remove tmp dir
        shutil.rmtree(tmp_dir)
    # return res image
    return im_src_reg
コード例 #4
0
def test_change_nd_orientation(fake_4dimage_sct):
    import sct_image

    im_src = fake_4dimage_sct.copy()
    path_tmp = sct.tmp_create(basename="test_reorient")
    im_src.save(os.path.join(path_tmp, "src.nii"), mutable=True)

    print(im_src.orientation, im_src.data.shape)

    def orient2shape(orient):
        # test-data-specific thing
        letter2dim = dict(
         L=2,
         R=2,
         A=3,
         P=3,
         I=4,
         S=4,
        )
        return tuple([letter2dim[x] for x in orient] + [5])

    orientation = im_src.orientation
    assert orientation == "LPI"
    assert im_src.header.get_best_affine()[:3,3].tolist() == [0,0,0]

    im_dst = msct_image.change_orientation(im_src, "RPI")
    assert im_dst.orientation == "RPI"
    assert im_dst.data.shape == orient2shape("RPI")
    assert im_dst.header.get_best_affine()[:3,3].tolist() == [2-1,0,0]
コード例 #5
0
    def __init__(self, fname_im, contrast, fname_seg, path_out, verbose):

        self.fname_im = fname_im
        self.contrast = contrast

        self.fname_seg = fname_seg

        self.path_out = path_out

        self.verbose = verbose

        self.tmp_dir = sct.tmp_create(verbose=self.verbose)  # path to tmp directory

        self.orientation_im = Image(self.fname_im).orientation  # to re-orient the data at the end

        self.slice2D_im = sct.extract_fname(self.fname_im)[1] + '_midSag.nii'  # file used to do the detection, with only one slice
        self.dection_map_pmj = sct.extract_fname(self.fname_im)[1] + '_map_pmj'  # file resulting from the detection

        # path to the pmj detector
        self.pmj_model = os.path.join(sct.__data_dir__, 'pmj_models', '{}_model'.format(self.contrast))

        self.threshold = -0.75 if self.contrast == 't1' else 0.8  # detection map threshold, depends on the contrast

        self.fname_out = sct.extract_fname(self.fname_im)[1] + '_pmj.nii.gz'

        self.fname_qc = 'qc_pmj.png'
コード例 #6
0
    def __init__(self, param=None, param_glcm=None):
        self.param = param if param is not None else Param()
        self.param_glcm = param_glcm if param_glcm is not None else ParamGLCM()

        # create tmp directory
        self.tmp_dir = sct.tmp_create(verbose=self.param.verbose)  # path to tmp directory

        if self.param.dim == 'ax':
            self.orientation_extraction = 'RPI'
        elif self.param.dim == 'sag':
            self.orientation_extraction = 'IPR'
        else:
            self.orientation_extraction = 'IRP'

        # metric_lst=['property_distance_angle']
        self.metric_lst = []
        for m in list(itertools.product(self.param_glcm.feature.split(','), self.param_glcm.angle.split(','))):
            text_name = m[0] if m[0].upper() != 'asm'.upper() else m[0].upper()
            self.metric_lst.append(text_name + '_' + str(self.param_glcm.distance) + '_' + str(m[1]))

        # dct_im_seg{'im': list_of_axial_slice, 'seg': list_of_axial_masked_slice}
        self.dct_im_seg = {'im': None, 'seg': None}

        # to re-orient the data at the end if needed
        self.orientation_im = Image(self.param.fname_im).orientation

        self.fname_metric_lst = {}
コード例 #7
0
    def __init__(self, fname_mask, fname_sc, fname_ref, path_template, path_ofolder, verbose):
        self.fname_mask = fname_mask

        self.fname_sc = fname_sc
        self.fname_ref = fname_ref
        self.path_template = path_template
        self.path_ofolder = path_ofolder
        self.verbose = verbose
        self.wrk_dir = os.getcwd()

        if not set(np.unique(Image(fname_mask).data)) == set([0.0, 1.0]):
            if set(np.unique(Image(fname_mask).data)) == set([0.0]):
                printv('WARNING: Empty masked image', self.verbose, 'warning')
            else:
                printv("ERROR input file %s is not binary file with 0 and 1 values" % fname_mask, 1, 'error')


        # create tmp directory
        self.tmp_dir = tmp_create(verbose=verbose)  # path to tmp directory

        # lesion file where each lesion has a different value
        self.fname_label = extract_fname(self.fname_mask)[1] + '_label' + extract_fname(self.fname_mask)[2]

        # initialization of measure sheet
        measure_lst = ['label', 'volume [mm3]', 'length [mm]', 'max_equivalent_diameter [mm]']
        if self.fname_ref is not None:
            for measure in ['mean', 'std']:
                measure_lst.append(measure + '_' + extract_fname(self.fname_ref)[1])
        measure_dct = {}
        for column in measure_lst:
            measure_dct[column] = None
        self.measure_pd = pd.DataFrame(data=measure_dct, index=range(0), columns=measure_lst)

        # orientation of the input image
        self.orientation = None

        # volume object
        self.volumes = None

        # initialization of proportion measures, related to registrated atlas
        if self.path_template is not None:
            self.path_atlas = os.path.join(self.path_template, "atlas")
            self.path_levels = os.path.join(self.path_template, "template", "PAM50_levels.nii.gz")
        else:
            self.path_atlas, self.path_levels = None, None
        self.vert_lst = None
        self.atlas_roi_lst = None
        self.distrib_matrix_dct = {}

        # output names
        self.pickle_name = extract_fname(self.fname_mask)[1] + '_analyzis.pkl'
        self.excel_name = extract_fname(self.fname_mask)[1] + '_analyzis.xls'
コード例 #8
0
def register_slicewise(fname_src,
                        fname_dest,
                        fname_mask='',
                        warp_forward_out='step0Warp.nii.gz',
                        warp_inverse_out='step0InverseWarp.nii.gz',
                        paramreg=None,
                        ants_registration_params=None,
                        path_qc='./',
                        verbose=0):

    # create temporary folder
    path_tmp = sct.tmp_create(verbose)

    # copy data to temp folder
    sct.printv('\nCopy input data to temp folder...', verbose)
    convert(fname_src, path_tmp+'src.nii')
    convert(fname_dest, path_tmp+'dest.nii')
    if fname_mask != '':
        convert(fname_mask, path_tmp+'mask.nii.gz')

    # go to temporary folder
    chdir(path_tmp)

    # Calculate displacement
    if paramreg.algo == 'centermass':
        # translation of center of mass between source and destination in voxel space
        register2d_centermassrot('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, rot=0, poly=int(paramreg.poly), path_qc=path_qc, verbose=verbose)
    elif paramreg.algo == 'centermassrot':
        # translation of center of mass and rotation based on source and destination first eigenvectors from PCA.
        register2d_centermassrot('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, rot=1, poly=int(paramreg.poly), path_qc=path_qc, verbose=verbose, pca_eigenratio_th=float(paramreg.pca_eigenratio_th))
    elif paramreg.algo == 'columnwise':
        # scaling R-L, then column-wise center of mass alignment and scaling
        register2d_columnwise('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, verbose=verbose, path_qc=path_qc, smoothWarpXY=int(paramreg.smoothWarpXY))
    else:
        # convert SCT flags into ANTs-compatible flags
        algo_dic = {'translation': 'Translation', 'rigid': 'Rigid', 'affine': 'Affine', 'syn': 'SyN', 'bsplinesyn': 'BSplineSyN', 'centermass': 'centermass'}
        paramreg.algo = algo_dic[paramreg.algo]
        # run slicewise registration
        register2d('src.nii', 'dest.nii', fname_mask=fname_mask, fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, paramreg=paramreg, ants_registration_params=ants_registration_params, verbose=verbose)

    sct.printv('\nMove warping fields to parent folder...', verbose)
    sct.run('mv '+warp_forward_out+' ../')
    sct.run('mv '+warp_inverse_out+' ../')

    # go back to parent folder
    chdir('../')
コード例 #9
0
    def __init__(self, param_seg=None, param_model=None, param_data=None, param=None):
        self.param_seg = param_seg if param_seg is not None else ParamSeg()
        self.param_model = param_model if param_model is not None else ParamModel()
        self.param_data = param_data if param_data is not None else ParamData()
        self.param = param if param is not None else Param()

        # create model:
        self.model = Model(param_model=self.param_model, param_data=self.param_data, param=self.param)

        # create tmp directory
        self.tmp_dir = tmp_create(verbose=self.param.verbose)  # path to tmp directory

        self.target_im = None  # list of slices
        self.info_preprocessing = None  # dic containing {'orientation': 'xxx', 'im_sc_seg_rpi': im, 'interpolated_images': [list of im = interpolated image data per slice]}

        self.projected_target = None  # list of coordinates of the target slices in the model reduced space
        self.im_res_gmseg = None
        self.im_res_wmseg = None
コード例 #10
0
def visualize_warp(fname_warp, fname_grid=None, step=3, rm_tmp=True):
    if fname_grid is None:
        from numpy import zeros

        tmp_dir = sct.tmp_create()
        im_warp = Image(fname_warp)
        os.chdir(tmp_dir)

        assert len(im_warp.data.shape) == 5, "ERROR: Warping field does bot have 5 dimensions..."
        nx, ny, nz, nt, ndimwarp = im_warp.data.shape

        # nx, ny, nz, nt, px, py, pz, pt = im_warp.dim
        # This does not work because dimensions of a warping field are not correctly read : it would be 1,1,1,1,1,1,1,1

        sq = zeros((step, step))
        sq[step - 1] = 1
        sq[:, step - 1] = 1
        dat = zeros((nx, ny, nz))
        for i in range(0, dat.shape[0], step):
            for j in range(0, dat.shape[1], step):
                for k in range(dat.shape[2]):
                    if dat[i : i + step, j : j + step, k].shape == (step, step):
                        dat[i : i + step, j : j + step, k] = sq
        fname_grid = "grid_" + str(step) + ".nii.gz"
        im_grid = Image(param=dat)
        grid_hdr = im_warp.hdr
        im_grid.hdr = grid_hdr
        im_grid.setFileName(fname_grid)
        im_grid.save()
        fname_grid_resample = sct.add_suffix(fname_grid, "_resample")
        sct.run("sct_resample -i " + fname_grid + " -f 3x3x1 -x nn -o " + fname_grid_resample)
        fname_grid = tmp_dir + fname_grid_resample
        os.chdir("..")
    path_warp, file_warp, ext_warp = sct.extract_fname(fname_warp)
    grid_warped = path_warp + "grid_warped_gm" + ext_warp
    sct.run("sct_apply_transfo -i " + fname_grid + " -d " + fname_grid + " -w " + fname_warp + " -o " + grid_warped)
    if rm_tmp:
        sct.run("rm -rf " + tmp_dir, error_exit="warning")
    return grid_warped
コード例 #11
0
def func_rescale_header(fname_data, rescale_factor, verbose=0):
    """
    Rescale the voxel dimension by modifying the NIFTI header qform. Write the output file in a temp folder.
    :param fname_data:
    :param rescale_factor:
    :return: fname_data_rescaled
    """
    import nibabel as nib
    img = nib.load(fname_data)
    # get qform
    qform = img.header.get_qform()
    # multiply by scaling factor
    qform[0:3, 0:3] *= rescale_factor
    # generate a new nifti file
    header_rescaled = img.header.copy()
    header_rescaled.set_qform(qform)
    # the data are the same-- only the header changes
    img_rescaled = nib.nifti1.Nifti1Image(img.get_data(), None, header=header_rescaled)
    path_tmp = sct.tmp_create(basename="propseg", verbose=verbose)
    fname_data_rescaled = os.path.join(path_tmp, os.path.basename(sct.add_suffix(fname_data, "_rescaled")))
    nib.save(img_rescaled, fname_data_rescaled)
    return fname_data_rescaled
コード例 #12
0
def visualize_warp(fname_warp, fname_grid=None, step=3, rm_tmp=True):
    if fname_grid is None:
        from numpy import zeros
        tmp_dir = tmp_create()
        im_warp = Image(fname_warp)
        status, out = run('fslhd '+fname_warp)
        from os import chdir
        chdir(tmp_dir)
        dim1 = 'dim1           '
        dim2 = 'dim2           '
        dim3 = 'dim3           '
        nx = int(out[out.find(dim1):][len(dim1):out[out.find(dim1):].find('\n')])
        ny = int(out[out.find(dim2):][len(dim2):out[out.find(dim2):].find('\n')])
        nz = int(out[out.find(dim3):][len(dim3):out[out.find(dim3):].find('\n')])
        sq = zeros((step, step))
        sq[step-1] = 1
        sq[:, step-1] = 1
        dat = zeros((nx, ny, nz))
        for i in range(0, dat.shape[0], step):
            for j in range(0, dat.shape[1], step):
                for k in range(dat.shape[2]):
                    if dat[i:i+step, j:j+step, k].shape == (step, step):
                        dat[i:i+step, j:j+step, k] = sq
        fname_grid = 'grid_'+str(step)+'.nii.gz'
        im_grid = Image(param=dat)
        grid_hdr = im_warp.hdr
        im_grid.hdr = grid_hdr
        im_grid.setFileName(fname_grid)
        im_grid.save()
        fname_grid_resample = add_suffix(fname_grid, '_resample')
        run('sct_resample -i '+fname_grid+' -f 3x3x1 -x nn -o '+fname_grid_resample)
        fname_grid = tmp_dir+fname_grid_resample
        chdir('..')
    path_warp, file_warp, ext_warp = extract_fname(fname_warp)
    grid_warped = path_warp+extract_fname(fname_grid)[1]+'_'+file_warp+ext_warp
    run('sct_apply_transfo -i '+fname_grid+' -d '+fname_grid+' -w '+fname_warp+' -o '+grid_warped)
    if rm_tmp:
        run('rm -rf '+tmp_dir, error_exit='warning')
コード例 #13
0
def visualize_warp(fname_warp, fname_grid=None, step=3, rm_tmp=True):
    if fname_grid is None:
        from numpy import zeros
        tmp_dir = sct.tmp_create()
        im_warp = Image(fname_warp)
        status, out = sct.run(['fslhd', fname_warp])
        curdir = os.getcwd()
        os.chdir(tmp_dir)
        dim1 = 'dim1           '
        dim2 = 'dim2           '
        dim3 = 'dim3           '
        nx = int(out[out.find(dim1):][len(dim1):out[out.find(dim1):].find('\n')])
        ny = int(out[out.find(dim2):][len(dim2):out[out.find(dim2):].find('\n')])
        nz = int(out[out.find(dim3):][len(dim3):out[out.find(dim3):].find('\n')])
        sq = zeros((step, step))
        sq[step - 1] = 1
        sq[:, step - 1] = 1
        dat = zeros((nx, ny, nz))
        for i in range(0, dat.shape[0], step):
            for j in range(0, dat.shape[1], step):
                for k in range(dat.shape[2]):
                    if dat[i:i + step, j:j + step, k].shape == (step, step):
                        dat[i:i + step, j:j + step, k] = sq
        fname_grid = 'grid_' + str(step) + '.nii.gz'
        im_grid = Image(param=dat)
        grid_hdr = im_warp.hdr
        im_grid.hdr = grid_hdr
        im_grid.absolutepath = fname_grid
        im_grid.save()
        fname_grid_resample = sct.add_suffix(fname_grid, '_resample')
        sct.run(['sct_resample', '-i', fname_grid, '-f', '3x3x1', '-x', 'nn', '-o', fname_grid_resample])
        fname_grid = os.path.join(tmp_dir, fname_grid_resample)
        os.chdir(curdir)
    path_warp, file_warp, ext_warp = sct.extract_fname(fname_warp)
    grid_warped = os.path.join(path_warp, sct.extract_fname(fname_grid)[1] + '_' + file_warp + ext_warp)
    sct.run(['sct_apply_transfo', '-i', fname_grid, '-d', fname_grid, '-w', fname_warp, '-o', grid_warped])
    if rm_tmp:
        sct.rmtree(tmp_dir)
コード例 #14
0
def test_change_shape(fake_3dimage_sct):

    # Add dimension
    im_src = fake_3dimage_sct
    shape = tuple(list(im_src.data.shape) + [1])
    im_dst = msct_image.change_shape(im_src, shape)
    path_tmp = sct.tmp_create(basename="test_reshape")
    src_path = os.path.join(path_tmp, "src.nii")
    dst_path = os.path.join(path_tmp, "dst.nii")
    im_src.save(src_path)
    im_dst.save(dst_path)
    im_src = msct_image.Image(src_path)
    im_dst = msct_image.Image(dst_path)
    assert im_dst.data.shape == shape

    data_src = im_src.data
    data_dst = im_dst.data

    assert (data_dst.reshape(data_src.shape) == data_src).all()

    # Remove dimension
    im_dst = im_dst.change_shape(im_src.data.shape)
    assert im_dst.data.shape == im_src.data.shape
コード例 #15
0
def main(args=None):
    if args is None:
        args = sys.argv[1:]

    # initialize parameters
    param = Param()

    # Initialization
    fname_output = ''
    path_out = ''
    fname_src_seg = ''
    fname_dest_seg = ''
    fname_src_label = ''
    fname_dest_label = ''
    generate_warpinv = 1

    start_time = time.time()
    # get path of the toolbox
    status, path_sct = commands.getstatusoutput('echo $SCT_DIR')

    # get default registration parameters
    # step1 = Paramreg(step='1', type='im', algo='syn', metric='MI', iter='5', shrink='1', smooth='0', gradStep='0.5')
    step0 = Paramreg(step='0', type='im', algo='syn', metric='MI', iter='0', shrink='1', smooth='0', gradStep='0.5', slicewise='0', dof='Tx_Ty_Tz_Rx_Ry_Rz')  # only used to put src into dest space
    step1 = Paramreg(step='1', type='im')
    paramreg = ParamregMultiStep([step0, step1])

    parser = get_parser(paramreg=paramreg)

    arguments = parser.parse(args)

    # get arguments
    fname_src = arguments['-i']
    fname_dest = arguments['-d']
    if '-iseg' in arguments:
        fname_src_seg = arguments['-iseg']
    if '-dseg' in arguments:
        fname_dest_seg = arguments['-dseg']
    if '-ilabel' in arguments:
        fname_src_label = arguments['-ilabel']
    if '-dlabel' in arguments:
        fname_dest_label = arguments['-dlabel']
    if '-o' in arguments:
        fname_output = arguments['-o']
    if '-ofolder' in arguments:
        path_out = arguments['-ofolder']
    if '-owarp' in arguments:
        fname_output_warp = arguments['-owarp']
    else:
        fname_output_warp = ''
    if '-initwarp' in arguments:
        fname_initwarp = os.path.abspath(arguments['-initwarp'])
    else:
        fname_initwarp = ''
    if '-initwarpinv' in arguments:
        fname_initwarpinv = os.path.abspath(arguments['-initwarpinv'])
    else:
        fname_initwarpinv = ''
    if '-m' in arguments:
        fname_mask = arguments['-m']
    else:
        fname_mask = ''
    padding = arguments['-z']
    if "-param" in arguments:
        paramreg_user = arguments['-param']
        # update registration parameters
        for paramStep in paramreg_user:
            paramreg.addStep(paramStep)

    identity = int(arguments['-identity'])
    interp = arguments['-x']
    remove_temp_files = int(arguments['-r'])
    verbose = int(arguments['-v'])

    # sct.printv(arguments)
    sct.printv('\nInput parameters:')
    sct.printv('  Source .............. ' + fname_src)
    sct.printv('  Destination ......... ' + fname_dest)
    sct.printv('  Init transfo ........ ' + fname_initwarp)
    sct.printv('  Mask ................ ' + fname_mask)
    sct.printv('  Output name ......... ' + fname_output)
    # sct.printv('  Algorithm ........... '+paramreg.algo)
    # sct.printv('  Number of iterations  '+paramreg.iter)
    # sct.printv('  Metric .............. '+paramreg.metric)
    sct.printv('  Remove temp files ... ' + str(remove_temp_files))
    sct.printv('  Verbose ............. ' + str(verbose))

    # update param
    param.verbose = verbose
    param.padding = padding
    param.fname_mask = fname_mask
    param.remove_temp_files = remove_temp_files

    # Get if input is 3D
    sct.printv('\nCheck if input data are 3D...', verbose)
    sct.check_if_3d(fname_src)
    sct.check_if_3d(fname_dest)

    # Check if user selected type=seg, but did not input segmentation data
    if 'paramreg_user' in locals():
        if True in ['type=seg' in paramreg_user[i] for i in range(len(paramreg_user))]:
            if fname_src_seg == '' or fname_dest_seg == '':
                sct.printv('\nERROR: if you select type=seg you must specify -iseg and -dseg flags.\n', 1, 'error')

    # Extract path, file and extension
    path_src, file_src, ext_src = sct.extract_fname(fname_src)
    path_dest, file_dest, ext_dest = sct.extract_fname(fname_dest)

    # check if source and destination images have the same name (related to issue #373)
    # If so, change names to avoid conflict of result files and warns the user
    suffix_src, suffix_dest = '_reg', '_reg'
    if file_src == file_dest:
        suffix_src, suffix_dest = '_src_reg', '_dest_reg'

    # define output folder and file name
    if fname_output == '':
        path_out = '' if not path_out else path_out  # output in user's current directory
        file_out = file_src + suffix_src
        file_out_inv = file_dest + suffix_dest
        ext_out = ext_src
    else:
        path, file_out, ext_out = sct.extract_fname(fname_output)
        path_out = path if not path_out else path_out
        file_out_inv = file_out + '_inv'

    # create QC folder
    sct.create_folder(param.path_qc)

    # create temporary folder
    path_tmp = sct.tmp_create()

    # copy files to temporary folder
    from sct_convert import convert
    sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose)
    convert(fname_src, path_tmp + 'src.nii')
    convert(fname_dest, path_tmp + 'dest.nii')

    if fname_src_seg:
        convert(fname_src_seg, path_tmp + 'src_seg.nii')
        convert(fname_dest_seg, path_tmp + 'dest_seg.nii')

    if fname_src_label:
        convert(fname_src_label, path_tmp + 'src_label.nii')
        convert(fname_dest_label, path_tmp + 'dest_label.nii')

    if fname_mask != '':
        convert(fname_mask, path_tmp + 'mask.nii.gz')

    # go to tmp folder
    os.chdir(path_tmp)

    # reorient destination to RPI
    sct.run('sct_image -i dest.nii -setorient RPI -o dest_RPI.nii')
    if fname_dest_seg:
        sct.run('sct_image -i dest_seg.nii -setorient RPI -o dest_seg_RPI.nii')
    if fname_dest_label:
        sct.run('sct_image -i dest_label.nii -setorient RPI -o dest_label_RPI.nii')

    if identity:
        # overwrite paramreg and only do one identity transformation
        step0 = Paramreg(step='0', type='im', algo='syn', metric='MI', iter='0', shrink='1', smooth='0', gradStep='0.5')
        paramreg = ParamregMultiStep([step0])

    # Put source into destination space using header (no estimation -- purely based on header)
    # TODO: Check if necessary to do that
    # TODO: use that as step=0
    # sct.printv('\nPut source into destination space using header...', verbose)
    # sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[dest_pad.nii,src.nii,1,16] -c 0 -f 1 -s 0 -o [regAffine,src_regAffine.nii] -n BSpline[3]', verbose)
    # if segmentation, also do it for seg

    # initialize list of warping fields
    warp_forward = []
    warp_inverse = []

    # initial warping is specified, update list of warping fields and skip step=0
    if fname_initwarp:
        sct.printv('\nSkip step=0 and replace with initial transformations: ', param.verbose)
        sct.printv('  ' + fname_initwarp, param.verbose)
        # sct.run('cp '+fname_initwarp+' warp_forward_0.nii.gz', verbose)
        warp_forward = [fname_initwarp]
        start_step = 1
        if fname_initwarpinv:
            warp_inverse = [fname_initwarpinv]
        else:
            sct.printv('\nWARNING: No initial inverse warping field was specified, therefore the inverse warping field will NOT be generated.', param.verbose, 'warning')
            generate_warpinv = 0
    else:
        start_step = 0

    # loop across registration steps
    for i_step in range(start_step, len(paramreg.steps)):
        sct.printv('\n--\nESTIMATE TRANSFORMATION FOR STEP #' + str(i_step), param.verbose)
        # identify which is the src and dest
        if paramreg.steps[str(i_step)].type == 'im':
            src = 'src.nii'
            dest = 'dest_RPI.nii'
            interp_step = 'spline'
        elif paramreg.steps[str(i_step)].type == 'seg':
            src = 'src_seg.nii'
            dest = 'dest_seg_RPI.nii'
            interp_step = 'nn'
        elif paramreg.steps[str(i_step)].type == 'label':
            src = 'src_label.nii'
            dest = 'dest_label_RPI.nii'
            interp_step = 'nn'
        else:
            # src = dest = interp_step = None
            sct.printv('ERROR: Wrong image type.', 1, 'error')
        # if step>0, apply warp_forward_concat to the src image to be used
        if i_step > 0:
            sct.printv('\nApply transformation from previous step', param.verbose)
            sct.run('sct_apply_transfo -i ' + src + ' -d ' + dest + ' -w ' + ','.join(warp_forward) + ' -o ' + sct.add_suffix(src, '_reg') + ' -x ' + interp_step, verbose)
            src = sct.add_suffix(src, '_reg')
        # register src --> dest
        warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step))
        warp_forward.append(warp_forward_out)
        warp_inverse.insert(0, warp_inverse_out)

    # Concatenate transformations
    sct.printv('\nConcatenate transformations...', verbose)
    sct.run('sct_concat_transfo -w ' + ','.join(warp_forward) + ' -d dest.nii -o warp_src2dest.nii.gz', verbose)
    sct.run('sct_concat_transfo -w ' + ','.join(warp_inverse) + ' -d src.nii -o warp_dest2src.nii.gz', verbose)

    # Apply warping field to src data
    sct.printv('\nApply transfo source --> dest...', verbose)
    sct.run('sct_apply_transfo -i src.nii -o src_reg.nii -d dest.nii -w warp_src2dest.nii.gz -x ' + interp, verbose)
    sct.printv('\nApply transfo dest --> source...', verbose)
    sct.run('sct_apply_transfo -i dest.nii -o dest_reg.nii -d src.nii -w warp_dest2src.nii.gz -x ' + interp, verbose)

    # come back to parent folder
    os.chdir('..')

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    # generate: src_reg
    fname_src2dest = sct.generate_output_file(path_tmp + 'src_reg.nii', path_out + file_out + ext_out, verbose)
    # generate: forward warping field
    if fname_output_warp == '':
        fname_output_warp = path_out + 'warp_' + file_src + '2' + file_dest + '.nii.gz'
    sct.generate_output_file(path_tmp + 'warp_src2dest.nii.gz', fname_output_warp, verbose)
    if generate_warpinv:
        # generate: dest_reg
        fname_dest2src = sct.generate_output_file(path_tmp + 'dest_reg.nii', path_out + file_out_inv + ext_dest, verbose)
        # generate: inverse warping field
        sct.generate_output_file(path_tmp + 'warp_dest2src.nii.gz', path_out + 'warp_' + file_dest + '2' + file_src + '.nii.gz', verbose)

    # Delete temporary files
    if remove_temp_files:
        sct.printv('\nRemove temporary files...', verbose)
        sct.run('rm -rf ' + path_tmp, verbose)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: ' + str(int(round(elapsed_time))) + 's', verbose)
    sct.printv('\nTo view results, type:', verbose)
    if generate_warpinv:
        sct.printv('fslview ' + fname_src + ' ' + fname_dest2src + ' &', verbose, 'info')
    sct.printv('fslview ' + fname_dest + ' ' + fname_src2dest + ' &\n', verbose, 'info')
コード例 #16
0
def check_and_correct_segmentation(fname_segmentation,
                                   fname_centerline,
                                   folder_output='',
                                   threshold_distance=5.0,
                                   remove_temp_files=1,
                                   verbose=0):
    """
    This function takes the outputs of isct_propseg (centerline and segmentation) and check if the centerline of the
    segmentation is coherent with the centerline provided by the isct_propseg, especially on the edges (related
    to issue #1074).
    Args:
        fname_segmentation: filename of binary segmentation
        fname_centerline: filename of binary centerline
        threshold_distance: threshold, in mm, beyond which centerlines are not coherent
        verbose:

    Returns: None
    """
    sct.printv('\nCheck consistency of segmentation...', verbose)
    # creating a temporary folder in which all temporary files will be placed and deleted afterwards
    path_tmp = sct.tmp_create(basename="propseg", verbose=verbose)
    from sct_convert import convert
    convert(fname_segmentation,
            os.path.join(path_tmp, "tmp.segmentation.nii.gz"),
            verbose=0)
    convert(fname_centerline,
            os.path.join(path_tmp, "tmp.centerline.nii.gz"),
            verbose=0)
    fname_seg_absolute = os.path.abspath(fname_segmentation)

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # convert segmentation image to RPI
    im_input = Image('tmp.segmentation.nii.gz')
    image_input_orientation = im_input.orientation

    sct_image.main(
        "-i tmp.segmentation.nii.gz -setorient RPI -o tmp.segmentation_RPI.nii.gz -v 0"
        .split())
    sct_image.main(
        "-i tmp.centerline.nii.gz -setorient RPI -o tmp.centerline_RPI.nii.gz -v 0"
        .split())

    # go through segmentation image, and compare with centerline from propseg
    im_seg = Image('tmp.segmentation_RPI.nii.gz')
    im_centerline = Image('tmp.centerline_RPI.nii.gz')

    # Get size of data
    sct.printv('\nGet data dimensions...', verbose)
    nx, ny, nz, nt, px, py, pz, pt = im_seg.dim

    # extraction of centerline provided by isct_propseg and computation of center of mass for each slice
    # the centerline is defined as the center of the tubular mesh outputed by propseg.
    centerline, key_centerline = {}, []
    for i in range(nz):
        slice = im_centerline.data[:, :, i]
        if np.any(slice):
            x_centerline, y_centerline = ndi.measurements.center_of_mass(slice)
            centerline[str(i)] = [x_centerline, y_centerline]
            key_centerline.append(i)

    minz_centerline = np.min(key_centerline)
    maxz_centerline = np.max(key_centerline)
    mid_slice = int((maxz_centerline - minz_centerline) / 2)

    # for each slice of the segmentation, check if only one object is present. If not, remove the slice from segmentation.
    # If only one object (the spinal cord) is present in the slice, check if its center of mass is close to the centerline of isct_propseg.
    slices_to_remove = [
        False
    ] * nz  # flag that decides if the slice must be removed
    for i in range(minz_centerline, maxz_centerline + 1):
        # extraction of slice
        slice = im_seg.data[:, :, i]
        distance = -1
        label_objects, nb_labels = ndi.label(
            slice)  # count binary objects in the slice
        if nb_labels > 1:  # if there is more that one object in the slice, the slice is removed from the segmentation
            slices_to_remove[i] = True
        elif nb_labels == 1:  # check if the centerline is coherent with the one from isct_propseg
            x_centerline, y_centerline = ndi.measurements.center_of_mass(slice)
            slice_nearest_coord = min(key_centerline, key=lambda x: abs(x - i))
            coord_nearest_coord = centerline[str(slice_nearest_coord)]
            distance = np.sqrt((
                (x_centerline - coord_nearest_coord[0]) * px)**2 + (
                    (y_centerline - coord_nearest_coord[1]) * py)**2 +
                               ((i - slice_nearest_coord) * pz)**2)

            if distance >= threshold_distance:  # threshold must be adjusted, default is 5 mm
                slices_to_remove[i] = True

    # Check list of removal and keep one continuous centerline (improve this comment)
    # Method:
    # starting from mid-centerline (in both directions), the first True encountered is applied to all following slices
    slice_to_change = False
    for i in range(mid_slice, nz):
        if slice_to_change:
            slices_to_remove[i] = True
        elif slices_to_remove[i]:
            slice_to_change = True

    slice_to_change = False
    for i in range(mid_slice, 0, -1):
        if slice_to_change:
            slices_to_remove[i] = True
        elif slices_to_remove[i]:
            slice_to_change = True

    for i in range(0, nz):
        # remove the slice
        if slices_to_remove[i]:
            im_seg.data[:, :, i] *= 0

    # saving the image
    im_seg.save('tmp.segmentation_RPI_c.nii.gz')

    # replacing old segmentation with the corrected one
    sct_image.main(
        '-i tmp.segmentation_RPI_c.nii.gz -setorient {} -o {} -v 0'.format(
            image_input_orientation, fname_seg_absolute).split())

    os.chdir(curdir)

    # display information about how much of the segmentation has been corrected

    # remove temporary files
    if remove_temp_files:
        # sct.printv("\nRemove temporary files...", verbose)
        sct.rmtree(path_tmp)
コード例 #17
0
            return ori
        elif set:
            # set orientation
            printv('\nChange orientation...', verbose)
            im_out = set_orientation(im, ori)
        elif set_data:
            im_out = set_orientation(im, ori, True)
        else:
            im_out = None

    else:
        from os import chdir
        # 4D data: split along T dimension
        # or 5D data: split along 5th dimension
        # Create a temporary directory and go in it
        tmp_folder = tmp_create(verbose)
        chdir(tmp_folder)
        if len(im.data.shape) == 5 and im.data.shape[-1] not in [0, 1]:
            # 5D data
            printv('\nSplit along 5th dimension...', verbose)
            im_split_list = multicomponent_split(im)
            dim = 5
        else:
            # 4D data
            printv('\nSplit along T dimension...', verbose)
            im_split_list = split_data(im, 3)
            dim = 4
        for im_s in im_split_list:
            im_s.save(verbose=verbose)

        if get:
コード例 #18
0
def main():

    # Initialization
    size_data = 61
    size_label = 1  # put zero for labels that are single points.
    dice_acceptable = 0.39  # computed DICE should be 0.931034
    test_passed = 0
    remove_temp_files = 1
    verbose = 1

    # Check input parameters
    try:
        opts, args = getopt.getopt(sys.argv[1:], 'hvr:')
    except getopt.GetoptError:
        usage()
    for opt, arg in opts:
        if opt == '-h':
            usage()
        elif opt in ('-v'):
            verbose = int(arg)
        elif opt in ('-r'):
            remove_temp_files = int(arg)

    path_tmp = sct.tmp_create(basename="test_ants", verbose=verbose)

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Initialise numpy volumes
    data_src = np.zeros((size_data, size_data, size_data), dtype=np.int16)
    data_dest = np.zeros((size_data, size_data, size_data), dtype=np.int16)

    # add labels for src image (curved).
    # Labels can be big (more than single point), because when applying NN interpolation, single points might disappear
    data_src[20 - size_label:20 + size_label + 1,
             20 - size_label:20 + size_label + 1,
             10 - size_label:10 + size_label + 1] = 1
    data_src[30 - size_label:30 + size_label + 1,
             30 - size_label:30 + size_label + 1,
             30 - size_label:30 + size_label + 1] = 2
    data_src[20 - size_label:20 + size_label + 1,
             20 - size_label:20 + size_label + 1,
             50 - size_label:50 + size_label + 1] = 3

    # add labels for dest image (straight).
    # Here, no need for big labels (bigger than single point) because these labels will not be re-interpolated.
    data_dest[30 - size_label:30 + size_label + 1,
              30 - size_label:30 + size_label + 1,
              10 - size_label:10 + size_label + 1] = 1
    data_dest[30 - size_label:30 + size_label + 1,
              30 - size_label:30 + size_label + 1,
              30 - size_label:30 + size_label + 1] = 2
    data_dest[30 - size_label:30 + size_label + 1,
              30 - size_label:30 + size_label + 1,
              50 - size_label:50 + size_label + 1] = 3

    # save as nifti
    img_src = nib.Nifti1Image(data_src, np.eye(4))
    nib.save(img_src, 'data_src.nii.gz')
    img_dest = nib.Nifti1Image(data_dest, np.eye(4))
    nib.save(img_dest, 'data_dest.nii.gz')

    # Estimate rigid transformation
    sct.printv('\nEstimate rigid transformation between paired landmarks...',
               verbose)
    # TODO fixup isct_ants* parsers
    sct.run([
        'isct_antsRegistration', '-d', '3', '-t', 'syn[1,3,1]', '-m',
        'MeanSquares[data_dest.nii.gz,data_src.nii.gz,1,3]', '-f', '2', '-s',
        '0', '-o', '[src2reg,data_src_reg.nii.gz]', '-c', '5', '-v', '1', '-n',
        'NearestNeighbor'
    ],
            verbose,
            is_sct_binary=True)

    # # Apply rigid transformation
    # sct.printv('\nApply rigid transformation to curved landmarks...', verbose)
    # sct.run('sct_apply_transfo -i data_src.nii.gz -o data_src_rigid.nii.gz -d data_dest.nii.gz -w curve2straight_rigid.txt -p nn', verbose)
    #
    # # Estimate b-spline transformation curve --> straight
    # sct.printv('\nEstimate b-spline transformation: curve --> straight...', verbose)
    # sct.run('isct_ANTSLandmarksBSplineTransform data_dest.nii.gz data_src_rigid.nii.gz warp_curve2straight_intermediate.nii.gz 5x5x5 3 2 0', verbose)
    #
    # # Concatenate rigid and non-linear transformations...
    # sct.printv('\nConcatenate rigid and non-linear transformations...', verbose)
    # cmd = 'isct_ComposeMultiTransform 3 warp_curve2straight.nii.gz -R data_dest.nii.gz warp_curve2straight_intermediate.nii.gz curve2straight_rigid.txt'
    # sct.printv('>> '+cmd, verbose)
    # sct.run(cmd)
    #
    # # Apply deformation to input image
    # sct.printv('\nApply transformation to input image...', verbose)
    # sct.run('sct_apply_transfo -i data_src.nii.gz -o data_src_warp.nii.gz -d data_dest.nii.gz -w warp_curve2straight.nii.gz -p nn', verbose)
    #
    # Compute DICE coefficient between src and dest
    sct.printv('\nCompute DICE coefficient...', verbose)
    sct.run([
        "sct_dice_coefficient", "-i", "data_dest.nii.gz", "-d",
        "data_src_reg.nii.gz", "-o", "dice.txt"
    ], verbose)
    with open("dice.txt", "r") as file_dice:
        dice = float(file_dice.read().replace('3D Dice coefficient = ', ''))
    sct.printv(
        'Dice coeff = ' + str(dice) + ' (should be above ' +
        str(dice_acceptable) + ')', verbose)

    # Check if DICE coefficient is above acceptable value
    if dice > dice_acceptable:
        test_passed = 1

    # come back
    os.chdir(curdir)

    # Delete temporary files
    if remove_temp_files == 1:
        sct.printv('\nDelete temporary files...', verbose)
        sct.rmtree(path_tmp)

    # output result for parent function
    if test_passed:
        sct.printv('\nTest passed!\n', verbose)
        sys.exit(0)
    else:
        sct.printv('\nTest failed!\n', verbose)
        sys.exit(1)
コード例 #19
0
def main(args=None):
    import numpy as np
    import spinalcordtoolbox.image as msct_image

    # Initialization
    fname_mt0 = ''
    fname_mt1 = ''
    file_out = param.file_out
    # register = param.register
    # remove_temp_files = param.remove_temp_files
    # verbose = param.verbose

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Check input parameters
    parser = get_parser()
    arguments = parser.parse(args)

    fname_mt0 = arguments['-mt0']
    fname_mt1 = arguments['-mt1']
    remove_temp_files = int(arguments['-r'])
    verbose = int(arguments['-v'])

    # Extract path/file/extension
    path_mt0, file_mt0, ext_mt0 = sct.extract_fname(fname_mt0)
    path_out, file_out, ext_out = '', file_out, ext_mt0

    # create temporary folder
    path_tmp = sct.tmp_create()

    # Copying input data to tmp folder and convert to nii
    sct.printv('\nCopying input data to tmp folder and convert to nii...',
               verbose)
    from sct_convert import convert
    convert(fname_mt0, os.path.join(path_tmp, "mt0.nii"), dtype=np.float32)
    convert(fname_mt1, os.path.join(path_tmp, "mt1.nii"), dtype=np.float32)

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # compute MTR
    sct.printv('\nCompute MTR...', verbose)
    nii_mt1 = msct_image.Image('mt1.nii')
    data_mt1 = nii_mt1.data
    data_mt0 = msct_image.Image('mt0.nii').data
    data_mtr = 100 * (data_mt0 - data_mt1) / data_mt0
    # save MTR file
    nii_mtr = nii_mt1
    nii_mtr.data = data_mtr
    nii_mtr.save("mtr.nii")
    # sct.run(fsloutput+'fslmaths -dt double mt0.nii -sub mt1.nii -mul 100 -div mt0.nii -thr 0 -uthr 100 mtr.nii', verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(os.path.join(path_tmp, "mtr.nii"),
                             os.path.join(path_out, file_out + ext_out))

    # Remove temporary files
    if remove_temp_files == 1:
        sct.printv('\nRemove temporary files...')
        sct.rmtree(path_tmp)

    sct.display_viewer_syntax([fname_mt0, fname_mt1, file_out])
コード例 #20
0
def main(args=None):

    # initialization
    start_time = time.time()
    path_out = '.'
    param = Param()

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])

    param.fname_data = arguments['-i']
    param.fname_bvecs = arguments['-bvec']

    if '-bval' in arguments:
        param.fname_bvals = arguments['-bval']
    if '-bvalmin' in arguments:
        param.bval_min = arguments['-bvalmin']
    if '-g' in arguments:
        param.group_size = arguments['-g']
    if '-m' in arguments:
        param.fname_mask = arguments['-m']
    if '-param' in arguments:
        param.update(arguments['-param'])
    if '-thr' in arguments:
        param.otsu = arguments['-thr']
    if '-x' in arguments:
        param.interp = arguments['-x']
    if '-ofolder' in arguments:
        path_out = arguments['-ofolder']
    if '-r' in arguments:
        param.remove_temp_files = int(arguments['-r'])
    param.verbose = int(arguments.get('-v'))
    sct.init_sct(log_level=param.verbose, update=True)  # Update log level

    # Get full path
    param.fname_data = os.path.abspath(param.fname_data)
    param.fname_bvecs = os.path.abspath(param.fname_bvecs)
    if param.fname_bvals != '':
        param.fname_bvals = os.path.abspath(param.fname_bvals)
    if param.fname_mask != '':
        param.fname_mask = os.path.abspath(param.fname_mask)

    # Extract path, file and extension
    path_data, file_data, ext_data = sct.extract_fname(param.fname_data)
    path_mask, file_mask, ext_mask = sct.extract_fname(param.fname_mask)

    path_tmp = sct.tmp_create(basename="dmri_moco", verbose=param.verbose)

    # names of files in temporary folder
    mask_name = 'mask'
    bvecs_fname = 'bvecs.txt'

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...', param.verbose)
    convert(param.fname_data, os.path.join(path_tmp, "dmri.nii"))
    sct.copy(param.fname_bvecs, os.path.join(path_tmp, bvecs_fname), verbose=param.verbose)
    if param.fname_mask != '':
        sct.copy(param.fname_mask, os.path.join(path_tmp, mask_name + ext_mask), verbose=param.verbose)

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # update field in param (because used later).
    # TODO: make this cleaner...
    if param.fname_mask != '':
        param.fname_mask = mask_name + ext_mask

    # run moco
    fname_data_moco_tmp = dmri_moco(param)

    # generate b0_moco_mean and dwi_moco_mean
    args = ['-i', fname_data_moco_tmp, '-bvec', 'bvecs.txt', '-a', '1', '-v', '0']
    if not param.fname_bvals == '':
        # if bvals file is provided
        args += ['-bval', param.fname_bvals]
    fname_b0, fname_b0_mean, fname_dwi, fname_dwi_mean = sct_dmri_separate_b0_and_dwi.main(args=args)

    # come back
    os.chdir(curdir)

    # Generate output files
    fname_dmri_moco = os.path.join(path_out, file_data + param.suffix + ext_data)
    fname_dmri_moco_b0_mean = sct.add_suffix(fname_dmri_moco, '_b0_mean')
    fname_dmri_moco_dwi_mean = sct.add_suffix(fname_dmri_moco, '_dwi_mean')
    sct.create_folder(path_out)
    sct.printv('\nGenerate output files...', param.verbose)
    sct.generate_output_file(fname_data_moco_tmp, fname_dmri_moco, param.verbose)
    sct.generate_output_file(fname_b0_mean, fname_dmri_moco_b0_mean, param.verbose)
    sct.generate_output_file(fname_dwi_mean, fname_dmri_moco_dwi_mean, param.verbose)

    # Delete temporary files
    if param.remove_temp_files == 1:
        sct.printv('\nDelete temporary files...', param.verbose)
        sct.rmtree(path_tmp, verbose=param.verbose)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', param.verbose)

    sct.display_viewer_syntax([fname_dmri_moco, file_data], mode='ortho,ortho')
コード例 #21
0
def main(args=None):

    # initializations
    param = Param()

    # check user arguments
    if args is None:
        args = sys.argv[1:]

    # get parser info
    parser = get_parser()

    arguments = parser.parse_args(args)

    param.download = int(arguments.download)
    param.path_data = arguments.path
    functions_to_test = arguments.function
    param.remove_tmp_file = int(arguments.remove_temps)
    jobs = arguments.jobs

    param.verbose = arguments.verbose
    sct.init_sct(log_level=param.verbose, update=True)  # Update log level

    start_time = time.time()

    # get absolute path and add slash at the end
    param.path_data = os.path.abspath(param.path_data)

    # check existence of testing data folder
    if not os.path.isdir(param.path_data) or param.download:
        downloaddata(param)

    # display path to data
    sct.printv('\nPath to testing data: ' + param.path_data, param.verbose)

    # create temp folder that will have all results and go in it
    path_tmp = os.path.abspath(arguments.execution_folder
                               or sct.tmp_create(verbose=param.verbose))
    curdir = os.getcwd()
    os.chdir(path_tmp)

    functions_parallel = list()
    functions_serial = list()
    if functions_to_test:
        for f in functions_to_test:
            if f in get_functions_parallelizable():
                functions_parallel.append(f)
            elif f in get_functions_nonparallelizable():
                functions_serial.append(f)
            else:
                sct.printv(
                    'Command-line usage error: Function "%s" is not part of the list of testing functions'
                    % f,
                    type='error')
        jobs = min(jobs, len(functions_parallel))
    else:
        functions_parallel = get_functions_parallelizable()
        functions_serial = get_functions_nonparallelizable()

    if arguments.continue_from:
        first_func = arguments.continue_from
        if first_func in functions_parallel:
            functions_serial = []
            functions_parallel = functions_parallel[functions_parallel.
                                                    index(first_func):]
        elif first_func in functions_serial:
            functions_serial = functions_serial[functions_serial.
                                                index(first_func):]

    if arguments.check_filesystem and jobs != 1:
        print("Check filesystem used -> jobs forced to 1")
        jobs = 1

    print("Will run through the following tests:")
    if functions_serial:
        print("- sequentially: {}".format(" ".join(functions_serial)))
    if functions_parallel:
        print("- in parallel with {} jobs: {}".format(
            jobs, " ".join(functions_parallel)))

    list_status = []
    for name, functions in (
        ("serial", functions_serial),
        ("parallel", functions_parallel),
    ):
        if not functions:
            continue

        if any([s for (f, s) in list_status]) and arguments.abort_on_failure:
            break

        try:
            if functions == functions_parallel and jobs != 1:
                pool = multiprocessing.Pool(processes=jobs)

                results = list()
                # loop across functions and run tests
                for f in functions:
                    func_param = copy.deepcopy(param)
                    func_param.path_output = f
                    res = pool.apply_async(process_function_multiproc, (
                        f,
                        func_param,
                    ))
                    results.append(res)
            else:
                pool = None

            for idx_function, f in enumerate(functions):
                print_line('Checking ' + f)
                if functions == functions_serial or jobs == 1:
                    if arguments.check_filesystem:
                        if os.path.exists(os.path.join(path_tmp, f)):
                            shutil.rmtree(os.path.join(path_tmp, f))
                        sig_0 = fs_signature(path_tmp)

                    func_param = copy.deepcopy(param)
                    func_param.path_output = f

                    res = process_function(f, func_param)

                    if arguments.check_filesystem:
                        sig_1 = fs_signature(path_tmp)
                        fs_ok(sig_0, sig_1, exclude=(f, ))
                else:
                    res = results[idx_function].get()

                list_output, list_status_function = res
                # manage status
                if any(list_status_function):
                    if 1 in list_status_function:
                        print_fail()
                        status = (f, 1)
                    else:
                        print_warning()
                        status = (f, 99)
                    for output in list_output:
                        for line in output.splitlines():
                            print("   %s" % line)
                else:
                    print_ok()
                    if param.verbose:
                        for output in list_output:
                            for line in output.splitlines():
                                print("   %s" % line)
                    status = (f, 0)
                # append status function to global list of status
                list_status.append(status)
                if any([s for (f, s) in list_status
                        ]) and arguments.abort_on_failure:
                    break
        except KeyboardInterrupt:
            raise
        finally:
            if pool:
                pool.terminate()
                pool.join()

    print('status: ' + str([s for (f, s) in list_status]))
    if any([s for (f, s) in list_status]):
        print("Failures: {}".format(" ".join(
            [f for (f, s) in list_status if s])))

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('Finished! Elapsed time: ' + str(int(np.round(elapsed_time))) +
               's\n')

    # come back
    os.chdir(curdir)

    # remove temp files
    if param.remove_tmp_file and arguments.execution_folder is None:
        sct.printv('\nRemove temporary files...', 0)
        sct.rmtree(path_tmp)

    e = 0
    if any([s for (f, s) in list_status]):
        e = 1
    # print(e)

    sys.exit(e)
コード例 #22
0
def main(args=None):
    if args is None:
        args = sys.argv[1:]

    # initialize parameters
    param = Param()

    # Initialization
    fname_output = ''
    path_out = ''
    fname_src_seg = ''
    fname_dest_seg = ''
    fname_src_label = ''
    fname_dest_label = ''
    generate_warpinv = 1

    start_time = time.time()

    # get default registration parameters
    # step1 = Paramreg(step='1', type='im', algo='syn', metric='MI', iter='5', shrink='1', smooth='0', gradStep='0.5')
    step0 = Paramreg(
        step='0',
        type='im',
        algo='syn',
        metric='MI',
        iter='0',
        shrink='1',
        smooth='0',
        gradStep='0.5',
        slicewise='0',
        dof='Tx_Ty_Tz_Rx_Ry_Rz')  # only used to put src into dest space
    step1 = Paramreg(step='1', type='im')
    paramreg = ParamregMultiStep([step0, step1])

    parser = get_parser(paramreg=paramreg)

    arguments = parser.parse(args)

    # get arguments
    fname_src = arguments['-i']
    fname_dest = arguments['-d']
    if '-iseg' in arguments:
        fname_src_seg = arguments['-iseg']
    if '-dseg' in arguments:
        fname_dest_seg = arguments['-dseg']
    if '-ilabel' in arguments:
        fname_src_label = arguments['-ilabel']
    if '-dlabel' in arguments:
        fname_dest_label = arguments['-dlabel']
    if '-o' in arguments:
        fname_output = arguments['-o']
    if '-ofolder' in arguments:
        path_out = arguments['-ofolder']
    if '-owarp' in arguments:
        fname_output_warp = arguments['-owarp']
    else:
        fname_output_warp = ''
    if '-initwarp' in arguments:
        fname_initwarp = os.path.abspath(arguments['-initwarp'])
    else:
        fname_initwarp = ''
    if '-initwarpinv' in arguments:
        fname_initwarpinv = os.path.abspath(arguments['-initwarpinv'])
    else:
        fname_initwarpinv = ''
    if '-m' in arguments:
        fname_mask = arguments['-m']
    else:
        fname_mask = ''
    padding = arguments['-z']
    if "-param" in arguments:
        paramreg_user = arguments['-param']
        # update registration parameters
        for paramStep in paramreg_user:
            paramreg.addStep(paramStep)
    path_qc = arguments.get("-qc", None)
    qc_dataset = arguments.get("-qc-dataset", None)
    qc_subject = arguments.get("-qc-subject", None)

    identity = int(arguments['-identity'])
    interp = arguments['-x']
    remove_temp_files = int(arguments['-r'])
    verbose = int(arguments.get('-v'))
    sct.init_sct(log_level=verbose, update=True)  # Update log level

    # sct.printv(arguments)
    sct.printv('\nInput parameters:')
    sct.printv('  Source .............. ' + fname_src)
    sct.printv('  Destination ......... ' + fname_dest)
    sct.printv('  Init transfo ........ ' + fname_initwarp)
    sct.printv('  Mask ................ ' + fname_mask)
    sct.printv('  Output name ......... ' + fname_output)
    # sct.printv('  Algorithm ........... '+paramreg.algo)
    # sct.printv('  Number of iterations  '+paramreg.iter)
    # sct.printv('  Metric .............. '+paramreg.metric)
    sct.printv('  Remove temp files ... ' + str(remove_temp_files))
    sct.printv('  Verbose ............. ' + str(verbose))

    # update param
    param.verbose = verbose
    param.padding = padding
    param.fname_mask = fname_mask
    param.remove_temp_files = remove_temp_files

    # Get if input is 3D
    sct.printv('\nCheck if input data are 3D...', verbose)
    sct.check_if_3d(fname_src)
    sct.check_if_3d(fname_dest)

    # Check if user selected type=seg, but did not input segmentation data
    if 'paramreg_user' in locals():
        if True in [
                'type=seg' in paramreg_user[i]
                for i in range(len(paramreg_user))
        ]:
            if fname_src_seg == '' or fname_dest_seg == '':
                sct.printv(
                    '\nERROR: if you select type=seg you must specify -iseg and -dseg flags.\n',
                    1, 'error')

    # Extract path, file and extension
    path_src, file_src, ext_src = sct.extract_fname(fname_src)
    path_dest, file_dest, ext_dest = sct.extract_fname(fname_dest)

    # check if source and destination images have the same name (related to issue #373)
    # If so, change names to avoid conflict of result files and warns the user
    suffix_src, suffix_dest = '_reg', '_reg'
    if file_src == file_dest:
        suffix_src, suffix_dest = '_src_reg', '_dest_reg'

    # define output folder and file name
    if fname_output == '':
        path_out = '' if not path_out else path_out  # output in user's current directory
        file_out = file_src + suffix_src
        file_out_inv = file_dest + suffix_dest
        ext_out = ext_src
    else:
        path, file_out, ext_out = sct.extract_fname(fname_output)
        path_out = path if not path_out else path_out
        file_out_inv = file_out + '_inv'

    # create temporary folder
    path_tmp = sct.tmp_create()

    sct.printv('\nCopying input data to tmp folder and convert to nii...',
               verbose)
    Image(fname_src).save(os.path.join(path_tmp, "src.nii"))
    Image(fname_dest).save(os.path.join(path_tmp, "dest.nii"))

    if fname_src_seg:
        Image(fname_src_seg).save(os.path.join(path_tmp, "src_seg.nii"))

    if fname_dest_seg:
        Image(fname_dest_seg).save(os.path.join(path_tmp, "dest_seg.nii"))

    if fname_src_label:
        Image(fname_src_label).save(os.path.join(path_tmp, "src_label.nii"))
        Image(fname_dest_label).save(os.path.join(path_tmp, "dest_label.nii"))

    if fname_mask != '':
        Image(fname_mask).save(os.path.join(path_tmp, "mask.nii.gz"))

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # reorient destination to RPI
    Image('dest.nii').change_orientation("RPI").save('dest_RPI.nii')
    if fname_dest_seg:
        Image('dest_seg.nii').change_orientation("RPI").save(
            'dest_seg_RPI.nii')
    if fname_dest_label:
        Image('dest_label.nii').change_orientation("RPI").save(
            'dest_label_RPI.nii')

    if identity:
        # overwrite paramreg and only do one identity transformation
        step0 = Paramreg(step='0',
                         type='im',
                         algo='syn',
                         metric='MI',
                         iter='0',
                         shrink='1',
                         smooth='0',
                         gradStep='0.5')
        paramreg = ParamregMultiStep([step0])

    # Put source into destination space using header (no estimation -- purely based on header)
    # TODO: Check if necessary to do that
    # TODO: use that as step=0
    # sct.printv('\nPut source into destination space using header...', verbose)
    # sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[dest_pad.nii,src.nii,1,16] -c 0 -f 1 -s 0 -o
    # [regAffine,src_regAffine.nii] -n BSpline[3]', verbose)
    # if segmentation, also do it for seg

    # initialize list of warping fields
    warp_forward = []
    warp_forward_winv = []
    warp_inverse = []
    warp_inverse_winv = []

    # initial warping is specified, update list of warping fields and skip step=0
    if fname_initwarp:
        sct.printv('\nSkip step=0 and replace with initial transformations: ',
                   param.verbose)
        sct.printv('  ' + fname_initwarp, param.verbose)
        # sct.copy(fname_initwarp, 'warp_forward_0.nii.gz')
        warp_forward = [fname_initwarp]
        start_step = 1
        if fname_initwarpinv:
            warp_inverse = [fname_initwarpinv]
        else:
            sct.printv(
                '\nWARNING: No initial inverse warping field was specified, therefore the inverse warping field '
                'will NOT be generated.', param.verbose, 'warning')
            generate_warpinv = 0
    else:
        start_step = 0

    # loop across registration steps
    for i_step in range(start_step, len(paramreg.steps)):
        sct.printv('\n--\nESTIMATE TRANSFORMATION FOR STEP #' + str(i_step),
                   param.verbose)
        # identify which is the src and dest
        if paramreg.steps[str(i_step)].type == 'im':
            src = 'src.nii'
            dest = 'dest_RPI.nii'
            interp_step = 'spline'
        elif paramreg.steps[str(i_step)].type == 'seg':
            src = 'src_seg.nii'
            dest = 'dest_seg_RPI.nii'
            interp_step = 'nn'
        elif paramreg.steps[str(i_step)].type == 'label':
            src = 'src_label.nii'
            dest = 'dest_label_RPI.nii'
            interp_step = 'nn'
        else:
            # src = dest = interp_step = None
            sct.printv('ERROR: Wrong image type.', 1, 'error')
        # if step>0, apply warp_forward_concat to the src image to be used
        if i_step > 0:
            sct.printv('\nApply transformation from previous step',
                       param.verbose)
            sct_apply_transfo.main(args=[
                '-i', src, '-d', dest, '-w', warp_forward, '-o',
                sct.add_suffix(src, '_reg'), '-x', interp_step
            ])
            src = sct.add_suffix(src, '_reg')
        # register src --> dest
        warp_forward_out, warp_inverse_out = register(src, dest, paramreg,
                                                      param, str(i_step))
        # deal with transformations with "-" as prefix. They should be inverted with calling sct_concat_transfo.
        if warp_forward_out[0] == "-":
            warp_forward_out = warp_forward_out[1:]
            warp_forward_winv.append(warp_forward_out)
        if warp_inverse_out[0] == "-":
            warp_inverse_out = warp_inverse_out[1:]
            warp_inverse_winv.append(warp_inverse_out)
        # update list of forward/inverse transformations
        warp_forward.append(warp_forward_out)
        warp_inverse.insert(0, warp_inverse_out)

    # Concatenate transformations
    sct.printv('\nConcatenate transformations...', verbose)
    sct_concat_transfo.main(args=[
        '-w', warp_forward, '-winv', warp_forward_winv, '-d', 'dest.nii', '-o',
        'warp_src2dest.nii.gz'
    ])
    sct_concat_transfo.main(args=[
        '-w', warp_inverse, '-winv', warp_inverse_winv, '-d', 'src.nii', '-o',
        'warp_dest2src.nii.gz'
    ])

    # Apply warping field to src data
    sct.printv('\nApply transfo source --> dest...', verbose)
    sct_apply_transfo.main(args=[
        '-i', 'src.nii', '-d', 'dest.nii', '-w', 'warp_src2dest.nii.gz', '-o',
        'src_reg.nii', '-x', interp
    ])
    sct.printv('\nApply transfo dest --> source...', verbose)
    sct_apply_transfo.main(args=[
        '-i', 'dest.nii', '-d', 'src.nii', '-w', 'warp_dest2src.nii.gz', '-o',
        'dest_reg.nii', '-x', interp
    ])

    # come back
    os.chdir(curdir)

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    # generate: src_reg
    fname_src2dest = sct.generate_output_file(
        os.path.join(path_tmp, "src_reg.nii"),
        os.path.join(path_out, file_out + ext_out), verbose)
    # generate: forward warping field
    if fname_output_warp == '':
        fname_output_warp = os.path.join(
            path_out, 'warp_' + file_src + '2' + file_dest + '.nii.gz')
    sct.generate_output_file(os.path.join(path_tmp, "warp_src2dest.nii.gz"),
                             fname_output_warp, verbose)
    if generate_warpinv:
        # generate: dest_reg
        fname_dest2src = sct.generate_output_file(
            os.path.join(path_tmp, "dest_reg.nii"),
            os.path.join(path_out, file_out_inv + ext_dest), verbose)
        # generate: inverse warping field
        sct.generate_output_file(
            os.path.join(path_tmp, "warp_dest2src.nii.gz"),
            os.path.join(path_out,
                         'warp_' + file_dest + '2' + file_src + '.nii.gz'),
            verbose)

    # Delete temporary files
    if remove_temp_files:
        sct.printv('\nRemove temporary files...', verbose)
        sct.rmtree(path_tmp, verbose=verbose)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv(
        '\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's',
        verbose)

    if path_qc is not None:
        if fname_dest_seg:
            generate_qc(fname_src2dest,
                        fname_in2=fname_dest,
                        fname_seg=fname_dest_seg,
                        args=args,
                        path_qc=os.path.abspath(path_qc),
                        dataset=qc_dataset,
                        subject=qc_subject,
                        process='sct_register_multimodal')
        else:
            sct.printv(
                'WARNING: Cannot generate QC because it requires destination segmentation.',
                1, 'warning')

    if generate_warpinv:
        sct.display_viewer_syntax([fname_src, fname_dest2src], verbose=verbose)
    sct.display_viewer_syntax([fname_dest, fname_src2dest], verbose=verbose)
コード例 #23
0
    def register(self):
        # accentuate separation WM/GM
        self.im_gm = thr_im(self.im_gm, 0.01, self.param.thr)
        self.im_wm = thr_im(self.im_wm, 0.01, self.param.thr)
        self.im_template_gm = thr_im(self.im_template_gm, 0.01, self.param.thr)
        self.im_template_wm = thr_im(self.im_template_wm, 0.01, self.param.thr)

        # create multilabel images:
        # copy GM images to keep header information
        im_automatic_ml = self.im_gm.copy()
        im_template_ml = self.im_template_gm.copy()

        # create multi-label segmentation with GM*200 + WM*100 (100 and 200 encoded in self.param.gap)
        im_automatic_ml.data = self.param.gap[
            1] * self.im_gm.data + self.param.gap[0] * self.im_wm.data
        im_template_ml.data = self.param.gap[
            1] * self.im_template_gm.data + self.param.gap[
                0] * self.im_template_wm.data

        # set new names
        fname_automatic_ml = 'multilabel_automatic_seg.nii.gz'
        fname_template_ml = 'multilabel_template_seg.nii.gz'
        im_automatic_ml.setFileName(fname_automatic_ml)
        im_template_ml.setFileName(fname_template_ml)

        # Create temporary folder and put files in it
        tmp_dir = sct.tmp_create()

        path_gm, file_gm, ext_gm = sct.extract_fname(fname_gm)
        path_warp_template2target, file_warp_template2target, ext_warp_template2target = sct.extract_fname(
            self.fname_warp_template2target)

        convert(fname_gm, tmp_dir + file_gm + ext_gm)
        convert(fname_warp_template,
                tmp_dir + file_warp_template2target + ext_warp_template2target,
                squeeze_data=0)
        if self.fname_warp_target2template is not None:
            path_warp_target2template, file_warp_target2template, ext_warp_target2template = sct.extract_fname(
                self.fname_warp_target2template)
            convert(self.fname_warp_target2template,
                    tmp_dir + file_warp_target2template +
                    ext_warp_target2template,
                    squeeze_data=0)

        os.chdir(tmp_dir)
        # save images
        im_automatic_ml.save()
        im_template_ml.save()

        # apply template2image warping field
        if self.apply_warp_template == 1:
            fname_template_ml_new = sct.add_suffix(fname_template_ml, '_r')
            sct.run('sct_apply_transfo -i ' + fname_template_ml + ' -d ' +
                    fname_automatic_ml + ' -w ' + file_warp_template2target +
                    ext_warp_template2target + ' -o ' + fname_template_ml_new)
            fname_template_ml = fname_template_ml_new

        nx, ny, nz, nt, px, py, pz, pt = im_automatic_ml.dim
        size_mask = int(22.5 / px)
        fname_mask = 'square_mask.nii.gz'
        sct.run('sct_create_mask -i ' + fname_automatic_ml +
                ' -p centerline,' + fname_automatic_ml + ' -f box -size ' +
                str(size_mask) + ' -o ' + fname_mask)

        fname_automatic_ml, xi, xf, yi, yf, zi, zf = crop_im(
            fname_automatic_ml, fname_mask)
        fname_template_ml, xi, xf, yi, yf, zi, zf = crop_im(
            fname_template_ml, fname_mask)

        #        fname_automatic_ml_smooth = sct.add_suffix(fname_automatic_ml, '_smooth')
        #        sct.run('sct_maths -i '+fname_automatic_ml+' -smooth '+str(self.param.smooth)+','+str(self.param.smooth)+',0 -o '+fname_automatic_ml_smooth)
        #        fname_automatic_ml = fname_automatic_ml_smooth

        path_automatic_ml, file_automatic_ml, ext_automatic_ml = sct.extract_fname(
            fname_automatic_ml)
        path_template_ml, file_template_ml, ext_template_ml = sct.extract_fname(
            fname_template_ml)

        # Register multilabel images together
        cmd_reg = 'sct_register_multimodal -i ' + fname_template_ml + ' -d ' + fname_automatic_ml + ' -param ' + self.param.param_reg
        if 'centermass' in self.param.param_reg:
            fname_template_ml_seg = sct.add_suffix(fname_template_ml, '_bin')
            sct.run('sct_maths -i ' + fname_template_ml + ' -bin 0 -o ' +
                    fname_template_ml_seg)

            fname_automatic_ml_seg = sct.add_suffix(fname_automatic_ml, '_bin')
            # sct.run('sct_maths -i '+fname_automatic_ml+' -thr 50 -o '+fname_automatic_ml_seg)
            sct.run('sct_maths -i ' + fname_automatic_ml + ' -bin 50 -o ' +
                    fname_automatic_ml_seg)

            cmd_reg += ' -iseg ' + fname_template_ml_seg + ' -dseg ' + fname_automatic_ml_seg

        sct.run(cmd_reg)
        fname_warp_multilabel_template2auto = 'warp_' + file_template_ml + '2' + file_automatic_ml + '.nii.gz'
        fname_warp_multilabel_auto2template = 'warp_' + file_automatic_ml + '2' + file_template_ml + '.nii.gz'

        self.fname_warp_template2gm = sct.extract_fname(
            self.fname_warp_template2target
        )[1] + '_reg_gm' + sct.extract_fname(
            self.fname_warp_template2target)[2]
        # fname_warp_multilabel_template2auto = pad_im(fname_warp_multilabel_template2auto, nx, ny, nz, xi, xf, yi, yf, zi, zf)
        # fname_warp_multilabel_auto2template = pad_im(fname_warp_multilabel_auto2template, nx, ny, nz, xi, xf, yi, yf, zi, zf)

        sct.run('sct_concat_transfo -w ' + file_warp_template2target +
                ext_warp_template2target + ',' +
                fname_warp_multilabel_template2auto + ' -d ' + file_gm +
                ext_gm + ' -o ' + self.fname_warp_template2gm)

        if self.fname_warp_target2template is not None:
            path_script = os.path.dirname(__file__)
            path_sct = os.path.dirname(path_script)
            if self.template == 'MNI-Poly-AMU':
                fname_dest = path_sct + '/data/MNI-Poly-AMU/template/MNI-Poly-AMU_T2.nii.gz'
            elif self.template == 'PAM50':
                fname_dest = path_sct + '/data/PAM50/template/PAM50_t2.nii.gz'

            self.fname_warp_gm2template = sct.extract_fname(
                self.fname_warp_target2template
            )[1] + '_reg_gm' + sct.extract_fname(
                self.fname_warp_target2template)[2]
            sct.run('sct_concat_transfo -w ' +
                    fname_warp_multilabel_auto2template + ',' +
                    file_warp_target2template + ext_warp_target2template +
                    ' -d ' + fname_dest + ' -o ' + self.fname_warp_gm2template)

        os.chdir('..')

        # sct.generate_output_file(tmp_dir+fname_warp_multilabel_template2auto, self.param.output_folder+'warp_template_multilabel2automatic_seg_multilabel.nii.gz')
        # sct.generate_output_file(tmp_dir+fname_warp_multilabel_auto2template, self.param.output_folder+'warp_automatic_seg_multilabel2template_multilabel.nii.gz')

        sct.generate_output_file(
            tmp_dir + self.fname_warp_template2gm,
            self.param.output_folder + self.fname_warp_template2gm)
        if self.fname_warp_target2template is not None:
            sct.generate_output_file(
                tmp_dir + self.fname_warp_gm2template,
                self.param.output_folder + self.fname_warp_gm2template)

        if self.param.qc:
            fname_grid_warped = visualize_warp(
                tmp_dir + fname_warp_multilabel_template2auto,
                rm_tmp=self.param.remove_tmp)
            path_grid_warped, file_grid_warped, ext_grid_warped = sct.extract_fname(
                fname_grid_warped)
            sct.generate_output_file(
                fname_grid_warped,
                self.param.output_folder + file_grid_warped + ext_grid_warped)

        if self.param.remove_tmp:
            sct.run('rm -rf ' + tmp_dir, error_exit='warning')
コード例 #24
0
def register_data(im_src,
                  im_dest,
                  param_reg,
                  path_copy_warp=None,
                  rm_tmp=True):
    '''

    Parameters
    ----------
    im_src: class Image: source image
    im_dest: class Image: destination image
    param_reg: str: registration parameter
    path_copy_warp: path: path to copy the warping fields

    Returns: im_src_reg: class Image: source image registered on destination image
    -------

    '''
    # im_src and im_dest are already preprocessed (in theory: im_dest = mean_image)
    # binarize images to get seg
    im_src_seg = binarize(im_src, thr_min=1, thr_max=1)
    im_dest_seg = binarize(im_dest)
    # create tmp dir and go in it
    tmp_dir = sct.tmp_create()
    curdir = os.getcwd()
    os.chdir(tmp_dir)
    # save image and seg
    fname_src = 'src.nii.gz'
    im_src.save(fname_src)
    fname_src_seg = 'src_seg.nii.gz'
    im_src_seg.save(fname_src_seg)
    fname_dest = 'dest.nii.gz'
    im_dest.save(fname_dest)
    fname_dest_seg = 'dest_seg.nii.gz'
    im_dest_seg.save(fname_dest_seg)
    # do registration using param_reg
    sct_register_multimodal.main(args=[
        '-i', fname_src, '-d', fname_dest, '-iseg', fname_src_seg, '-dseg',
        fname_dest_seg, '-param', param_reg
    ])

    # get registration result
    fname_src_reg = add_suffix(fname_src, '_reg')
    im_src_reg = Image(fname_src_reg)
    # get out of tmp dir
    os.chdir(curdir)

    # copy warping fields
    if path_copy_warp is not None and os.path.isdir(
            os.path.abspath(path_copy_warp)):
        path_copy_warp = os.path.abspath(path_copy_warp)
        file_src = extract_fname(fname_src)[1]
        file_dest = extract_fname(fname_dest)[1]
        fname_src2dest = 'warp_' + file_src + '2' + file_dest + '.nii.gz'
        fname_dest2src = 'warp_' + file_dest + '2' + file_src + '.nii.gz'
        sct.copy(os.path.join(tmp_dir, fname_src2dest), path_copy_warp)
        sct.copy(os.path.join(tmp_dir, fname_dest2src), path_copy_warp)

    if rm_tmp:
        # remove tmp dir
        sct.rmtree(tmp_dir)
    # return res image
    return im_src_reg, fname_src2dest, fname_dest2src
コード例 #25
0
    return parser


if __name__ == "__main__":
    sct.init_sct()
    parser = get_parser()
    arguments = parser.parse_args(args=None if sys.argv[1:] else ['--help'])

    fname_input1 = arguments.i
    fname_input2 = arguments.d

    verbose = arguments.v
    sct.init_sct(log_level=verbose, update=True)  # Update log level

    tmp_dir = sct.tmp_create(verbose=verbose)  # create tmp directory
    tmp_dir = os.path.abspath(tmp_dir)

    # copy input files to tmp directory
    # for fname in [fname_input1, fname_input2]:
    sct.copy(fname_input1, tmp_dir)
    sct.copy(fname_input2, tmp_dir)
    fname_input1 = ''.join(sct.extract_fname(fname_input1)[1:])
    fname_input2 = ''.join(sct.extract_fname(fname_input2)[1:])

    curdir = os.getcwd()
    os.chdir(tmp_dir)  # go to tmp directory

    if '-bin' in arguments:
        fname_input1_bin = sct.add_suffix(fname_input1, '_bin')
        sct.run([
コード例 #26
0
def pre_processing(fname_target,
                   fname_sc_seg,
                   fname_level=None,
                   fname_manual_gmseg=None,
                   new_res=0.3,
                   square_size_size_mm=22.5,
                   denoising=True,
                   verbose=1,
                   rm_tmp=True,
                   for_model=False):
    printv('\nPre-process data...', verbose, 'normal')

    tmp_dir = sct.tmp_create()

    sct.copy(fname_target, tmp_dir)
    fname_target = ''.join(extract_fname(fname_target)[1:])
    sct.copy(fname_sc_seg, tmp_dir)
    fname_sc_seg = ''.join(extract_fname(fname_sc_seg)[1:])

    curdir = os.getcwd()
    os.chdir(tmp_dir)

    original_info = {
        'orientation': None,
        'im_sc_seg_rpi': None,
        'interpolated_images': []
    }

    im_target = Image(fname_target).copy()
    im_sc_seg = Image(fname_sc_seg).copy()

    # get original orientation
    printv('  Reorient...', verbose, 'normal')
    original_info['orientation'] = im_target.orientation

    # assert images are in the same orientation
    assert im_target.orientation == im_sc_seg.orientation, "ERROR: the image to segment and it's SC segmentation are not in the same orientation"

    im_target_rpi = im_target.copy().change_orientation(
        'RPI', generate_path=True).save()
    im_sc_seg_rpi = im_sc_seg.copy().change_orientation(
        'RPI', generate_path=True).save()
    original_info['im_sc_seg_rpi'] = im_sc_seg_rpi.copy(
    )  # target image in RPI will be used to post-process segmentations

    # denoise using P. Coupe non local means algorithm (see [Manjon et al. JMRI 2010]) implemented in dipy
    if denoising:
        printv('  Denoise...', verbose, 'normal')
        # crop image before denoising to fasten denoising
        nx, ny, nz, nt, px, py, pz, pt = im_target_rpi.dim
        size_x, size_y = (square_size_size_mm + 1) / px, (square_size_size_mm +
                                                          1) / py
        size = int(np.ceil(max(size_x, size_y)))
        # create mask
        fname_mask = 'mask_pre_crop.nii.gz'
        sct_create_mask.main([
            '-i', im_target_rpi.absolutepath, '-p',
            'centerline,' + im_sc_seg_rpi.absolutepath, '-f', 'box', '-size',
            str(size), '-o', fname_mask
        ])
        # crop image
        cropper = ImageCropper(im_target_rpi)
        cropper.get_bbox_from_mask(Image(fname_mask))
        im_target_rpi_crop = cropper.crop()
        # crop segmentation
        cropper = ImageCropper(im_sc_seg_rpi)
        cropper.get_bbox_from_mask(Image(fname_mask))
        im_sc_seg_rpi_crop = cropper.crop()
        # denoising
        from spinalcordtoolbox.math import denoise_nlmeans
        block_radius = 3
        block_radius = int(
            im_target_rpi_crop.data.shape[2] /
            2) if im_target_rpi_crop.data.shape[2] < (block_radius *
                                                      2) else block_radius
        patch_radius = block_radius - 1
        data_denoised = denoise_nlmeans(im_target_rpi_crop.data,
                                        block_radius=block_radius,
                                        patch_radius=patch_radius)
        im_target_rpi_crop.data = data_denoised

        im_target_rpi = im_target_rpi_crop
        im_sc_seg_rpi = im_sc_seg_rpi_crop
    else:
        fname_mask = None

    # interpolate image to reference square image (resample and square crop centered on SC)
    printv('  Interpolate data to the model space...', verbose, 'normal')
    list_im_slices = interpolate_im_to_ref(im_target_rpi,
                                           im_sc_seg_rpi,
                                           new_res=new_res,
                                           sq_size_size_mm=square_size_size_mm)
    original_info[
        'interpolated_images'] = list_im_slices  # list of images (not Slice() objects)

    printv('  Mask data using the spinal cord segmentation...', verbose,
           'normal')
    list_sc_seg_slices = interpolate_im_to_ref(
        im_sc_seg_rpi,
        im_sc_seg_rpi,
        new_res=new_res,
        sq_size_size_mm=square_size_size_mm,
        interpolation_mode=1)
    for i in range(len(list_im_slices)):
        # list_im_slices[i].data[list_sc_seg_slices[i].data == 0] = 0
        list_sc_seg_slices[i] = binarize(list_sc_seg_slices[i],
                                         thr_min=0.5,
                                         thr_max=1)
        list_im_slices[
            i].data = list_im_slices[i].data * list_sc_seg_slices[i].data

    printv('  Split along rostro-caudal direction...', verbose, 'normal')
    list_slices_target = [
        Slice(slice_id=i, im=im_slice.data, gm_seg=[], wm_seg=[])
        for i, im_slice in enumerate(list_im_slices)
    ]

    # load vertebral levels
    if fname_level is not None:
        printv('  Load vertebral levels...', verbose, 'normal')
        # copy level file to tmp dir
        os.chdir(curdir)
        sct.copy(fname_level, tmp_dir)
        os.chdir(tmp_dir)
        # change fname level to only file name (path = tmp dir now)
        fname_level = ''.join(extract_fname(fname_level)[1:])
        # load levels
        list_slices_target = load_level(list_slices_target, fname_level)

    os.chdir(curdir)

    # load manual gmseg if there is one (model data)
    if fname_manual_gmseg is not None:
        printv('\n\tLoad manual GM segmentation(s) ...', verbose, 'normal')
        list_slices_target = load_manual_gmseg(list_slices_target,
                                               fname_manual_gmseg,
                                               tmp_dir,
                                               im_sc_seg_rpi,
                                               new_res,
                                               square_size_size_mm,
                                               for_model=for_model,
                                               fname_mask=fname_mask)

    if rm_tmp:
        # remove tmp folder
        sct.rmtree(tmp_dir)
    return list_slices_target, original_info
コード例 #27
0
def main():

    # Initialization
    fname_mt0 = ''
    fname_mt1 = ''
    file_out = param.file_out
    # register = param.register
    # remove_tmp_files = param.remove_tmp_files
    # verbose = param.verbose

    # get path of the toolbox
    # status, path_sct = commands.getstatusoutput('echo $SCT_DIR')

    # Check input parameters
    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])

    fname_mt0 = arguments['-mt0']
    fname_mt1 = arguments['-mt1']
    remove_tmp_files = int(arguments['-r'])
    verbose = int(arguments['-v'])

    # Extract path/file/extension
    path_mt0, file_mt0, ext_mt0 = sct.extract_fname(fname_mt0)
    path_out, file_out, ext_out = '', file_out, ext_mt0

    # create temporary folder
    path_tmp = sct.tmp_create()

    # Copying input data to tmp folder and convert to nii
    sct.printv('\nCopying input data to tmp folder and convert to nii...',
               verbose)
    from sct_convert import convert
    convert(fname_mt0, path_tmp + 'mt0.nii', type='float32')
    convert(fname_mt1, path_tmp + 'mt1.nii', type='float32')

    # go to tmp folder
    os.chdir(path_tmp)

    # compute MTR
    sct.printv('\nCompute MTR...', verbose)
    from msct_image import Image
    nii_mt1 = Image('mt1.nii')
    data_mt1 = nii_mt1.data
    data_mt0 = Image('mt0.nii').data
    data_mtr = 100 * (data_mt0 - data_mt1) / data_mt0
    # save MTR file
    nii_mtr = nii_mt1
    nii_mtr.data = data_mtr
    nii_mtr.setFileName('mtr.nii')
    nii_mtr.save()
    # sct.run(fsloutput+'fslmaths -dt double mt0.nii -sub mt1.nii -mul 100 -div mt0.nii -thr 0 -uthr 100 mtr.nii', verbose)

    # come back to parent folder
    os.chdir('..')

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(path_tmp + 'mtr.nii',
                             path_out + file_out + ext_out)

    # Remove temporary files
    if remove_tmp_files == 1:
        sct.printv('\nRemove temporary files...')
        sct.run('rm -rf ' + path_tmp)

    # to view results
    sct.printv('\nDone! To view results, type:', verbose)
    sct.printv(
        'fslview ' + fname_mt0 + ' ' + fname_mt1 + ' ' + file_out + ' &\n',
        verbose, 'info')
コード例 #28
0
    def straighten(self):
        """
        Straighten spinal cord. Steps: (everything is done in physical space)
        1. open input image and centreline image
        2. extract bspline fitting of the centreline, and its derivatives
        3. compute length of centerline
        4. compute and generate straight space
        5. compute transformations
            for each voxel of one space: (done using matrices --> improves speed by a factor x300)
                a. determine which plane of spinal cord centreline it is included
                b. compute the position of the voxel in the plane (X and Y distance from centreline, along the plane)
                c. find the correspondant centreline point in the other space
                d. find the correspondance of the voxel in the corresponding plane
        6. generate warping fields for each transformations
        7. write warping fields and apply them

        step 5.b: how to find the corresponding plane?
            The centerline plane corresponding to a voxel correspond to the nearest point of the centerline.
            However, we need to compute the distance between the voxel position and the plane to be sure it is part of the plane and not too distant.
            If it is more far than a threshold, warping value should be 0.

        step 5.d: how to make the correspondance between centerline point in both images?
            Both centerline have the same lenght. Therefore, we can map centerline point via their position along the curve.
            If we use the same number of points uniformely along the spinal cord (1000 for example), the correspondance is straight-forward.

        :return:
        """
        # Initialization
        fname_anat = self.input_filename
        fname_centerline = self.centerline_filename
        fname_output = self.output_filename
        remove_temp_files = self.remove_temp_files
        verbose = self.verbose
        interpolation_warp = self.interpolation_warp  # TODO: remove this

        # start timer
        start_time = time.time()

        # Extract path/file/extension
        path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat)

        path_tmp = sct.tmp_create(basename="straighten_spinalcord",
                                  verbose=verbose)

        # Copying input data to tmp folder
        sct.printv('\nCopy files to tmp folder...', verbose)
        Image(fname_anat).save(os.path.join(path_tmp, "data.nii"))
        Image(fname_centerline).save(
            os.path.join(path_tmp, "centerline.nii.gz"))

        if self.use_straight_reference:
            Image(self.centerline_reference_filename).save(
                os.path.join(path_tmp, "centerline_ref.nii.gz"))
        if self.discs_input_filename != '':
            Image(self.discs_input_filename).save(
                os.path.join(path_tmp, "labels_input.nii.gz"))
        if self.discs_ref_filename != '':
            Image(self.discs_ref_filename).save(
                os.path.join(path_tmp, "labels_ref.nii.gz"))

        # go to tmp folder
        curdir = os.getcwd()
        os.chdir(path_tmp)

        # Change orientation of the input centerline into RPI
        image_centerline = Image("centerline.nii.gz").change_orientation(
            "RPI").save("centerline_rpi.nii.gz", mutable=True)

        # Get dimension
        nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim
        if self.speed_factor != 1.0:
            intermediate_resampling = True
            px_r, py_r, pz_r = px * self.speed_factor, py * self.speed_factor, pz * self.speed_factor
        else:
            intermediate_resampling = False

        if intermediate_resampling:
            sct.mv('centerline_rpi.nii.gz', 'centerline_rpi_native.nii.gz')
            pz_native = pz
            # TODO: remove system call
            sct.run([
                'sct_resample', '-i', 'centerline_rpi_native.nii.gz', '-mm',
                str(px_r) + 'x' + str(py_r) + 'x' + str(pz_r), '-o',
                'centerline_rpi.nii.gz'
            ])
            image_centerline = Image('centerline_rpi.nii.gz')
            nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim

        if np.min(image_centerline.data) < 0 or np.max(
                image_centerline.data) > 1:
            image_centerline.data[image_centerline.data < 0] = 0
            image_centerline.data[image_centerline.data > 1] = 1
            image_centerline.save()

        # 2. extract bspline fitting of the centerline, and its derivatives
        img_ctl = Image('centerline_rpi.nii.gz')
        centerline = _get_centerline(img_ctl, self.param_centerline, verbose)
        number_of_points = centerline.number_of_points

        # ==========================================================================================
        logger.info('Create the straight space and the safe zone')
        # 3. compute length of centerline
        # compute the length of the spinal cord based on fitted centerline and size of centerline in z direction

        # Computation of the safe zone.
        # The safe zone is defined as the length of the spinal cord for which an axial segmentation will be complete
        # The safe length (to remove) is computed using the safe radius (given as parameter) and the angle of the
        # last centerline point with the inferior-superior direction. Formula: Ls = Rs * sin(angle)
        # Calculate Ls for both edges and remove appropriate number of centerline points
        radius_safe = 0.0  # mm

        # inferior edge
        u = centerline.derivatives[0]
        v = np.array([0, 0, -1])

        angle_inferior = np.arctan2(np.linalg.norm(np.cross(u, v)),
                                    np.dot(u, v))
        length_safe_inferior = radius_safe * np.sin(angle_inferior)

        # superior edge
        u = centerline.derivatives[-1]
        v = np.array([0, 0, 1])
        angle_superior = np.arctan2(np.linalg.norm(np.cross(u, v)),
                                    np.dot(u, v))
        length_safe_superior = radius_safe * np.sin(angle_superior)

        # remove points
        inferior_bound = bisect.bisect(centerline.progressive_length,
                                       length_safe_inferior) - 1
        superior_bound = centerline.number_of_points - bisect.bisect(
            centerline.progressive_length_inverse, length_safe_superior)

        z_centerline = centerline.points[:, 2]
        length_centerline = centerline.length
        size_z_centerline = z_centerline[-1] - z_centerline[0]

        # compute the size factor between initial centerline and straight bended centerline
        factor_curved_straight = length_centerline / size_z_centerline
        middle_slice = (z_centerline[0] + z_centerline[-1]) / 2.0

        bound_curved = [
            z_centerline[inferior_bound], z_centerline[superior_bound]
        ]
        bound_straight = [(z_centerline[inferior_bound] - middle_slice) *
                          factor_curved_straight + middle_slice,
                          (z_centerline[superior_bound] - middle_slice) *
                          factor_curved_straight + middle_slice]

        logger.info('Length of spinal cord: {}'.format(length_centerline))
        logger.info(
            'Size of spinal cord in z direction: {}'.format(size_z_centerline))
        logger.info('Ratio length/size: {}'.format(factor_curved_straight))
        logger.info(
            'Safe zone boundaries (curved space): {}'.format(bound_curved))
        logger.info(
            'Safe zone boundaries (straight space): {}'.format(bound_straight))

        # 4. compute and generate straight space
        # points along curved centerline are already regularly spaced.
        # calculate position of points along straight centerline

        # Create straight NIFTI volumes.
        # ==========================================================================================
        # TODO: maybe this if case is not needed?
        if self.use_straight_reference:
            image_centerline_pad = Image('centerline_rpi.nii.gz')
            nx, ny, nz, nt, px, py, pz, pt = image_centerline_pad.dim

            fname_ref = 'centerline_ref_rpi.nii.gz'
            image_centerline_straight = Image('centerline_ref.nii.gz') \
                .change_orientation("RPI") \
                .save(fname_ref, mutable=True)
            centerline_straight = _get_centerline(image_centerline_straight,
                                                  algo_fitting, self.degree,
                                                  verbose)
            nx_s, ny_s, nz_s, nt_s, px_s, py_s, pz_s, pt_s = image_centerline_straight.dim

            # Prepare warping fields headers
            hdr_warp = image_centerline_pad.hdr.copy()
            hdr_warp.set_data_dtype('float32')
            hdr_warp_s = image_centerline_straight.hdr.copy()
            hdr_warp_s.set_data_dtype('float32')

            if self.discs_input_filename != "" and self.discs_ref_filename != "":
                discs_input_image = Image('labels_input.nii.gz')
                coord = discs_input_image.getNonZeroCoordinates(
                    sorting='z', reverse_coord=True)
                coord_physical = []
                for c in coord:
                    c_p = discs_input_image.transfo_pix2phys([[c.x, c.y, c.z]
                                                              ]).tolist()[0]
                    c_p.append(c.value)
                    coord_physical.append(c_p)
                centerline.compute_vertebral_distribution(coord_physical)
                centerline.save_centerline(
                    image=discs_input_image,
                    fname_output='discs_input_image.nii.gz')

                discs_ref_image = Image('labels_ref.nii.gz')
                coord = discs_ref_image.getNonZeroCoordinates(
                    sorting='z', reverse_coord=True)
                coord_physical = []
                for c in coord:
                    c_p = discs_ref_image.transfo_pix2phys([[c.x, c.y,
                                                             c.z]]).tolist()[0]
                    c_p.append(c.value)
                    coord_physical.append(c_p)
                centerline_straight.compute_vertebral_distribution(
                    coord_physical)
                centerline_straight.save_centerline(
                    image=discs_ref_image,
                    fname_output='discs_ref_image.nii.gz')

        else:
            logger.info(
                'Pad input volume to account for spinal cord length...')

            start_point, end_point = bound_straight[0], bound_straight[1]
            offset_z = 0

            # if the destination image is resampled, we still create the straight reference space with the native
            # resolution.
            # TODO: Maybe this if case is not needed?
            if intermediate_resampling:
                padding_z = int(
                    np.ceil(1.5 *
                            ((length_centerline - size_z_centerline) / 2.0) /
                            pz_native))
                sct.run([
                    'sct_image', '-i', 'centerline_rpi_native.nii.gz', '-o',
                    'tmp.centerline_pad_native.nii.gz', '-pad',
                    '0,0,' + str(padding_z)
                ])
                image_centerline_pad = Image('centerline_rpi_native.nii.gz')
                nx, ny, nz, nt, px, py, pz, pt = image_centerline_pad.dim
                start_point_coord_native = image_centerline_pad.transfo_phys2pix(
                    [[0, 0, start_point]])[0]
                end_point_coord_native = image_centerline_pad.transfo_phys2pix(
                    [[0, 0, end_point]])[0]
                straight_size_x = int(self.xy_size / px)
                straight_size_y = int(self.xy_size / py)
                warp_space_x = [
                    int(np.round(nx / 2)) - straight_size_x,
                    int(np.round(nx / 2)) + straight_size_x
                ]
                warp_space_y = [
                    int(np.round(ny / 2)) - straight_size_y,
                    int(np.round(ny / 2)) + straight_size_y
                ]
                if warp_space_x[0] < 0:
                    warp_space_x[1] += warp_space_x[0] - 2
                    warp_space_x[0] = 0
                if warp_space_y[0] < 0:
                    warp_space_y[1] += warp_space_y[0] - 2
                    warp_space_y[0] = 0

                spec = dict((
                    (0, warp_space_x),
                    (1, warp_space_y),
                    (2, (0, end_point_coord_native[2] -
                         start_point_coord_native[2])),
                ))
                msct_image.spatial_crop(
                    Image("tmp.centerline_pad_native.nii.gz"),
                    spec).save("tmp.centerline_pad_crop_native.nii.gz")

                fname_ref = 'tmp.centerline_pad_crop_native.nii.gz'
                offset_z = 4
            else:
                fname_ref = 'tmp.centerline_pad_crop.nii.gz'

            nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim
            padding_z = int(
                np.ceil(1.5 * ((length_centerline - size_z_centerline) / 2.0) /
                        pz)) + offset_z
            image_centerline_pad = pad_image(image_centerline,
                                             pad_z_i=padding_z,
                                             pad_z_f=padding_z)
            nx, ny, nz = image_centerline_pad.data.shape
            hdr_warp = image_centerline_pad.hdr.copy()
            hdr_warp.set_data_dtype('float32')
            start_point_coord = image_centerline_pad.transfo_phys2pix(
                [[0, 0, start_point]])[0]
            end_point_coord = image_centerline_pad.transfo_phys2pix(
                [[0, 0, end_point]])[0]

            straight_size_x = int(self.xy_size / px)
            straight_size_y = int(self.xy_size / py)
            warp_space_x = [
                int(np.round(nx / 2)) - straight_size_x,
                int(np.round(nx / 2)) + straight_size_x
            ]
            warp_space_y = [
                int(np.round(ny / 2)) - straight_size_y,
                int(np.round(ny / 2)) + straight_size_y
            ]

            if warp_space_x[0] < 0:
                warp_space_x[1] += warp_space_x[0] - 2
                warp_space_x[0] = 0
            if warp_space_x[1] >= nx:
                warp_space_x[1] = nx - 1
            if warp_space_y[0] < 0:
                warp_space_y[1] += warp_space_y[0] - 2
                warp_space_y[0] = 0
            if warp_space_y[1] >= ny:
                warp_space_y[1] = ny - 1

            spec = dict((
                (0, warp_space_x),
                (1, warp_space_y),
                (2, (0, end_point_coord[2] - start_point_coord[2] + offset_z)),
            ))
            image_centerline_straight = msct_image.spatial_crop(
                image_centerline_pad, spec)

            nx_s, ny_s, nz_s, nt_s, px_s, py_s, pz_s, pt_s = image_centerline_straight.dim
            hdr_warp_s = image_centerline_straight.hdr.copy()
            hdr_warp_s.set_data_dtype('float32')

            if self.template_orientation == 1:
                raise NotImplementedError()

            start_point_coord = image_centerline_pad.transfo_phys2pix(
                [[0, 0, start_point]])[0]
            end_point_coord = image_centerline_pad.transfo_phys2pix(
                [[0, 0, end_point]])[0]

            number_of_voxel = nx * ny * nz
            logger.debug('Number of voxels: {}'.format(number_of_voxel))

            time_centerlines = time.time()

            coord_straight = np.empty((number_of_points, 3))
            coord_straight[..., 0] = int(np.round(nx_s / 2))
            coord_straight[..., 1] = int(np.round(ny_s / 2))
            coord_straight[..., 2] = np.linspace(
                0, end_point_coord[2] - start_point_coord[2], number_of_points)
            coord_phys_straight = image_centerline_straight.transfo_pix2phys(
                coord_straight)
            derivs_straight = np.empty((number_of_points, 3))
            derivs_straight[..., 0] = derivs_straight[..., 1] = 0
            derivs_straight[..., 2] = 1
            dx_straight, dy_straight, dz_straight = derivs_straight.T
            centerline_straight = Centerline(coord_phys_straight[:, 0],
                                             coord_phys_straight[:, 1],
                                             coord_phys_straight[:, 2],
                                             dx_straight, dy_straight,
                                             dz_straight)

            time_centerlines = time.time() - time_centerlines
            logger.info('Time to generate centerline: {} ms'.format(
                np.round(time_centerlines * 1000.0)))

        if verbose == 2:
            # TODO: use OO
            import matplotlib.pyplot as plt
            from datetime import datetime
            curved_points = centerline.progressive_length
            straight_points = centerline_straight.progressive_length
            range_points = np.linspace(0, 1, number_of_points)
            dist_curved = np.zeros(number_of_points)
            dist_straight = np.zeros(number_of_points)
            for i in range(1, number_of_points):
                dist_curved[i] = dist_curved[
                    i - 1] + curved_points[i - 1] / centerline.length
                dist_straight[i] = dist_straight[i - 1] + straight_points[
                    i - 1] / centerline_straight.length
            plt.plot(range_points, dist_curved)
            plt.plot(range_points, dist_straight)
            plt.grid(True)
            plt.savefig('fig_straighten_' +
                        datetime.now().strftime("%y%m%d%H%M%S%f") + '.png')
            plt.close()

        # alignment_mode = 'length'
        alignment_mode = 'levels'

        lookup_curved2straight = list(range(centerline.number_of_points))
        if self.discs_input_filename != "":
            # create look-up table curved to straight
            for index in range(centerline.number_of_points):
                disc_label = centerline.l_points[index]
                if alignment_mode == 'length':
                    relative_position = centerline.dist_points[index]
                else:
                    relative_position = centerline.dist_points_rel[index]
                idx_closest = centerline_straight.get_closest_to_absolute_position(
                    disc_label,
                    relative_position,
                    backup_index=index,
                    backup_centerline=centerline_straight,
                    mode=alignment_mode)
                if idx_closest is not None:
                    lookup_curved2straight[index] = idx_closest
                else:
                    lookup_curved2straight[index] = 0
        for p in range(0, len(lookup_curved2straight) // 2):
            if lookup_curved2straight[p] == lookup_curved2straight[p + 1]:
                lookup_curved2straight[p] = 0
            else:
                break
        for p in range(
                len(lookup_curved2straight) - 1,
                len(lookup_curved2straight) // 2, -1):
            if lookup_curved2straight[p] == lookup_curved2straight[p - 1]:
                lookup_curved2straight[p] = 0
            else:
                break
        lookup_curved2straight = np.array(lookup_curved2straight)

        lookup_straight2curved = list(
            range(centerline_straight.number_of_points))
        if self.discs_input_filename != "":
            for index in range(centerline_straight.number_of_points):
                disc_label = centerline_straight.l_points[index]
                if alignment_mode == 'length':
                    relative_position = centerline_straight.dist_points[index]
                else:
                    relative_position = centerline_straight.dist_points_rel[
                        index]
                idx_closest = centerline.get_closest_to_absolute_position(
                    disc_label,
                    relative_position,
                    backup_index=index,
                    backup_centerline=centerline_straight,
                    mode=alignment_mode)
                if idx_closest is not None:
                    lookup_straight2curved[index] = idx_closest
        for p in range(0, len(lookup_straight2curved) // 2):
            if lookup_straight2curved[p] == lookup_straight2curved[p + 1]:
                lookup_straight2curved[p] = 0
            else:
                break
        for p in range(
                len(lookup_straight2curved) - 1,
                len(lookup_straight2curved) // 2, -1):
            if lookup_straight2curved[p] == lookup_straight2curved[p - 1]:
                lookup_straight2curved[p] = 0
            else:
                break
        lookup_straight2curved = np.array(lookup_straight2curved)

        # Create volumes containing curved and straight warping fields
        data_warp_curved2straight = np.zeros((nx_s, ny_s, nz_s, 1, 3))
        data_warp_straight2curved = np.zeros((nx, ny, nz, 1, 3))

        # 5. compute transformations
        # Curved and straight images and the same dimensions, so we compute both warping fields at the same time.
        # b. determine which plane of spinal cord centreline it is included
        # sct.printv(nx * ny * nz, nx_s * ny_s * nz_s)

        if self.curved2straight:
            for u in tqdm(range(nz_s)):
                x_s, y_s, z_s = np.mgrid[0:nx_s, 0:ny_s, u:u + 1]
                indexes_straight = np.array(
                    list(zip(x_s.ravel(), y_s.ravel(), z_s.ravel())))
                physical_coordinates_straight = image_centerline_straight.transfo_pix2phys(
                    indexes_straight)
                nearest_indexes_straight = centerline_straight.find_nearest_indexes(
                    physical_coordinates_straight)
                distances_straight = centerline_straight.get_distances_from_planes(
                    physical_coordinates_straight, nearest_indexes_straight)
                lookup = lookup_straight2curved[nearest_indexes_straight]
                indexes_out_distance_straight = np.logical_or(
                    np.logical_or(
                        distances_straight > self.threshold_distance,
                        distances_straight < -self.threshold_distance),
                    lookup == 0)
                projected_points_straight = centerline_straight.get_projected_coordinates_on_planes(
                    physical_coordinates_straight, nearest_indexes_straight)
                coord_in_planes_straight = centerline_straight.get_in_plans_coordinates(
                    projected_points_straight, nearest_indexes_straight)

                coord_straight2curved = centerline.get_inverse_plans_coordinates(
                    coord_in_planes_straight, lookup)
                displacements_straight = coord_straight2curved - physical_coordinates_straight
                # Invert Z coordinate as ITK & ANTs physical coordinate system is LPS- (RAI+)
                # while ours is LPI-
                # Refs: https://sourceforge.net/p/advants/discussion/840261/thread/2a1e9307/#fb5a
                #  https://www.slicer.org/wiki/Coordinate_systems
                displacements_straight[:, 2] = -displacements_straight[:, 2]
                displacements_straight[indexes_out_distance_straight] = [
                    100000.0, 100000.0, 100000.0
                ]

                data_warp_curved2straight[indexes_straight[:, 0], indexes_straight[:, 1], indexes_straight[:, 2], 0, :]\
                    = -displacements_straight

        if self.straight2curved:
            for u in tqdm(range(nz)):
                x, y, z = np.mgrid[0:nx, 0:ny, u:u + 1]
                indexes = np.array(list(zip(x.ravel(), y.ravel(), z.ravel())))
                physical_coordinates = image_centerline_pad.transfo_pix2phys(
                    indexes)
                nearest_indexes_curved = centerline.find_nearest_indexes(
                    physical_coordinates)
                distances_curved = centerline.get_distances_from_planes(
                    physical_coordinates, nearest_indexes_curved)
                lookup = lookup_curved2straight[nearest_indexes_curved]
                indexes_out_distance_curved = np.logical_or(
                    np.logical_or(distances_curved > self.threshold_distance,
                                  distances_curved < -self.threshold_distance),
                    lookup == 0)
                projected_points_curved = centerline.get_projected_coordinates_on_planes(
                    physical_coordinates, nearest_indexes_curved)
                coord_in_planes_curved = centerline.get_in_plans_coordinates(
                    projected_points_curved, nearest_indexes_curved)

                coord_curved2straight = centerline_straight.points[lookup]
                coord_curved2straight[:, 0:2] += coord_in_planes_curved[:, 0:2]
                coord_curved2straight[:, 2] += distances_curved

                displacements_curved = coord_curved2straight - physical_coordinates

                displacements_curved[:, 2] = -displacements_curved[:, 2]
                displacements_curved[indexes_out_distance_curved] = [
                    100000.0, 100000.0, 100000.0
                ]

                data_warp_straight2curved[indexes[:, 0], indexes[:, 1],
                                          indexes[:, 2],
                                          0, :] = -displacements_curved

        # Creation of the safe zone based on pre-calculated safe boundaries
        coord_bound_curved_inf, coord_bound_curved_sup = image_centerline_pad.transfo_phys2pix(
            [[0, 0, bound_curved[0]]]), image_centerline_pad.transfo_phys2pix(
                [[0, 0, bound_curved[1]]])
        coord_bound_straight_inf, coord_bound_straight_sup = image_centerline_straight.transfo_phys2pix(
            [[0, 0,
              bound_straight[0]]]), image_centerline_straight.transfo_phys2pix(
                  [[0, 0, bound_straight[1]]])

        if radius_safe > 0:
            data_warp_curved2straight[:, :, 0:coord_bound_straight_inf[0][2],
                                      0, :] = 100000.0
            data_warp_curved2straight[:, :, coord_bound_straight_sup[0][2]:,
                                      0, :] = 100000.0
            data_warp_straight2curved[:, :, 0:coord_bound_curved_inf[0][2],
                                      0, :] = 100000.0
            data_warp_straight2curved[:, :, coord_bound_curved_sup[0][2]:,
                                      0, :] = 100000.0

        # Generate warp files as a warping fields
        hdr_warp_s.set_intent('vector', (), '')
        hdr_warp_s.set_data_dtype('float32')
        hdr_warp.set_intent('vector', (), '')
        hdr_warp.set_data_dtype('float32')
        if self.curved2straight:
            img = Nifti1Image(data_warp_curved2straight, None, hdr_warp_s)
            save(img, 'tmp.curve2straight.nii.gz')
            logger.info('Warping field generated: tmp.curve2straight.nii.gz')

        if self.straight2curved:
            img = Nifti1Image(data_warp_straight2curved, None, hdr_warp)
            save(img, 'tmp.straight2curve.nii.gz')
            logger.info('Warping field generated: tmp.straight2curve.nii.gz')

        image_centerline_straight.save(fname_ref)
        if self.curved2straight:
            logger.info('Apply transformation to input image...')
            sct.run([
                'isct_antsApplyTransforms', '-d', '3', '-r', fname_ref, '-i',
                'data.nii', '-o', 'tmp.anat_rigid_warp.nii.gz', '-t',
                'tmp.curve2straight.nii.gz', '-n', 'BSpline[3]'
            ],
                    is_sct_binary=True,
                    verbose=verbose)

        if self.accuracy_results:
            time_accuracy_results = time.time()
            # compute the error between the straightened centerline/segmentation and the central vertical line.
            # Ideally, the error should be zero.
            # Apply deformation to input image
            logger.info('Apply transformation to centerline image...')
            sct.run([
                'isct_antsApplyTransforms', '-d', '3', '-r', fname_ref, '-i',
                'centerline.nii.gz', '-o', 'tmp.centerline_straight.nii.gz',
                '-t', 'tmp.curve2straight.nii.gz', '-n', 'NearestNeighbor'
            ],
                    is_sct_binary=True,
                    verbose=verbose)
            file_centerline_straight = Image('tmp.centerline_straight.nii.gz',
                                             verbose=verbose)
            nx, ny, nz, nt, px, py, pz, pt = file_centerline_straight.dim
            coordinates_centerline = file_centerline_straight.getNonZeroCoordinates(
                sorting='z')
            mean_coord = []
            for z in range(coordinates_centerline[0].z,
                           coordinates_centerline[-1].z):
                temp_mean = [
                    coord.value for coord in coordinates_centerline
                    if coord.z == z
                ]
                if temp_mean:
                    mean_value = np.mean(temp_mean)
                    mean_coord.append(
                        np.mean([[
                            coord.x * coord.value / mean_value,
                            coord.y * coord.value / mean_value
                        ] for coord in coordinates_centerline if coord.z == z],
                                axis=0))

            # compute error between the straightened centerline and the straight line.
            x0 = file_centerline_straight.data.shape[0] / 2.0
            y0 = file_centerline_straight.data.shape[1] / 2.0
            count_mean = 0
            if number_of_points >= 10:
                mean_c = mean_coord[
                    2:
                    -2]  # we don't include the four extrema because there are usually messy.
            else:
                mean_c = mean_coord
            for coord_z in mean_c:
                if not np.isnan(np.sum(coord_z)):
                    dist = ((x0 - coord_z[0]) * px)**2 + (
                        (y0 - coord_z[1]) * py)**2
                    self.mse_straightening += dist
                    dist = np.sqrt(dist)
                    if dist > self.max_distance_straightening:
                        self.max_distance_straightening = dist
                    count_mean += 1
            self.mse_straightening = np.sqrt(self.mse_straightening /
                                             float(count_mean))

            self.elapsed_time_accuracy = time.time() - time_accuracy_results

        os.chdir(curdir)

        # Generate output file (in current folder)
        # TODO: do not uncompress the warping field, it is too time consuming!
        logger.info('Generate output files...')
        if self.curved2straight:
            sct.generate_output_file(
                os.path.join(path_tmp, "tmp.curve2straight.nii.gz"),
                os.path.join(self.path_output, "warp_curve2straight.nii.gz"),
                verbose)
        if self.straight2curved:
            sct.generate_output_file(
                os.path.join(path_tmp, "tmp.straight2curve.nii.gz"),
                os.path.join(self.path_output, "warp_straight2curve.nii.gz"),
                verbose)

        # create ref_straight.nii.gz file that can be used by other SCT functions that need a straight reference space
        if self.curved2straight:
            sct.copy(os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"),
                     os.path.join(self.path_output, "straight_ref.nii.gz"))
            # move straightened input file
            if fname_output == '':
                fname_straight = sct.generate_output_file(
                    os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"),
                    os.path.join(self.path_output,
                                 file_anat + "_straight" + ext_anat), verbose)
            else:
                fname_straight = sct.generate_output_file(
                    os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"),
                    os.path.join(self.path_output, fname_output),
                    verbose)  # straightened anatomic

        # Remove temporary files
        if remove_temp_files:
            logger.info('Remove temporary files...')
            sct.rmtree(path_tmp)

        if self.accuracy_results:
            logger.info('Maximum x-y error: {} mm'.format(
                self.max_distance_straightening))
            logger.info('Accuracy of straightening (MSE): {} mm'.format(
                self.mse_straightening))

        # display elapsed time
        self.elapsed_time = int(np.round(time.time() - start_time))

        return fname_straight
コード例 #29
0
    def validation(self, fname_manual_gmseg, fname_sc_seg):
        path_manual_gmseg, file_manual_gmseg, ext_manual_gmseg = sct.extract_fname(
            fname_manual_gmseg)
        path_sc_seg, file_sc_seg, ext_sc_seg = sct.extract_fname(fname_sc_seg)

        # Create tmp folder and copy files in it
        tmp_dir = sct.tmp_create()
        sct.run('cp ' + fname_manual_gmseg + ' ' + tmp_dir +
                file_manual_gmseg + ext_manual_gmseg)
        sct.run('cp ' + fname_sc_seg + ' ' + tmp_dir + file_sc_seg +
                ext_sc_seg)
        sct.run('cp ' + self.param.output_folder +
                self.fname_warp_template2gm + ' ' + tmp_dir +
                self.fname_warp_template2gm)
        os.chdir(tmp_dir)

        sct.run('sct_warp_template -d ' + fname_manual_gmseg + ' -w ' +
                self.fname_warp_template2gm + ' -qc 0 -a 0')
        if 'MNI-Poly-AMU_GM.nii.gz' in os.listdir('label/template/'):
            im_new_template_gm = Image('label/template/MNI-Poly-AMU_GM.nii.gz')
            im_new_template_wm = Image('label/template/MNI-Poly-AMU_WM.nii.gz')
        else:
            im_new_template_gm = Image('label/template/PAM50_gm.nii.gz')
            im_new_template_wm = Image('label/template/PAM50_wm.nii.gz')

        im_new_template_gm = thr_im(im_new_template_gm, self.param.thr,
                                    self.param.thr)
        im_new_template_wm = thr_im(im_new_template_wm, self.param.thr,
                                    self.param.thr)

        self.im_template_gm = thr_im(self.im_template_gm, self.param.thr,
                                     self.param.thr)
        self.im_template_wm = thr_im(self.im_template_wm, self.param.thr,
                                     self.param.thr)

        fname_new_template_gm = 'new_template_gm.nii.gz'
        im_new_template_gm.setFileName(fname_new_template_gm)
        im_new_template_gm.save()

        fname_new_template_wm = 'new_template_wm.nii.gz'
        im_new_template_wm.setFileName(fname_new_template_wm)
        im_new_template_wm.save()

        fname_old_template_wm = 'old_template_wm.nii.gz'
        self.im_template_wm.setFileName(fname_old_template_wm)
        self.im_template_wm.save()

        fname_old_template_gm = 'old_template_gm.nii.gz'
        self.im_template_gm.setFileName(fname_old_template_gm)
        self.im_template_gm.save()

        fname_manual_wmseg = 'target_manual_wmseg.nii.gz'
        sct.run('sct_maths -i ' + file_sc_seg + ext_sc_seg + ' -sub ' +
                file_manual_gmseg + ext_manual_gmseg + ' -o ' +
                fname_manual_wmseg)

        # Compute Hausdorff distance
        status, output_old_hd = sct.run('sct_compute_hausdorff_distance -i ' +
                                        fname_old_template_gm + ' -r ' +
                                        file_manual_gmseg + ext_manual_gmseg +
                                        ' -t 1  -v 1')
        status, output_new_hd = sct.run('sct_compute_hausdorff_distance -i ' +
                                        fname_new_template_gm + ' -r ' +
                                        file_manual_gmseg + ext_manual_gmseg +
                                        ' -t 1  -v 1')

        hd_name = 'hd_md_multilabel_reg.txt'
        hd_fic = open(hd_name, 'w')
        hd_fic.write(
            'The "diff" columns are comparisons between regular template registration and corrected template registration according to SC internal structure\n'
            'Diff = metric_regular_reg - metric_corrected_reg\n')
        hd_fic.write('#Slice, HD, HD diff, MD, MD diff\n')

        no_ref_slices = []

        init_hd = "Hausdorff's distance  -  First relative Hausdorff's distance median - Second relative Hausdorff's distance median(all in mm)\n"
        old_gm_hd = output_old_hd[output_old_hd.find(init_hd) +
                                  len(init_hd):].split('\n')
        new_gm_hd = output_new_hd[output_new_hd.find(init_hd) +
                                  len(init_hd):].split('\n')

        for i in range(len(old_gm_hd) - 3):  # last two lines are informations
            i_old, val_old = old_gm_hd[i].split(':')
            i_new, val_new = new_gm_hd[i].split(':')
            i_old = int(i_old[-2:])
            i_new = int(i_new[-2:])

            assert i == i_old == i_new, 'ERROR: when comparing Hausdorff distances, slice numbers differs.'
            hd_old, med1_old, med2_old = val_old.split('-')
            hd_new, med1_new, med2_new = val_new.split('-')

            if float(hd_old) == 0.0:
                no_ref_slices.append(i)
                hd_fic.write(str(i) + ', NO MANUAL SEGMENTATION\n')
            else:
                md_new = max(float(med1_new), float(med2_new))
                md_old = max(float(med1_old), float(med2_old))

                hd_fic.write(
                    str(i) + ', ' + hd_new + ', ' +
                    str(float(hd_old) - float(hd_new)) + ', ' + str(md_new) +
                    ', ' + str(md_old - md_new) + '\n')
        hd_fic.close()

        # Compute Dice coefficient
        # --- DC old template
        try:
            status_old_gm, output_old_gm = sct.run(
                'sct_dice_coefficient -i ' + file_manual_gmseg +
                ext_manual_gmseg + ' -d ' + fname_old_template_gm +
                ' -2d-slices 2',
                error_exit='warning',
                raise_exception=True)
        except Exception:
            # put the result and the reference in the same space using a registration with ANTs with no iteration:
            corrected_manual_gmseg = file_manual_gmseg + '_in_old_template_space' + ext_manual_gmseg
            sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[' +
                    fname_old_template_gm + ',' + file_manual_gmseg +
                    ext_manual_gmseg + ',1,16] -o [reg_ref_to_res,' +
                    corrected_manual_gmseg + '] -n BSpline[3] -c 0 -f 1 -s 0')
            # sct.run('sct_maths -i '+corrected_manual_gmseg+' -thr 0.1 -o '+corrected_manual_gmseg)
            sct.run('sct_maths -i ' + corrected_manual_gmseg +
                    ' -bin 0.1 -o ' + corrected_manual_gmseg)
            status_old_gm, output_old_gm = sct.run(
                'sct_dice_coefficient -i ' + corrected_manual_gmseg + ' -d ' +
                fname_old_template_gm + '  -2d-slices 2',
                error_exit='warning')

        try:
            status_old_wm, output_old_wm = sct.run(
                'sct_dice_coefficient -i ' + fname_manual_wmseg + ' -d ' +
                fname_old_template_wm + ' -2d-slices 2',
                error_exit='warning',
                raise_exception=True)
        except Exception:
            # put the result and the reference in the same space using a registration with ANTs with no iteration:
            path_manual_wmseg, file_manual_wmseg, ext_manual_wmseg = sct.extract_fname(
                fname_manual_wmseg)
            corrected_manual_wmseg = file_manual_wmseg + '_in_old_template_space' + ext_manual_wmseg
            sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[' +
                    fname_old_template_wm + ',' + fname_manual_wmseg +
                    ',1,16] -o [reg_ref_to_res,' + corrected_manual_wmseg +
                    '] -n BSpline[3] -c 0 -f 1 -s 0')
            # sct.run('sct_maths -i '+corrected_manual_wmseg+' -thr 0.1 -o '+corrected_manual_wmseg)
            sct.run('sct_maths -i ' + corrected_manual_wmseg +
                    ' -bin 0.1 -o ' + corrected_manual_wmseg)
            status_old_wm, output_old_wm = sct.run(
                'sct_dice_coefficient -i ' + corrected_manual_wmseg + ' -d ' +
                fname_old_template_wm + '  -2d-slices 2',
                error_exit='warning')

        # --- DC new template
        try:
            status_new_gm, output_new_gm = sct.run(
                'sct_dice_coefficient -i ' + file_manual_gmseg +
                ext_manual_gmseg + ' -d ' + fname_new_template_gm +
                ' -2d-slices 2',
                error_exit='warning',
                raise_exception=True)
        except Exception:
            # put the result and the reference in the same space using a registration with ANTs with no iteration:
            corrected_manual_gmseg = file_manual_gmseg + '_in_new_template_space' + ext_manual_gmseg
            sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[' +
                    fname_new_template_gm + ',' + file_manual_gmseg +
                    ext_manual_gmseg + ',1,16] -o [reg_ref_to_res,' +
                    corrected_manual_gmseg + '] -n BSpline[3] -c 0 -f 1 -s 0')
            # sct.run('sct_maths -i '+corrected_manual_gmseg+' -thr 0.1 -o '+corrected_manual_gmseg)
            sct.run('sct_maths -i ' + corrected_manual_gmseg +
                    ' -bin 0.1 -o ' + corrected_manual_gmseg)
            status_new_gm, output_new_gm = sct.run(
                'sct_dice_coefficient -i ' + corrected_manual_gmseg + ' -d ' +
                fname_new_template_gm + '  -2d-slices 2',
                error_exit='warning')

        try:
            status_new_wm, output_new_wm = sct.run(
                'sct_dice_coefficient -i ' + fname_manual_wmseg + ' -d ' +
                fname_new_template_wm + ' -2d-slices 2',
                error_exit='warning',
                raise_exception=True)
        except Exception:
            # put the result and the reference in the same space using a registration with ANTs with no iteration:
            path_manual_wmseg, file_manual_wmseg, ext_manual_wmseg = sct.extract_fname(
                fname_manual_wmseg)
            corrected_manual_wmseg = file_manual_wmseg + '_in_new_template_space' + ext_manual_wmseg
            sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[' +
                    fname_new_template_wm + ',' + fname_manual_wmseg +
                    ',1,16] -o [reg_ref_to_res,' + corrected_manual_wmseg +
                    '] -n BSpline[3] -c 0 -f 1 -s 0')
            # sct.run('sct_maths -i '+corrected_manual_wmseg+' -thr 0.1 -o '+corrected_manual_wmseg)
            sct.run('sct_maths -i ' + corrected_manual_wmseg +
                    ' -bin 0.1 -o ' + corrected_manual_wmseg)
            status_new_wm, output_new_wm = sct.run(
                'sct_dice_coefficient -i ' + corrected_manual_wmseg + ' -d ' +
                fname_new_template_wm + '  -2d-slices 2',
                error_exit='warning')

        dice_name = 'dice_multilabel_reg.txt'
        dice_fic = open(dice_name, 'w')
        dice_fic.write(
            'The "diff" columns are comparisons between regular template registration and corrected template registration according to SC internal structure\n'
            'Diff = metric_corrected_reg - metric_regular_reg\n')
        dice_fic.write('#Slice, WM DC, WM diff, GM DC, GM diff\n')

        init_dc = '2D Dice coefficient by slice:\n'

        old_gm_dc = output_old_gm[output_old_gm.find(init_dc) +
                                  len(init_dc):].split('\n')
        old_wm_dc = output_old_wm[output_old_wm.find(init_dc) +
                                  len(init_dc):].split('\n')
        new_gm_dc = output_new_gm[output_new_gm.find(init_dc) +
                                  len(init_dc):].split('\n')
        new_wm_dc = output_new_wm[output_new_wm.find(init_dc) +
                                  len(init_dc):].split('\n')

        for i in range(len(old_gm_dc)):
            if i not in no_ref_slices:
                i_new_gm, val_new_gm = new_gm_dc[i].split(' ')
                i_new_wm, val_new_wm = new_wm_dc[i].split(' ')
                i_old_gm, val_old_gm = old_gm_dc[i].split(' ')
                i_old_wm, val_old_wm = old_wm_dc[i].split(' ')

                assert i == int(i_new_gm) == int(i_new_wm) == int(
                    i_old_gm
                ) == int(
                    i_old_wm
                ), 'ERROR: when comparing Dice coefficients, slice numbers differs.'

                dice_fic.write(
                    str(i) + ', ' + val_new_wm + ', ' +
                    str(float(val_new_wm) - float(val_old_wm)) + ', ' +
                    val_new_gm + ', ' +
                    str(float(val_new_gm) - float(val_old_gm)) + '\n')
            else:
                dice_fic.write(str(i) + ', NO MANUAL SEGMENTATION\n')
        dice_fic.close()
        os.chdir('..')

        sct.generate_output_file(tmp_dir + hd_name,
                                 self.param.output_folder + hd_name)
        sct.generate_output_file(tmp_dir + dice_name,
                                 self.param.output_folder + dice_name)

        if self.param.remove_tmp:
            sct.run('rm -rf ' + tmp_dir, error_exit='warning')
コード例 #30
0
def main(args=None):

    # Initialization
    param = Param()
    start_time = time.time()

    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])

    fname_anat = arguments['-i']
    fname_centerline = arguments['-s']
    if '-smooth' in arguments:
        sigma = arguments['-smooth']
    if '-param' in arguments:
        param.update(arguments['-param'])
    if '-r' in arguments:
        remove_temp_files = int(arguments['-r'])
    verbose = int(arguments.get('-v'))
    sct.init_sct(log_level=verbose, update=True)  # Update log level

    # Display arguments
    sct.printv('\nCheck input arguments...')
    sct.printv('  Volume to smooth .................. ' + fname_anat)
    sct.printv('  Centerline ........................ ' + fname_centerline)
    sct.printv('  Sigma (mm) ........................ ' + str(sigma))
    sct.printv('  Verbose ........................... ' + str(verbose))

    # Check that input is 3D:
    from spinalcordtoolbox.image import Image
    nx, ny, nz, nt, px, py, pz, pt = Image(fname_anat).dim
    dim = 4  # by default, will be adjusted later
    if nt == 1:
        dim = 3
    if nz == 1:
        dim = 2
    if dim == 4:
        sct.printv(
            'WARNING: the input image is 4D, please split your image to 3D before smoothing spinalcord using :\n'
            'sct_image -i ' + fname_anat + ' -split t -o ' + fname_anat,
            verbose, 'warning')
        sct.printv('4D images not supported, aborting ...', verbose, 'error')

    # Extract path/file/extension
    path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat)
    path_centerline, file_centerline, ext_centerline = sct.extract_fname(
        fname_centerline)

    path_tmp = sct.tmp_create(basename="smooth_spinalcord", verbose=verbose)

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...',
               verbose)
    sct.copy(fname_anat, os.path.join(path_tmp, "anat" + ext_anat))
    sct.copy(fname_centerline,
             os.path.join(path_tmp, "centerline" + ext_centerline))

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # convert to nii format
    convert('anat' + ext_anat, 'anat.nii')
    convert('centerline' + ext_centerline, 'centerline.nii')

    # Change orientation of the input image into RPI
    sct.printv('\nOrient input volume to RPI orientation...')
    fname_anat_rpi = msct_image.Image("anat.nii") \
     .change_orientation("RPI", generate_path=True) \
     .save() \
     .absolutepath

    # Change orientation of the input image into RPI
    sct.printv('\nOrient centerline to RPI orientation...')
    fname_centerline_rpi = msct_image.Image("centerline.nii") \
     .change_orientation("RPI", generate_path=True) \
     .save() \
     .absolutepath

    # Straighten the spinal cord
    # straighten segmentation
    sct.printv('\nStraighten the spinal cord using centerline/segmentation...',
               verbose)
    cache_sig = sct.cache_signature(
        input_files=[fname_anat_rpi, fname_centerline_rpi],
        input_params={"x": "spline"})
    cachefile = os.path.join(curdir, "straightening.cache")
    if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(
            os.path.join(
                curdir, 'warp_curve2straight.nii.gz')) and os.path.isfile(
                    os.path.join(
                        curdir,
                        'warp_straight2curve.nii.gz')) and os.path.isfile(
                            os.path.join(curdir, 'straight_ref.nii.gz')):
        # if they exist, copy them into current folder
        sct.printv('Reusing existing warping field which seems to be valid',
                   verbose, 'warning')
        sct.copy(os.path.join(curdir, 'warp_curve2straight.nii.gz'),
                 'warp_curve2straight.nii.gz')
        sct.copy(os.path.join(curdir, 'warp_straight2curve.nii.gz'),
                 'warp_straight2curve.nii.gz')
        sct.copy(os.path.join(curdir, 'straight_ref.nii.gz'),
                 'straight_ref.nii.gz')
        # apply straightening
        sct.run([
            'sct_apply_transfo', '-i', fname_anat_rpi, '-w',
            'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o',
            'anat_rpi_straight.nii', '-x', 'spline'
        ], verbose)
    else:
        sct.run([
            'sct_straighten_spinalcord', '-i', fname_anat_rpi, '-o',
            'anat_rpi_straight.nii', '-s', fname_centerline_rpi, '-x',
            'spline', '-param', 'algo_fitting=' + param.algo_fitting
        ], verbose)
        sct.cache_save(cachefile, cache_sig)
        # move warping fields locally (to use caching next time)
        sct.copy('warp_curve2straight.nii.gz',
                 os.path.join(curdir, 'warp_curve2straight.nii.gz'))
        sct.copy('warp_straight2curve.nii.gz',
                 os.path.join(curdir, 'warp_straight2curve.nii.gz'))

    # Smooth the straightened image along z
    sct.printv('\nSmooth the straightened image...')
    sigma_smooth = ",".join([str(i) for i in sigma])
    sct_maths.main(args=[
        '-i', 'anat_rpi_straight.nii', '-smooth', sigma_smooth, '-o',
        'anat_rpi_straight_smooth.nii', '-v', '0'
    ])
    # Apply the reversed warping field to get back the curved spinal cord
    sct.printv(
        '\nApply the reversed warping field to get back the curved spinal cord...'
    )
    sct.run([
        'sct_apply_transfo', '-i', 'anat_rpi_straight_smooth.nii', '-o',
        'anat_rpi_straight_smooth_curved.nii', '-d', 'anat.nii', '-w',
        'warp_straight2curve.nii.gz', '-x', 'spline'
    ], verbose)

    # replace zeroed voxels by original image (issue #937)
    sct.printv('\nReplace zeroed voxels by original image...', verbose)
    nii_smooth = Image('anat_rpi_straight_smooth_curved.nii')
    data_smooth = nii_smooth.data
    data_input = Image('anat.nii').data
    indzero = np.where(data_smooth == 0)
    data_smooth[indzero] = data_input[indzero]
    nii_smooth.data = data_smooth
    nii_smooth.save('anat_rpi_straight_smooth_curved_nonzero.nii')

    # come back
    os.chdir(curdir)

    # Generate output file
    sct.printv('\nGenerate output file...')
    sct.generate_output_file(
        os.path.join(path_tmp, "anat_rpi_straight_smooth_curved_nonzero.nii"),
        file_anat + '_smooth' + ext_anat)

    # Remove temporary files
    if remove_temp_files == 1:
        sct.printv('\nRemove temporary files...')
        sct.rmtree(path_tmp)

    # Display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: ' +
               str(int(np.round(elapsed_time))) + 's\n')

    sct.display_viewer_syntax([file_anat, file_anat + '_smooth'],
                              verbose=verbose)
コード例 #31
0
# append path that contains scripts, to be able to load modules
path_script = os.path.dirname(__file__)
# Get path of the toolbox
path_sct = os.environ.get("SCT_DIR", os.path.dirname(os.path.dirname(__file__)))
sys.path.append(os.path.join(path_sct, 'scripts'))
import sct_utils as sct
from msct_image import Image


# parameters
fname_wm = os.path.join(path_sct, "PAM50", "template", "PAM50_wm.nii.gz")
fname_gm = os.path.join(path_sct, "PAM50", "template", "PAM50_gm.nii.gz")
fname_cord = os.path.join(path_sct, "PAM50", "template", "PAM50_cord.nii.gz")

# create temporary folder
path_tmp = sct.tmp_create()

# go to temp folder
os.chdir(path_tmp)

# open volumes
im_wm = Image(fname_wm)
data_wm = im_wm.data
im_gm = Image(fname_gm)
data_gm = im_gm.data
im_cord = Image(fname_cord)
data_cord = im_cord.data
dim = im_cord.dim

# sum wm/gm
data_wmgm = data_wm + data_gm
コード例 #32
0
def main(args=None):

    # initializations
    initz = ''
    initcenter = ''
    fname_initlabel = ''
    file_labelz = 'labelz.nii.gz'
    param = Param()

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(args)
    fname_in = os.path.abspath(arguments["-i"])
    fname_seg = os.path.abspath(arguments['-s'])
    contrast = arguments['-c']
    path_template = os.path.abspath(arguments['-t'])
    scale_dist = arguments['-scale-dist']
    if '-ofolder' in arguments:
        path_output = arguments['-ofolder']
    else:
        path_output = os.curdir
    param.path_qc = arguments.get("-qc", None)
    if '-discfile' in arguments:
        fname_disc = os.path.abspath(arguments['-discfile'])
    else:
        fname_disc = None
    if '-initz' in arguments:
        initz = arguments['-initz']
    if '-initcenter' in arguments:
        initcenter = arguments['-initcenter']
    # if user provided text file, parse and overwrite arguments
    if '-initfile' in arguments:
        file = open(arguments['-initfile'], 'r')
        initfile = ' ' + file.read().replace('\n', '')
        arg_initfile = initfile.split(' ')
        for idx_arg, arg in enumerate(arg_initfile):
            if arg == '-initz':
                initz = [int(x) for x in arg_initfile[idx_arg + 1].split(',')]
            if arg == '-initcenter':
                initcenter = int(arg_initfile[idx_arg + 1])
    if '-initlabel' in arguments:
        # get absolute path of label
        fname_initlabel = os.path.abspath(arguments['-initlabel'])
    if '-param' in arguments:
        param.update(arguments['-param'][0])
    verbose = int(arguments.get('-v'))
    sct.init_sct(log_level=verbose, update=True)  # Update log level
    remove_temp_files = int(arguments['-r'])
    denoise = int(arguments['-denoise'])
    laplacian = int(arguments['-laplacian'])

    path_tmp = sct.tmp_create(basename="label_vertebrae", verbose=verbose)

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder...', verbose)
    Image(fname_in).save(os.path.join(path_tmp, "data.nii"))
    Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii"))

    # Go go temp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Straighten spinal cord
    sct.printv('\nStraighten spinal cord...', verbose)
    # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
    cache_sig = sct.cache_signature(input_files=[fname_in, fname_seg], )
    cachefile = os.path.join(curdir, "straightening.cache")
    if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(
            os.path.join(
                curdir, "warp_curve2straight.nii.gz")) and os.path.isfile(
                    os.path.join(
                        curdir,
                        "warp_straight2curve.nii.gz")) and os.path.isfile(
                            os.path.join(curdir, "straight_ref.nii.gz")):
        # if they exist, copy them into current folder
        sct.printv('Reusing existing warping field which seems to be valid',
                   verbose, 'warning')
        sct.copy(os.path.join(curdir, "warp_curve2straight.nii.gz"),
                 'warp_curve2straight.nii.gz')
        sct.copy(os.path.join(curdir, "warp_straight2curve.nii.gz"),
                 'warp_straight2curve.nii.gz')
        sct.copy(os.path.join(curdir, "straight_ref.nii.gz"),
                 'straight_ref.nii.gz')
        # apply straightening
        s, o = sct.run([
            'sct_apply_transfo', '-i', 'data.nii', '-w',
            'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o',
            'data_straight.nii'
        ])
    else:
        sct_straighten_spinalcord.main(args=[
            '-i',
            'data.nii',
            '-s',
            'segmentation.nii',
            '-r',
            str(remove_temp_files),
            '-v',
            str(verbose),
        ])
        sct.cache_save(cachefile, cache_sig)

    # resample to 0.5mm isotropic to match template resolution
    sct.printv('\nResample to 0.5mm isotropic...', verbose)
    s, o = sct.run([
        'sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x',
        'linear', '-o', 'data_straightr.nii'
    ],
                   verbose=verbose)

    # Apply straightening to segmentation
    # N.B. Output is RPI
    sct.printv('\nApply straightening to segmentation...', verbose)
    sct.run(
        'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
        ('segmentation.nii', 'data_straightr.nii',
         'warp_curve2straight.nii.gz', 'segmentation_straight.nii', 'Linear'),
        verbose=verbose,
        is_sct_binary=True,
    )
    # Threshold segmentation at 0.5
    sct.run([
        'sct_maths', '-i', 'segmentation_straight.nii', '-thr', '0.5', '-o',
        'segmentation_straight.nii'
    ], verbose)

    # If disc label file is provided, label vertebrae using that file instead of automatically
    if fname_disc:
        # Apply straightening to disc-label
        sct.printv('\nApply straightening to disc labels...', verbose)
        sct.run(
            'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
            (fname_disc, 'data_straightr.nii', 'warp_curve2straight.nii.gz',
             'labeldisc_straight.nii.gz', 'NearestNeighbor'),
            verbose=verbose,
            is_sct_binary=True,
        )
        label_vert('segmentation_straight.nii',
                   'labeldisc_straight.nii.gz',
                   verbose=1)

    else:
        # create label to identify disc
        sct.printv('\nCreate label to identify disc...', verbose)
        fname_labelz = os.path.join(path_tmp, file_labelz)
        if initz or initcenter:
            if initcenter:
                # find z centered in FOV
                nii = Image('segmentation.nii').change_orientation("RPI")
                nx, ny, nz, nt, px, py, pz, pt = nii.dim  # Get dimensions
                z_center = int(np.round(nz / 2))  # get z_center
                initz = [z_center, initcenter]
            # create single label and output as labels.nii.gz
            label = ProcessLabels(
                'segmentation.nii',
                fname_output='tmp.labelz.nii.gz',
                coordinates=['{},{}'.format(initz[0], initz[1])])
            im_label = label.process('create-seg')
            im_label.data = dilate(
                im_label.data, 3,
                'ball')  # TODO: create a dilation method specific to labels,
            # which does not apply a convolution across all voxels (highly inneficient)
            im_label.save(fname_labelz)
        elif fname_initlabel:
            Image(fname_initlabel).save(fname_labelz)
        else:
            # automatically finds C2-C3 disc
            im_data = Image('data.nii')
            im_seg = Image('segmentation.nii')
            if not remove_temp_files:  # because verbose is here also used for keeping temp files
                verbose_detect_c2c3 = 2
            else:
                verbose_detect_c2c3 = 0
            im_label_c2c3 = detect_c2c3(im_data,
                                        im_seg,
                                        contrast,
                                        verbose=verbose_detect_c2c3)
            ind_label = np.where(im_label_c2c3.data)
            if not np.size(ind_label) == 0:
                im_label_c2c3.data[ind_label] = 3
            else:
                sct.printv(
                    'Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils',
                    1, 'error')
                sys.exit()
            im_label_c2c3.save(fname_labelz)

        # dilate label so it is not lost when applying warping
        dilate(Image(fname_labelz), 3, 'ball').save(fname_labelz)

        # Apply straightening to z-label
        sct.printv('\nAnd apply straightening to label...', verbose)
        sct.run(
            'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
            (file_labelz, 'data_straightr.nii', 'warp_curve2straight.nii.gz',
             'labelz_straight.nii.gz', 'NearestNeighbor'),
            verbose=verbose,
            is_sct_binary=True,
        )
        # get z value and disk value to initialize labeling
        sct.printv('\nGet z and disc values from straight label...', verbose)
        init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz')
        sct.printv('.. ' + str(init_disc), verbose)

        # denoise data
        if denoise:
            sct.printv('\nDenoise data...', verbose)
            sct.run([
                'sct_maths', '-i', 'data_straightr.nii', '-denoise', 'h=0.05',
                '-o', 'data_straightr.nii'
            ], verbose)

        # apply laplacian filtering
        if laplacian:
            sct.printv('\nApply Laplacian filter...', verbose)
            sct.run([
                'sct_maths', '-i', 'data_straightr.nii', '-laplacian', '1',
                '-o', 'data_straightr.nii'
            ], verbose)

        # detect vertebral levels on straight spinal cord
        init_disc[1] = init_disc[1] - 1
        vertebral_detection('data_straightr.nii',
                            'segmentation_straight.nii',
                            contrast,
                            param,
                            init_disc=init_disc,
                            verbose=verbose,
                            path_template=path_template,
                            path_output=path_output,
                            scale_dist=scale_dist)

    # un-straighten labeled spinal cord
    sct.printv('\nUn-straighten labeling...', verbose)
    sct.run(
        'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
        ('segmentation_straight_labeled.nii', 'segmentation.nii',
         'warp_straight2curve.nii.gz', 'segmentation_labeled.nii',
         'NearestNeighbor'),
        verbose=verbose,
        is_sct_binary=True,
    )
    # Clean labeled segmentation
    sct.printv(
        '\nClean labeled segmentation (correct interpolation errors)...',
        verbose)
    clean_labeled_segmentation('segmentation_labeled.nii', 'segmentation.nii',
                               'segmentation_labeled.nii')

    # label discs
    sct.printv('\nLabel discs...', verbose)
    label_discs('segmentation_labeled.nii', verbose=verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    path_seg, file_seg, ext_seg = sct.extract_fname(fname_seg)
    fname_seg_labeled = os.path.join(path_output,
                                     file_seg + '_labeled' + ext_seg)
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(
        os.path.join(path_tmp, "segmentation_labeled.nii"), fname_seg_labeled)
    sct.generate_output_file(
        os.path.join(path_tmp, "segmentation_labeled_disc.nii"),
        os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg))
    # copy straightening files in case subsequent SCT functions need them
    sct.generate_output_file(
        os.path.join(path_tmp, "warp_curve2straight.nii.gz"),
        os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose)
    sct.generate_output_file(
        os.path.join(path_tmp, "warp_straight2curve.nii.gz"),
        os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose)
    sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"),
                             os.path.join(path_output, "straight_ref.nii.gz"),
                             verbose)

    # Remove temporary files
    if remove_temp_files == 1:
        sct.printv('\nRemove temporary files...', verbose)
        sct.rmtree(path_tmp)

    # Generate QC report
    if param.path_qc is not None:
        path_qc = os.path.abspath(param.path_qc)
        qc_dataset = arguments.get("-qc-dataset", None)
        qc_subject = arguments.get("-qc-subject", None)
        labeled_seg_file = os.path.join(path_output,
                                        file_seg + '_labeled' + ext_seg)
        generate_qc(fname_in,
                    fname_seg=labeled_seg_file,
                    args=args,
                    path_qc=os.path.abspath(path_qc),
                    dataset=qc_dataset,
                    subject=qc_subject,
                    process='sct_label_vertebrae')

    sct.display_viewer_syntax([fname_in, fname_seg_labeled],
                              colormaps=['', 'subcortical'],
                              opacities=['1', '0.5'])
コード例 #33
0
    def apply(self):
        # Initialization
        fname_src = self.input_filename  # source image (moving)
        fname_warp_list = self.warp_input  # list of warping fields
        fname_out = self.output_filename  # output
        fname_dest = self.fname_dest  # destination image (fix)
        verbose = self.verbose
        remove_temp_files = self.remove_temp_files
        crop_reference = self.crop  # if = 1, put 0 everywhere around warping field, if = 2, real crop

        interp = sct.get_interpolation('isct_antsApplyTransforms', self.interp)

        # Parse list of warping fields
        sct.printv('\nParse list of warping fields...', verbose)
        use_inverse = []
        fname_warp_list_invert = []
        # fname_warp_list = fname_warp_list.replace(' ', '')  # remove spaces
        # fname_warp_list = fname_warp_list.split(",")  # parse with comma
        for idx_warp, path_warp in enumerate(fname_warp_list):
            # Check if inverse matrix is specified with '-' at the beginning of file name
            if path_warp.startswith("-"):
                use_inverse.append('-i')
                fname_warp_list[idx_warp] = path_warp[1:]  # remove '-'
                fname_warp_list_invert += [[use_inverse[idx_warp], fname_warp_list[idx_warp]]]
            else:
                use_inverse.append('')
                fname_warp_list_invert += [[path_warp]]
            path_warp = fname_warp_list[idx_warp]
            if path_warp.endswith((".nii", ".nii.gz")) \
             and msct_image.Image(fname_warp_list[idx_warp]).header.get_intent()[0] != 'vector':
                raise ValueError("Displacement field in {} is invalid: should be encoded" \
                 " in a 5D file with vector intent code" \
                 " (see https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h" \
                 .format(path_warp))
        # need to check if last warping field is an affine transfo
        isLastAffine = False
        path_fname, file_fname, ext_fname = sct.extract_fname(fname_warp_list_invert[-1][-1])
        if ext_fname in ['.txt', '.mat']:
            isLastAffine = True

        # check if destination file is 3d
        if not sct.check_if_3d(fname_dest):
            sct.printv('ERROR: Destination data must be 3d')

        # N.B. Here we take the inverse of the warp list, because sct_WarpImageMultiTransform concatenates in the reverse order
        fname_warp_list_invert.reverse()
        fname_warp_list_invert = functools.reduce(lambda x,y: x+y, fname_warp_list_invert)

        # Extract path, file and extension
        path_src, file_src, ext_src = sct.extract_fname(fname_src)
        path_dest, file_dest, ext_dest = sct.extract_fname(fname_dest)

        # Get output folder and file name
        if fname_out == '':
            path_out = ''  # output in user's current directory
            file_out = file_src + '_reg'
            ext_out = ext_src
            fname_out = os.path.join(path_out, file_out + ext_out)

        # Get dimensions of data
        sct.printv('\nGet dimensions of data...', verbose)
        img_src = msct_image.Image(fname_src)
        nx, ny, nz, nt, px, py, pz, pt = img_src.dim
        # nx, ny, nz, nt, px, py, pz, pt = sct.get_dimension(fname_src)
        sct.printv('  ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), verbose)

        # if 3d
        if nt == 1:
            # Apply transformation
            sct.printv('\nApply transformation...', verbose)
            if nz in [0, 1]:
                dim = '2'
            else:
                dim = '3'
            sct.run(['isct_antsApplyTransforms',
              '-d', dim,
              '-i', fname_src,
              '-o', fname_out,
              '-t',
             ] + fname_warp_list_invert + [
             '-r', fname_dest,
             ] + interp, verbose=verbose, is_sct_binary=True)

        # if 4d, loop across the T dimension
        else:
            path_tmp = sct.tmp_create(basename="apply_transfo", verbose=verbose)

            # convert to nifti into temp folder
            sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose)
            img_src.save(os.path.join(path_tmp, "data.nii"))
            sct.copy(fname_dest, os.path.join(path_tmp, file_dest + ext_dest))
            fname_warp_list_tmp = []
            for fname_warp in fname_warp_list:
                path_warp, file_warp, ext_warp = sct.extract_fname(fname_warp)
                sct.copy(fname_warp, os.path.join(path_tmp, file_warp + ext_warp))
                fname_warp_list_tmp.append(file_warp + ext_warp)
            fname_warp_list_invert_tmp = fname_warp_list_tmp[::-1]

            curdir = os.getcwd()
            os.chdir(path_tmp)

            # split along T dimension
            sct.printv('\nSplit along T dimension...', verbose)

            im_dat = msct_image.Image('data.nii')
            im_header = im_dat.hdr
            data_split_list = sct_image.split_data(im_dat, 3)
            for im in data_split_list:
                im.save()

            # apply transfo
            sct.printv('\nApply transformation to each 3D volume...', verbose)
            for it in range(nt):
                file_data_split = 'data_T' + str(it).zfill(4) + '.nii'
                file_data_split_reg = 'data_reg_T' + str(it).zfill(4) + '.nii'

                status, output = sct.run(['isct_antsApplyTransforms',
                  '-d', '3',
                  '-i', file_data_split,
                  '-o', file_data_split_reg,
                  '-t',
                 ] + fname_warp_list_invert_tmp + [
                  '-r', file_dest + ext_dest,
                 ] + interp, verbose, is_sct_binary=True)

            # Merge files back
            sct.printv('\nMerge file back...', verbose)
            import glob
            path_out, name_out, ext_out = sct.extract_fname(fname_out)
            # im_list = [Image(file_name) for file_name in glob.glob('data_reg_T*.nii')]
            # concat_data use to take a list of image in input, now takes a list of file names to open the files one by one (see issue #715)
            fname_list = glob.glob('data_reg_T*.nii')
            fname_list.sort()
            im_out = sct_image.concat_data(fname_list, 3, im_header['pixdim'])
            im_out.save(name_out + ext_out)

            os.chdir(curdir)
            sct.generate_output_file(os.path.join(path_tmp, name_out + ext_out), fname_out)
            # Delete temporary folder if specified
            if int(remove_temp_files):
                sct.printv('\nRemove temporary files...', verbose)
                sct.rmtree(path_tmp, verbose=verbose)

        # 2. crop the resulting image using dimensions from the warping field
        warping_field = fname_warp_list_invert[-1]
        # if last warping field is an affine transfo, we need to compute the space of the concatenate warping field:
        if isLastAffine:
            sct.printv('WARNING: the resulting image could have wrong apparent results. You should use an affine transformation as last transformation...', verbose, 'warning')
        elif crop_reference == 1:
            ImageCropper(input_file=fname_out, output_file=fname_out, ref=warping_field, background=0).crop()
            # sct.run('sct_crop_image -i '+fname_out+' -o '+fname_out+' -ref '+warping_field+' -b 0')
        elif crop_reference == 2:
            ImageCropper(input_file=fname_out, output_file=fname_out, ref=warping_field).crop()
            # sct.run('sct_crop_image -i '+fname_out+' -o '+fname_out+' -ref '+warping_field)

        sct.display_viewer_syntax([fname_dest, fname_out], verbose=verbose)
コード例 #34
0
def main():

    # Initialization
    fname_anat = ''
    fname_centerline = ''
    gapxy = param.gapxy
    gapz = param.gapz
    padding = param.padding
    centerline_fitting = param.fitting_method
    remove_temp_files = param.remove_temp_files
    verbose = param.verbose
    interpolation_warp = param.interpolation_warp

    # get path of the toolbox
    path_sct = os.environ.get("SCT_DIR",
                              os.path.dirname(os.path.dirname(__file__)))
    print path_sct
    # extract path of the script
    path_script = os.path.dirname(__file__) + '/'

    # Parameters for debug mode
    if param.debug == 1:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        # fname_anat = path_sct+'/testing/data/errsm_23/t2/t2.nii.gz'
        # fname_centerline = path_sct+'/testing/data/errsm_23/t2/t2_segmentation_PropSeg.nii.gz'
        fname_anat = '/home/django/jtouati/data/cover_z_slices/errsm13_t2.nii.gz'
        fname_centerline = '/home/django/jtouati/data/cover_z_slices/segmentation_centerline_binary.nii.gz'
        remove_temp_files = 0
        centerline_fitting = 'splines'
        import matplotlib.pyplot as plt
        from mpl_toolkits.mplot3d import Axes3D
        verbose = 2

    # Check input param
    try:
        opts, args = getopt.getopt(sys.argv[1:], 'hi:c:r:w:f:v:')
    except getopt.GetoptError as err:
        print str(err)
        usage()
    for opt, arg in opts:
        if opt == '-h':
            usage()
        elif opt in ('-i'):
            fname_anat = arg
        elif opt in ('-c'):
            fname_centerline = arg
        elif opt in ('-r'):
            remove_temp_files = int(arg)
        elif opt in ('-w'):
            interpolation_warp = str(arg)
        elif opt in ('-f'):
            centerline_fitting = str(arg)
        elif opt in ('-v'):
            verbose = int(arg)

    # display usage if a mandatory argument is not provided
    if fname_anat == '' or fname_centerline == '':
        usage()

    # Display usage if optional arguments are not correctly provided
    if centerline_fitting == '':
        centerline_fitting = 'splines'
    elif not centerline_fitting == '' and not centerline_fitting == 'splines' and not centerline_fitting == 'polynomial':
        print '\n \n -f argument is not valid \n \n'
        usage()

    # check existence of input files
    sct.check_file_exist(fname_anat)
    sct.check_file_exist(fname_centerline)

    # check interp method
    if interpolation_warp == 'spline':
        interpolation_warp_ants = '--use-BSpline'
    elif interpolation_warp == 'trilinear':
        interpolation_warp_ants = ''
    elif interpolation_warp == 'nearestneighbor':
        interpolation_warp_ants = '--use-NN'
    else:
        print '\WARNING: Interpolation method not recognized. Using: ' + param.interpolation_warp
        interpolation_warp_ants = '--use-BSpline'

    # Display arguments
    print '\nCheck input arguments...'
    print '  Input volume ...................... ' + fname_anat
    print '  Centerline ........................ ' + fname_centerline
    print '  Centerline fitting option ......... ' + centerline_fitting
    print '  Final interpolation ............... ' + interpolation_warp
    print '  Verbose ........................... ' + str(verbose)
    print ''

    # if verbose 2, import matplotlib
    if verbose == 2:
        import matplotlib.pyplot as plt

    # Extract path/file/extension
    path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat)
    path_centerline, file_centerline, ext_centerline = sct.extract_fname(
        fname_centerline)

    path_tmp = sct.tmp_create(basename="straighten", verbose=verbose)

    # copy files into tmp folder
    sct.run('cp ' + fname_anat + ' ' + path_tmp)
    sct.run('cp ' + fname_centerline + ' ' + path_tmp)

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Open centerline
    #==========================================================================================
    # Change orientation of the input centerline into RPI
    print '\nOrient centerline to RPI orientation...'
    fname_centerline_orient = 'tmp.centerline_rpi' + ext_centerline
    sct.run('sct_orientation -i ' + file_centerline + ext_centerline + ' -o ' +
            fname_centerline_orient + ' -orientation RPI')

    print '\nGet dimensions of input centerline...'
    nx, ny, nz, nt, px, py, pz, pt = sct.get_dimension(fname_centerline_orient)
    print '.. matrix size: ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz)
    print '.. voxel size:  ' + str(px) + 'mm x ' + str(py) + 'mm x ' + str(
        pz) + 'mm'

    print '\nOpen centerline volume...'
    file = nibabel.load(fname_centerline_orient)
    data = file.get_data()

    # loop across z and associate x,y coordinate with the point having maximum intensity
    x_centerline = [0 for iz in range(0, nz, 1)]
    y_centerline = [0 for iz in range(0, nz, 1)]
    z_centerline = [iz for iz in range(0, nz, 1)]
    x_centerline_deriv = [0 for iz in range(0, nz, 1)]
    y_centerline_deriv = [0 for iz in range(0, nz, 1)]
    z_centerline_deriv = [0 for iz in range(0, nz, 1)]

    # Two possible scenario:
    # 1. the centerline is probabilistic: each slice contains voxels with the probability of containing the centerline [0:...:1]
    # We only take the maximum value of the image to aproximate the centerline.
    # 2. The centerline/segmentation image contains many pixels per slice with values {0,1}.
    # We take all the points and approximate the centerline on all these points.
    #
    # x_seg_start, y_seg_start = (data[:,:,0]>0).nonzero()
    # x_seg_end, y_seg_end = (data[:,:,-1]>0).nonzero()
    # REMOVED: 2014-07-18
    # check if centerline covers all the image
    #    if len(x_seg_start)==0 or len(x_seg_end)==0:
    #        print '\nERROR: centerline/segmentation must cover all "z" slices of the input image.\n' \
    #              'To solve the problem, you need to crop the input image (you can use \'sct_crop_image\') and generate one' \
    #              'more time the spinal cord centerline/segmentation from this cropped image.\n'
    #        usage()
    #
    # X, Y, Z = ((data<1)*(data>0)).nonzero() # X is empty if binary image
    # if (len(X) > 0): # Scenario 1
    #     for iz in range(0, nz, 1):
    #         x_centerline[iz], y_centerline[iz] = numpy.unravel_index(data[:,:,iz].argmax(), data[:,:,iz].shape)
    # else: # Scenario 2
    #     for iz in range(0, nz, 1):
    #         print (data[:,:,iz]>0).nonzero()
    #         x_seg, y_seg = (data[:,:,iz]>0).nonzero()
    #         x_centerline[iz] = numpy.mean(x_seg)
    #         y_centerline[iz] = numpy.mean(y_seg)
    # # TODO: find a way to do the previous loop with this, which is more neat:
    # # [numpy.unravel_index(data[:,:,iz].argmax(), data[:,:,iz].shape) for iz in range(0,nz,1)]

    # get center of mass of the centerline/segmentation
    print '\nGet center of mass of the centerline/segmentation...'
    for iz in range(0, nz, 1):
        x_centerline[iz], y_centerline[
            iz] = ndimage.measurements.center_of_mass(
                numpy.array(data[:, :, iz]))

    #print len(x_centerline),len(y_centerline)
    #print len((numpy.array(x_centerline)>=0).nonzero()[0]),len((numpy.array(y_centerline)>=0).nonzero()[0])

    x_seg_start, y_seg_start = (data[:, :, 0] > 0).nonzero()
    x_seg_end, y_seg_end = (data[:, :, -1] > 0).nonzero()

    #check if centerline covers all the image
    if len(x_seg_start) == 0 or len(x_seg_end) == 0:
        sct.printv(
            '\nWARNING : the centerline/segmentation you gave does not cover all "z" slices of the input image. Results should be improved if you crop the input image (you can use \'sct_crop_image\') and generate a new spinalcord centerline/segmentation from this cropped image.\n',
            1, 'warning')
        # print '\nWARNING : the centerline/segmentation you gave does not cover all "z" slices of the input image.\n' \
        #       'Results should be improved if you crop the input image (you can use \'sct_crop_image\') and generate\n'\
        #       'a new spinalcord centerline/segmentation from this cropped image.\n'
        #print len((numpy.array(x_centerline)>=0).nonzero()[0]),len((numpy.array(y_centerline)>=0).nonzero()[0])
        min_centerline = min((numpy.array(x_centerline) >= 0).nonzero()[0])
        max_centerline = max((numpy.array(x_centerline) >= 0).nonzero()[0])
        z_centerline = z_centerline[(min_centerline):(max_centerline + 1)]
        #print len(z_centerline)
        nz = len(z_centerline)
        x_centerline = [x for x in x_centerline if not isnan(x)]
        y_centerline = [y for y in y_centerline if not isnan(y)]
        #print len(x_centerline),len(y_centerline)

    # clear variable
    del data

    # Fit the centerline points with the kind of curve given as argument of the script and return the new fitted coordinates
    if centerline_fitting == 'splines':
        x_centerline_fit, y_centerline_fit, x_centerline_deriv, y_centerline_deriv, z_centerline_deriv = msct_smooth.b_spline_nurbs(
            x_centerline, y_centerline, z_centerline, path_qc=curdir)
        #x_centerline_fit, y_centerline_fit, x_centerline_deriv, y_centerline_deriv, z_centerline_deriv = b_spline_centerline(x_centerline,y_centerline,z_centerline)
    elif centerline_fitting == 'polynomial':
        x_centerline_fit, y_centerline_fit, polyx, polyy = polynome_centerline(
            x_centerline, y_centerline, z_centerline)
        #numpy.interp([i for i in xrange(0,min_centerline+1)],
        #y_centerline_fit

    #print z_centerline

    if verbose == 2:
        # plot centerline
        ax = plt.subplot(1, 2, 1)
        plt.plot(x_centerline, z_centerline, 'b:', label='centerline')
        plt.plot(x_centerline_fit, z_centerline, 'r-', label='fit')
        plt.xlabel('x')
        plt.ylabel('z')
        ax = plt.subplot(1, 2, 2)
        plt.plot(y_centerline, z_centerline, 'b:', label='centerline')
        plt.plot(y_centerline_fit, z_centerline, 'r-', label='fit')
        plt.xlabel('y')
        plt.ylabel('z')
        handles, labels = ax.get_legend_handles_labels()
        ax.legend(handles, labels)
        plt.show()

    # Get coordinates of landmarks along curved centerline
    #==========================================================================================
    print '\nGet coordinates of landmarks along curved centerline...'
    # landmarks are created along the curved centerline every z=gapz. They consist of a "cross" of size gapx and gapy.
    # find derivative of polynomial
    step_z = round(nz / gapz)
    #iz_curved = [i for i in range (0, nz, gapz)]
    iz_curved = [(min(z_centerline) + i * step_z) for i in range(0, gapz)]
    iz_curved.append(max(z_centerline))
    #print iz_curved, len(iz_curved)
    n_iz_curved = len(iz_curved)
    #print n_iz_curved
    landmark_curved = [[[0 for i in range(0, 3)] for i in range(0, 5)]
                       for i in iz_curved]
    # print x_centerline_deriv,len(x_centerline_deriv)
    # landmark[a][b][c]
    #   a: index along z. E.g., the first cross with have index=0, the next index=1, and so on...
    #   b: index of element on the cross. I.e., 0: center of the cross, 1: +x, 2 -x, 3: +y, 4: -y
    #   c: dimension, i.e., 0: x, 1: y, 2: z
    # loop across index, which corresponds to iz (points along the centerline)

    if centerline_fitting == 'polynomial':
        for index in range(0, n_iz_curved, 1):
            # set coordinates for landmark at the center of the cross
            landmark_curved[index][0][0], landmark_curved[index][0][
                1], landmark_curved[index][0][2] = x_centerline_fit[
                    iz_curved[index]], y_centerline_fit[
                        iz_curved[index]], iz_curved[index]
            # set x and z coordinates for landmarks +x and -x
            landmark_curved[index][1][2], landmark_curved[index][1][
                0], landmark_curved[index][2][2], landmark_curved[index][2][
                    0] = get_points_perpendicular_to_curve(
                        polyx, polyx.deriv(), iz_curved[index], gapxy)
            # set y coordinate to y_centerline_fit[iz] for elements 1 and 2 of the cross
            for i in range(1, 3):
                landmark_curved[index][i][1] = y_centerline_fit[
                    iz_curved[index]]
            # set coordinates for landmarks +y and -y. Here, x coordinate is 0 (already initialized).
            landmark_curved[index][3][2], landmark_curved[index][3][
                1], landmark_curved[index][4][2], landmark_curved[index][4][
                    1] = get_points_perpendicular_to_curve(
                        polyy, polyy.deriv(), iz_curved[index], gapxy)
            # set x coordinate to x_centerline_fit[iz] for elements 3 and 4 of the cross
            for i in range(3, 5):
                landmark_curved[index][i][0] = x_centerline_fit[
                    iz_curved[index]]

    elif centerline_fitting == 'splines':
        for index in range(0, n_iz_curved, 1):
            # calculate d (ax+by+cz+d=0)
            # print iz_curved[index]
            a = x_centerline_deriv[iz_curved[index] - min(z_centerline)]
            b = y_centerline_deriv[iz_curved[index] - min(z_centerline)]
            c = z_centerline_deriv[iz_curved[index] - min(z_centerline)]
            x = x_centerline_fit[iz_curved[index] - min(z_centerline)]
            y = y_centerline_fit[iz_curved[index] - min(z_centerline)]
            z = iz_curved[index]
            d = -(a * x + b * y + c * z)
            #print a,b,c,d,x,y,z
            # set coordinates for landmark at the center of the cross
            landmark_curved[index][0][0], landmark_curved[index][0][
                1], landmark_curved[index][0][2] = x_centerline_fit[
                    iz_curved[index] - min(z_centerline)], y_centerline_fit[
                        iz_curved[index] - min(z_centerline)], iz_curved[index]

            # set y coordinate to y_centerline_fit[iz] for elements 1 and 2 of the cross
            for i in range(1, 3):
                landmark_curved[index][i][1] = y_centerline_fit[
                    iz_curved[index] - min(z_centerline)]

            # set x and z coordinates for landmarks +x and -x, forcing de landmark to be in the orthogonal plan and the distance landmark/curve to be gapxy
            x_n = Symbol('x_n')
            landmark_curved[index][2][0], landmark_curved[index][1][0] = solve(
                (x_n - x)**2 + ((-1 / c) * (a * x_n + b * y + d) - z)**2 -
                gapxy**2, x_n)  #x for -x and +x
            landmark_curved[index][1][2] = (-1 / c) * (
                a * landmark_curved[index][1][0] + b * y + d)  #z for +x
            landmark_curved[index][2][2] = (-1 / c) * (
                a * landmark_curved[index][2][0] + b * y + d)  #z for -x

            # set x coordinate to x_centerline_fit[iz] for elements 3 and 4 of the cross
            for i in range(3, 5):
                landmark_curved[index][i][0] = x_centerline_fit[
                    iz_curved[index] - min(z_centerline)]

            # set coordinates for landmarks +y and -y. Here, x coordinate is 0 (already initialized).
            y_n = Symbol('y_n')
            landmark_curved[index][4][1], landmark_curved[index][3][1] = solve(
                (y_n - y)**2 + ((-1 / c) * (a * x + b * y_n + d) - z)**2 -
                gapxy**2, y_n)  #y for -y and +y
            landmark_curved[index][3][2] = (-1 / c) * (
                a * x + b * landmark_curved[index][3][1] + d)  #z for +y
            landmark_curved[index][4][2] = (-1 / c) * (
                a * x + b * landmark_curved[index][4][1] + d)  #z for -y

#    #display
#    fig = plt.figure()
#    ax = fig.add_subplot(111, projection='3d')
#    ax.plot(x_centerline_fit, y_centerline_fit,z_centerline, 'g')
#    ax.plot(x_centerline, y_centerline,z_centerline, 'r')
#    ax.plot([landmark_curved[i][j][0] for i in range(0, n_iz_curved) for j in range(0, 5)], \
#           [landmark_curved[i][j][1] for i in range(0, n_iz_curved) for j in range(0, 5)], \
#           [landmark_curved[i][j][2] for i in range(0, n_iz_curved) for j in range(0, 5)], '.')
#    ax.set_xlabel('x')
#    ax.set_ylabel('y')
#    ax.set_zlabel('z')
#    plt.show()

# Get coordinates of landmarks along straight centerline
#==========================================================================================
    print '\nGet coordinates of landmarks along straight centerline...'
    landmark_straight = [[[0 for i in range(0, 3)] for i in range(0, 5)]
                         for i in iz_curved
                         ]  # same structure as landmark_curved

    # calculate the z indices corresponding to the Euclidean distance between two consecutive points on the curved centerline (approximation curve --> line)
    iz_straight = [(min(z_centerline) + 0) for i in range(0, gapz + 1)]
    #print iz_straight,len(iz_straight)
    for index in range(1, n_iz_curved, 1):
        # compute vector between two consecutive points on the curved centerline
        vector_centerline = [x_centerline_fit[iz_curved[index]-min(z_centerline)] - x_centerline_fit[iz_curved[index-1]-min(z_centerline)], \
                             y_centerline_fit[iz_curved[index]-min(z_centerline)] - y_centerline_fit[iz_curved[index-1]-min(z_centerline)], \
                             iz_curved[index] - iz_curved[index-1]]
        # compute norm of this vector
        norm_vector_centerline = numpy.linalg.norm(vector_centerline, ord=2)
        # round to closest integer value
        norm_vector_centerline_rounded = int(round(norm_vector_centerline, 0))
        # assign this value to the current z-coordinate on the straight centerline
        iz_straight[index] = iz_straight[index -
                                         1] + norm_vector_centerline_rounded

    # initialize x0 and y0 to be at the center of the FOV
    x0 = int(round(nx / 2))
    y0 = int(round(ny / 2))
    for index in range(0, n_iz_curved, 1):
        # set coordinates for landmark at the center of the cross
        landmark_straight[index][0][0], landmark_straight[index][0][
            1], landmark_straight[index][0][2] = x0, y0, iz_straight[index]
        # set x, y and z coordinates for landmarks +x
        landmark_straight[index][1][0], landmark_straight[index][1][
            1], landmark_straight[index][1][2] = x0 + gapxy, y0, iz_straight[
                index]
        # set x, y and z coordinates for landmarks -x
        landmark_straight[index][2][0], landmark_straight[index][2][
            1], landmark_straight[index][2][2] = x0 - gapxy, y0, iz_straight[
                index]
        # set x, y and z coordinates for landmarks +y
        landmark_straight[index][3][0], landmark_straight[index][3][
            1], landmark_straight[index][3][2] = x0, y0 + gapxy, iz_straight[
                index]
        # set x, y and z coordinates for landmarks -y
        landmark_straight[index][4][0], landmark_straight[index][4][
            1], landmark_straight[index][4][2] = x0, y0 - gapxy, iz_straight[
                index]

    # # display
    # fig = plt.figure()
    # ax = fig.add_subplot(111, projection='3d')
    # #ax.plot(x_centerline_fit, y_centerline_fit,z_centerline, 'r')
    # ax.plot([landmark_straight[i][j][0] for i in range(0, n_iz_curved) for j in range(0, 5)], \
    #        [landmark_straight[i][j][1] for i in range(0, n_iz_curved) for j in range(0, 5)], \
    #        [landmark_straight[i][j][2] for i in range(0, n_iz_curved) for j in range(0, 5)], '.')
    # ax.set_xlabel('x')
    # ax.set_ylabel('y')
    # ax.set_zlabel('z')
    # plt.show()
    #

    # Create NIFTI volumes with landmarks
    #==========================================================================================
    # Pad input volume to deal with the fact that some landmarks on the curved centerline might be outside the FOV
    # N.B. IT IS VERY IMPORTANT TO PAD ALSO ALONG X and Y, OTHERWISE SOME LANDMARKS MIGHT GET OUT OF THE FOV!!!
    print '\nPad input volume to deal with the fact that some landmarks on the curved centerline might be outside the FOV...'
    sct.run('isct_c3d ' + fname_centerline_orient + ' -pad ' + str(padding) +
            'x' + str(padding) + 'x' + str(padding) + 'vox ' + str(padding) +
            'x' + str(padding) + 'x' + str(padding) +
            'vox 0 -o tmp.centerline_pad.nii.gz')

    # TODO: don't pad input volume: no need for that! instead, try to increase size of hdr when saving landmarks.

    # Open padded centerline for reading
    print '\nOpen padded centerline for reading...'
    file = nibabel.load('tmp.centerline_pad.nii.gz')
    data = file.get_data()
    hdr = file.get_header()

    # Create volumes containing curved and straight landmarks
    data_curved_landmarks = data * 0
    data_straight_landmarks = data * 0
    # initialize landmark value
    landmark_value = 1
    # Loop across cross index
    for index in range(0, n_iz_curved, 1):
        # loop across cross element index
        for i_element in range(0, 5, 1):
            # get x, y and z coordinates of curved landmark (rounded to closest integer)
            x, y, z = int(round(landmark_curved[index][i_element][0])), int(
                round(landmark_curved[index][i_element][1])), int(
                    round(landmark_curved[index][i_element][2]))
            # attribute landmark_value to the voxel and its neighbours
            data_curved_landmarks[x + padding - 1:x + padding + 2,
                                  y + padding - 1:y + padding + 2, z +
                                  padding - 1:z + padding + 2] = landmark_value
            # get x, y and z coordinates of straight landmark (rounded to closest integer)
            x, y, z = int(round(landmark_straight[index][i_element][0])), int(
                round(landmark_straight[index][i_element][1])), int(
                    round(landmark_straight[index][i_element][2]))
            # attribute landmark_value to the voxel and its neighbours
            data_straight_landmarks[x + padding - 1:x + padding + 2,
                                    y + padding - 1:y + padding + 2,
                                    z + padding - 1:z + padding +
                                    2] = landmark_value
            # increment landmark value
            landmark_value = landmark_value + 1

    # Write NIFTI volumes
    hdr.set_data_dtype(
        'uint32')  # set imagetype to uint8 #TODO: maybe use int32
    print '\nWrite NIFTI volumes...'
    img = nibabel.Nifti1Image(data_curved_landmarks, None, hdr)
    nibabel.save(img, 'tmp.landmarks_curved.nii.gz')
    print '.. File created: tmp.landmarks_curved.nii.gz'
    img = nibabel.Nifti1Image(data_straight_landmarks, None, hdr)
    nibabel.save(img, 'tmp.landmarks_straight.nii.gz')
    print '.. File created: tmp.landmarks_straight.nii.gz'

    # Estimate deformation field by pairing landmarks
    #==========================================================================================

    # Dilate landmarks (because nearest neighbour interpolation will be later used, therefore some landmarks may "disapear" if they are single points)
    #print '\nDilate landmarks...'
    #sct.run(fsloutput+'fslmaths tmp.landmarks_curved.nii -kernel box 3x3x3 -dilD tmp.landmarks_curved_dilated -odt short')
    #sct.run(fsloutput+'fslmaths tmp.landmarks_straight.nii -kernel box 3x3x3 -dilD tmp.landmarks_straight_dilated -odt short')

    # Estimate rigid transformation
    print '\nEstimate rigid transformation between paired landmarks...'
    sct.run(
        'isct_ANTSUseLandmarkImagesToGetAffineTransform tmp.landmarks_straight.nii.gz tmp.landmarks_curved.nii.gz rigid tmp.curve2straight_rigid.txt'
    )

    # Apply rigid transformation
    print '\nApply rigid transformation to curved landmarks...'
    sct.run(
        'sct_WarpImageMultiTransform 3 tmp.landmarks_curved.nii.gz tmp.landmarks_curved_rigid.nii.gz -R tmp.landmarks_straight.nii.gz tmp.curve2straight_rigid.txt --use-NN'
    )

    # Estimate b-spline transformation curve --> straight
    print '\nEstimate b-spline transformation: curve --> straight...'
    sct.run(
        'isct_ANTSUseLandmarkImagesToGetBSplineDisplacementField tmp.landmarks_straight.nii.gz tmp.landmarks_curved_rigid.nii.gz tmp.warp_curve2straight.nii.gz 5x5x5 3 2 0'
    )

    # Concatenate rigid and non-linear transformations...
    print '\nConcatenate rigid and non-linear transformations...'
    #sct.run('isct_ComposeMultiTransform 3 tmp.warp_rigid.nii -R tmp.landmarks_straight.nii tmp.warp.nii tmp.curve2straight_rigid.txt')
    # TODO: use sct.run() when output from the following command will be different from 0 (currently there seem to be a bug)
    cmd = 'isct_ComposeMultiTransform 3 tmp.curve2straight.nii.gz -R tmp.landmarks_straight.nii.gz tmp.warp_curve2straight.nii.gz tmp.curve2straight_rigid.txt'
    print('>> ' + cmd)
    sct.run(cmd)

    # Estimate b-spline transformation straight --> curve
    # TODO: invert warping field instead of estimating a new one
    print '\nEstimate b-spline transformation: straight --> curve...'
    sct.run(
        'isct_ANTSUseLandmarkImagesToGetBSplineDisplacementField tmp.landmarks_curved_rigid.nii.gz tmp.landmarks_straight.nii.gz tmp.warp_straight2curve.nii.gz 5x5x5 3 2 0'
    )

    # Concatenate rigid and non-linear transformations...
    print '\nConcatenate rigid and non-linear transformations...'
    #sct.run('isct_ComposeMultiTransform 3 tmp.warp_rigid.nii -R tmp.landmarks_straight.nii tmp.warp.nii tmp.curve2straight_rigid.txt')
    # TODO: use sct.run() when output from the following command will be different from 0 (currently there seem to be a bug)
    cmd = 'isct_ComposeMultiTransform 3 tmp.straight2curve.nii.gz -R tmp.landmarks_straight.nii.gz -i tmp.curve2straight_rigid.txt tmp.warp_straight2curve.nii.gz'
    print('>> ' + cmd)
    sct.run(cmd)

    #print '\nPad input image...'
    #sct.run('isct_c3d '+fname_anat+' -pad '+str(padz)+'x'+str(padz)+'x'+str(padz)+'vox '+str(padz)+'x'+str(padz)+'x'+str(padz)+'vox 0 -o tmp.anat_pad.nii')

    # Unpad landmarks...
    # THIS WAS REMOVED ON 2014-06-03 because the output data was cropped at the edge, which caused landmarks to sometimes disappear
    # print '\nUnpad landmarks...'
    # sct.run('fslroi tmp.landmarks_straight.nii.gz tmp.landmarks_straight_crop.nii.gz '+str(padding)+' '+str(nx)+' '+str(padding)+' '+str(ny)+' '+str(padding)+' '+str(nz))

    # Apply deformation to input image
    print '\nApply transformation to input image...'
    sct.run('sct_WarpImageMultiTransform 3 ' + file_anat + ext_anat +
            ' tmp.anat_rigid_warp.nii.gz -R tmp.landmarks_straight.nii.gz ' +
            interpolation_warp + ' tmp.curve2straight.nii.gz')
    # sct.run('sct_WarpImageMultiTransform 3 '+fname_anat+' tmp.anat_rigid_warp.nii.gz -R tmp.landmarks_straight_crop.nii.gz '+interpolation_warp+ ' tmp.curve2straight.nii.gz')

    # come back
    os.chdir(curdir)

    # Generate output file (in current folder)
    # TODO: do not uncompress the warping field, it is too time consuming!
    print '\nGenerate output file (in current folder)...'
    sct.generate_output_file(path_tmp + '/tmp.curve2straight.nii.gz', '',
                             'warp_curve2straight', '.nii.gz')  # warping field
    sct.generate_output_file(path_tmp + '/tmp.straight2curve.nii.gz', '',
                             'warp_straight2curve', '.nii.gz')  # warping field
    sct.generate_output_file(path_tmp + '/tmp.anat_rigid_warp.nii.gz', '',
                             file_anat + '_straight',
                             ext_anat)  # straightened anatomic

    # Remove temporary files
    if remove_temp_files == 1:
        print('\nRemove temporary files...')
        sct.run('rm -rf ' + path_tmp)

    print '\nDone!\n'
コード例 #35
0
def test_function(param_test):
    """

    Parameters
    ----------
    file_testing

    Returns
    -------
    path_output str: path where to output testing data
    """

    # load modules of function to test
    module_function_to_test = importlib.import_module(
        param_test.function_to_test)
    module_testing = importlib.import_module('test_' +
                                             param_test.function_to_test)

    # retrieve subject name
    subject_folder = os.path.basename(param_test.path_data)

    # build path_output variable
    path_testing = os.getcwd()

    if not param_test.path_output:
        param_test.path_output = sct.tmp_create(
            basename=(param_test.function_to_test + '_' + subject_folder),
            verbose=0)
    elif not os.path.isdir(param_test.path_output):
        os.makedirs(param_test.path_output)

    # get parser information
    parser = module_function_to_test.get_parser()
    if '-ofolder' in parser.options and '-ofolder' not in param_test.args:
        param_test.args += " -ofolder " + param_test.path_output

    dict_args = parser.parse(shlex.split(param_test.args),
                             check_file_exist=False)
    # TODO: if file in list does not exist, raise exception and assign status=200
    # add data path to each input argument
    dict_args_with_path = parser.add_path_to_file(copy.deepcopy(dict_args),
                                                  param_test.path_data,
                                                  input_file=True)
    # add data path to each output argument
    dict_args_with_path = parser.add_path_to_file(
        copy.deepcopy(dict_args_with_path),
        param_test.path_output,
        input_file=False,
        output_file=True)
    # save into class
    param_test.dict_args_with_path = dict_args_with_path
    param_test.args_with_path = parser.dictionary_to_string(
        dict_args_with_path)

    # initialize panda dataframe
    param_test.results = DataFrame(index=[subject_folder],
                                   data={
                                       'status': 0,
                                       'duration': 0,
                                       'output': '',
                                       'path_data': param_test.path_data,
                                       'path_output': param_test.path_output
                                   })

    # retrieve input file (will be used later for integrity testing)
    if '-i' in dict_args:
        # check if list in case of multiple input files
        if not isinstance(dict_args_with_path['-i'], list):
            list_file_to_check = [dict_args_with_path['-i']]
            # assign field file_input for integrity testing
            param_test.file_input = dict_args['-i'].split('/')[-1]
            # update index of dataframe by appending file name for more clarity
            param_test.results = param_test.results.rename({
                subject_folder:
                os.path.join(subject_folder, dict_args['-i'])
            })
        else:
            list_file_to_check = dict_args_with_path['-i']
            # TODO: assign field file_input for integrity testing
        for file_to_check in list_file_to_check:
            # file_input = file_to_check.split('/')[1]
            # Check if input files exist
            if not (os.path.isfile(file_to_check)):
                param_test.status = 200
                param_test.output += '\nERROR: This input file does not exist: ' + file_to_check
                return update_param(param_test)

    # retrieve ground truth (will be used later for integrity testing)
    if '-igt' in dict_args:
        param_test.fname_gt = dict_args_with_path['-igt']
        # Check if ground truth files exist
        if not os.path.isfile(param_test.fname_gt):
            param_test.status = 201
            param_test.output += '\nERROR: The following file used for ground truth does not exist: ' + param_test.fname_gt
            return update_param(param_test)

    # run command
    cmd = param_test.function_to_test + param_test.args_with_path
    param_test.output += '\nWill run in %s:' % (os.path.join(
        path_testing, param_test.path_output))
    param_test.output += '\n====================================================================================================\n' + cmd + '\n====================================================================================================\n\n'  # copy command
    time_start = time.time()
    try:
        os.chdir(param_test.path_output)
        if not os.path.exists(param_test.path_output):
            # in case of relative path, we want a subfolder too
            os.makedirs(param_test.path_output)
        os.chdir(path_testing)
        param_test.status, o = sct.run(cmd,
                                       cwd=param_test.path_output,
                                       verbose=0)
        if param_test.status:
            raise Exception
    except Exception as err:
        param_test.status = 1
        param_test.output += str(err)
        return update_param(param_test)

    param_test.output += o
    param_test.results['duration'] = time.time() - time_start

    # test integrity
    if param_test.test_integrity:
        param_test.output += '\n\n====================================================================================================\n' + 'INTEGRITY TESTING' + '\n====================================================================================================\n\n'  # copy command
        try:
            os.chdir(param_test.path_output)
            param_test = module_testing.test_integrity(param_test)
            os.chdir(path_testing)
        except Exception as err:
            os.chdir(path_testing)
            param_test.status = 2
            param_test.output += str(err)
            return update_param(param_test)

    return update_param(param_test)
コード例 #36
0
def main(args=None):

    # initializations
    initz = ''
    initcenter = ''
    fname_initlabel = ''
    file_labelz = 'labelz.nii.gz'
    param = Param()

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(args)
    fname_in = os.path.abspath(arguments["-i"])
    fname_seg = os.path.abspath(arguments['-s'])
    contrast = arguments['-c']
    path_template = arguments['-t']
    scale_dist = arguments['-scale-dist']
    if '-ofolder' in arguments:
        path_output = arguments['-ofolder']
    else:
        path_output = os.curdir
    param.path_qc = arguments.get("-qc", None)
    if '-discfile' in arguments:
        fname_disc = os.path.abspath(arguments['-discfile'])
    else:
        fname_disc = None
    if '-initz' in arguments:
        initz = arguments['-initz']
    if '-initcenter' in arguments:
        initcenter = arguments['-initcenter']
    # if user provided text file, parse and overwrite arguments
    if '-initfile' in arguments:
        file = open(arguments['-initfile'], 'r')
        initfile = ' ' + file.read().replace('\n', '')
        arg_initfile = initfile.split(' ')
        for idx_arg, arg in enumerate(arg_initfile):
            if arg == '-initz':
                initz = [int(x) for x in arg_initfile[idx_arg + 1].split(',')]
            if arg == '-initcenter':
                initcenter = int(arg_initfile[idx_arg + 1])
    if '-initlabel' in arguments:
        # get absolute path of label
        fname_initlabel = os.path.abspath(arguments['-initlabel'])
    if '-param' in arguments:
        param.update(arguments['-param'][0])
    verbose = int(arguments.get('-v'))
    sct.init_sct(log_level=verbose, update=True)  # Update log level
    remove_temp_files = int(arguments['-r'])
    denoise = int(arguments['-denoise'])
    laplacian = int(arguments['-laplacian'])

    path_tmp = sct.tmp_create(basename="label_vertebrae", verbose=verbose)

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder...', verbose)
    Image(fname_in).save(os.path.join(path_tmp, "data.nii"))
    Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii"))

    # Go go temp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Straighten spinal cord
    sct.printv('\nStraighten spinal cord...', verbose)
    # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
    cache_sig = sct.cache_signature(
     input_files=[fname_in, fname_seg],
    )
    cachefile = os.path.join(curdir, "straightening.cache")
    if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(os.path.join(curdir, "warp_curve2straight.nii.gz")) and os.path.isfile(os.path.join(curdir, "warp_straight2curve.nii.gz")) and os.path.isfile(os.path.join(curdir, "straight_ref.nii.gz")):
        # if they exist, copy them into current folder
        sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning')
        sct.copy(os.path.join(curdir, "warp_curve2straight.nii.gz"), 'warp_curve2straight.nii.gz')
        sct.copy(os.path.join(curdir, "warp_straight2curve.nii.gz"), 'warp_straight2curve.nii.gz')
        sct.copy(os.path.join(curdir, "straight_ref.nii.gz"), 'straight_ref.nii.gz')
        # apply straightening
        s, o = sct.run(['sct_apply_transfo', '-i', 'data.nii', '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'data_straight.nii'])
    else:
        cmd = ['sct_straighten_spinalcord',
               '-i', 'data.nii',
               '-s', 'segmentation.nii',
               '-r', str(remove_temp_files)]
        if param.path_qc is not None and os.environ.get("SCT_RECURSIVE_QC", None) == "1":
            cmd += ['-qc', param.path_qc]
        s, o = sct.run(cmd)
        sct.cache_save(cachefile, cache_sig)

    # resample to 0.5mm isotropic to match template resolution
    sct.printv('\nResample to 0.5mm isotropic...', verbose)
    s, o = sct.run(['sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x', 'linear', '-o', 'data_straightr.nii'], verbose=verbose)

    # Apply straightening to segmentation
    # N.B. Output is RPI
    sct.printv('\nApply straightening to segmentation...', verbose)
    sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
            ('segmentation.nii',
             'data_straightr.nii',
             'warp_curve2straight.nii.gz',
             'segmentation_straight.nii',
             'Linear'),
            verbose=verbose,
            is_sct_binary=True,
           )
    # Threshold segmentation at 0.5
    sct.run(['sct_maths', '-i', 'segmentation_straight.nii', '-thr', '0.5', '-o', 'segmentation_straight.nii'], verbose)

    # If disc label file is provided, label vertebrae using that file instead of automatically
    if fname_disc:
        # Apply straightening to disc-label
        sct.printv('\nApply straightening to disc labels...', verbose)
        sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
                (fname_disc,
                 'data_straightr.nii',
                 'warp_curve2straight.nii.gz',
                 'labeldisc_straight.nii.gz',
                 'NearestNeighbor'),
                 verbose=verbose,
                 is_sct_binary=True,
                )
        label_vert('segmentation_straight.nii', 'labeldisc_straight.nii.gz', verbose=1)

    else:
        # create label to identify disc
        sct.printv('\nCreate label to identify disc...', verbose)
        fname_labelz = os.path.join(path_tmp, file_labelz)
        if initz or initcenter:
            if initcenter:
                # find z centered in FOV
                nii = Image('segmentation.nii').change_orientation("RPI")
                nx, ny, nz, nt, px, py, pz, pt = nii.dim  # Get dimensions
                z_center = int(np.round(nz / 2))  # get z_center
                initz = [z_center, initcenter]
            # create single label and output as labels.nii.gz
            label = ProcessLabels('segmentation.nii', fname_output='tmp.labelz.nii.gz',
                                      coordinates=['{},{}'.format(initz[0], initz[1])])
            im_label = label.process('create-seg')
            im_label.data = sct_maths.dilate(im_label.data, [3])  # TODO: create a dilation method specific to labels,
            # which does not apply a convolution across all voxels (highly inneficient)
            im_label.save(fname_labelz)
        elif fname_initlabel:
            import sct_label_utils
            # subtract "1" to label value because due to legacy, in this code the disc C2-C3 has value "2", whereas in the
            # recent version of SCT it is defined as "3". Therefore, when asking the user to define a label, we point to the
            # new definition of labels (i.e., C2-C3 = 3).
            sct_label_utils.main(['-i', fname_initlabel, '-add', '-1', '-o', fname_labelz])
        else:
            # automatically finds C2-C3 disc
            im_data = Image('data.nii')
            im_seg = Image('segmentation.nii')
            im_label_c2c3 = detect_c2c3(im_data, im_seg, contrast)
            ind_label = np.where(im_label_c2c3.data)
            if not np.size(ind_label) == 0:
                # subtract "1" to label value because due to legacy, in this code the disc C2-C3 has value "2", whereas in the
                # recent version of SCT it is defined as "3".
                im_label_c2c3.data[ind_label] = 2
            else:
                sct.printv('Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils', 1, 'error')
            im_label_c2c3.save(fname_labelz)

        # dilate label so it is not lost when applying warping
        sct_maths.main(['-i', fname_labelz, '-dilate', '3', '-o', fname_labelz])

        # Apply straightening to z-label
        sct.printv('\nAnd apply straightening to label...', verbose)
        sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
                (file_labelz,
                 'data_straightr.nii',
                 'warp_curve2straight.nii.gz',
                 'labelz_straight.nii.gz',
                 'NearestNeighbor'),
                verbose=verbose,
                is_sct_binary=True,
               )
        # get z value and disk value to initialize labeling
        sct.printv('\nGet z and disc values from straight label...', verbose)
        init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz')
        sct.printv('.. ' + str(init_disc), verbose)

        # denoise data
        if denoise:
            sct.printv('\nDenoise data...', verbose)
            sct.run(['sct_maths', '-i', 'data_straightr.nii', '-denoise', 'h=0.05', '-o', 'data_straightr.nii'], verbose)

        # apply laplacian filtering
        if laplacian:
            sct.printv('\nApply Laplacian filter...', verbose)
            sct.run(['sct_maths', '-i', 'data_straightr.nii', '-laplacian', '1', '-o', 'data_straightr.nii'], verbose)

        # detect vertebral levels on straight spinal cord
        vertebral_detection('data_straightr.nii', 'segmentation_straight.nii', contrast, param, init_disc=init_disc,
                            verbose=verbose, path_template=path_template, path_output=path_output, scale_dist=scale_dist)

    # un-straighten labeled spinal cord
    sct.printv('\nUn-straighten labeling...', verbose)
    sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
            ('segmentation_straight_labeled.nii',
             'segmentation.nii',
             'warp_straight2curve.nii.gz',
             'segmentation_labeled.nii',
             'NearestNeighbor'),
            verbose=verbose,
            is_sct_binary=True,
           )
    # Clean labeled segmentation
    sct.printv('\nClean labeled segmentation (correct interpolation errors)...', verbose)
    clean_labeled_segmentation('segmentation_labeled.nii', 'segmentation.nii', 'segmentation_labeled.nii')

    # label discs
    sct.printv('\nLabel discs...', verbose)
    label_discs('segmentation_labeled.nii', verbose=verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    path_seg, file_seg, ext_seg = sct.extract_fname(fname_seg)
    fname_seg_labeled = os.path.join(path_output, file_seg + '_labeled' + ext_seg)
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(os.path.join(path_tmp, "segmentation_labeled.nii"), fname_seg_labeled)
    sct.generate_output_file(os.path.join(path_tmp, "segmentation_labeled_disc.nii"), os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg))
    # copy straightening files in case subsequent SCT functions need them
    sct.generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"), os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose)
    sct.generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"), os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose)
    sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"), os.path.join(path_output, "straight_ref.nii.gz"), verbose)

    # Remove temporary files
    if remove_temp_files == 1:
        sct.printv('\nRemove temporary files...', verbose)
        sct.rmtree(path_tmp)

    # Generate QC report
    if param.path_qc is not None:
        path_qc = os.path.abspath(param.path_qc)
        qc_dataset = arguments.get("-qc-dataset", None)
        qc_subject = arguments.get("-qc-subject", None)
        labeled_seg_file = os.path.join(path_output, file_seg + '_labeled' + ext_seg)
        generate_qc(fname_in, fname_seg=labeled_seg_file, args=args, path_qc=os.path.abspath(path_qc),
                    dataset=qc_dataset, subject=qc_subject, process='sct_label_vertebrae')

    sct.display_viewer_syntax([fname_in, fname_seg_labeled], colormaps=['', 'subcortical'], opacities=['1', '0.5'])
コード例 #37
0
def main(args=None):
    if args is None:
        args = sys.argv[1:]

    # get parser
    parser = get_parser()
    arguments = parser.parse(args)

    if '-d' in arguments:
        param.download = int(arguments['-d'])
    if '-p' in arguments:
        param.path_data = arguments['-p']
    if '-f' in arguments:
        param.function_to_test = arguments['-f']
    if '-r' in arguments:
        param.remove_tmp_file = int(arguments['-r'])

    # path_data = param.path_data
    function_to_test = param.function_to_test

    start_time = time.time()

    # get absolute path and add slash at the end
    param.path_data = sct.slash_at_the_end(os.path.abspath(param.path_data), 1)

    # check existence of testing data folder
    if not os.path.isdir(param.path_data) or param.download:
        downloaddata()

    # display path to data
    sct.printv('\nPath to testing data: ' + param.path_data, param.verbose)

    # create temp folder that will have all results and go in it
    param.path_tmp = sct.tmp_create()
    os.chdir(param.path_tmp)

    # get list of all scripts to test
    functions = fill_functions()
    if function_to_test:
        if not function_to_test in functions:
            sct.printv('Function "%s" is not part of the list of testing functions' % function_to_test, type='warning')
        # loop across all functions and test them
        status = [test_function(f) for f in functions if function_to_test == f]
    else:
        status = [test_function(f) for f in functions]
    sct.printv('status: ' + str(status))

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('Finished! Elapsed time: ' + str(int(round(elapsed_time))) + 's\n')

    # remove temp files
    if param.remove_tmp_file:
        sct.printv('\nRemove temporary files...', param.verbose)
        sct.run('rm -rf ' + param.path_tmp, param.verbose)

    e = 0
    if sum(status) != 0:
        e = 1
    sct.printv(e)

    sys.exit(e)
コード例 #38
0
def main():

    # Initialization
    fname_data = ''
    interp_factor = param.interp_factor
    remove_temp_files = param.remove_temp_files
    verbose = param.verbose
    suffix = param.suffix
    smoothing_sigma = param.smoothing_sigma

    # start timer
    start_time = time.time()

    # Parameters for debug mode
    if param.debug:
        fname_data = os.path.join(sct.__data_dir__, 'sct_testing_data', 't2', 't2_seg.nii.gz')
        remove_temp_files = 0
        param.mask_size = 10
    else:
        # Check input parameters
        try:
            opts, args = getopt.getopt(sys.argv[1:], 'hi:v:r:s:')
        except getopt.GetoptError:
            usage()
        if not opts:
            usage()
        for opt, arg in opts:
            if opt == '-h':
                usage()
            elif opt in ('-i'):
                fname_data = arg
            elif opt in ('-r'):
                remove_temp_files = int(arg)
            elif opt in ('-s'):
                smoothing_sigma = arg
            elif opt in ('-v'):
                verbose = int(arg)

    # display usage if a mandatory argument is not provided
    if fname_data == '':
        usage()

    # sct.printv(arguments)
    sct.printv('\nCheck parameters:')
    sct.printv('  segmentation ........... ' + fname_data)
    sct.printv('  interp factor .......... ' + str(interp_factor))
    sct.printv('  smoothing sigma ........ ' + str(smoothing_sigma))

    # check existence of input files
    sct.printv('\nCheck existence of input files...')
    sct.check_file_exist(fname_data, verbose)

    # Extract path, file and extension
    path_data, file_data, ext_data = sct.extract_fname(fname_data)

    path_tmp = sct.tmp_create(basename="binary_to_trilinear", verbose=verbose)

    from sct_convert import convert
    sct.printv('\nCopying input data to tmp folder and convert to nii...', param.verbose)
    convert(fname_data, os.path.join(path_tmp, "data.nii"))

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Get dimensions of data
    sct.printv('\nGet dimensions of data...', verbose)
    nx, ny, nz, nt, px, py, pz, pt = Image('data.nii').dim
    sct.printv('.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), verbose)

    # upsample data
    sct.printv('\nUpsample data...', verbose)
    sct.run(["sct_resample",
     "-i", "data.nii",
     "-x", "linear",
     "-vox", str(nx * interp_factor) + 'x' + str(ny * interp_factor) + 'x' + str(nz * interp_factor),
     "-o", "data_up.nii"], verbose)

    # Smooth along centerline
    sct.printv('\nSmooth along centerline...', verbose)
    sct.run(["sct_smooth_spinalcord",
     "-i", "data_up.nii",
     "-s", "data_up.nii",
     "-smooth", str(smoothing_sigma),
     "-r", str(remove_temp_files),
     "-v", str(verbose)], verbose)

    # downsample data
    sct.printv('\nDownsample data...', verbose)
    sct.run(["sct_resample",
     "-i", "data_up_smooth.nii",
     "-x", "linear",
     "-vox", str(nx) + 'x' + str(ny) + 'x' + str(nz),
     "-o", "data_up_smooth_down.nii"], verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    sct.printv('\nGenerate output files...')
    fname_out = sct.generate_output_file(os.path.join(path_tmp, "data_up_smooth_down.nii"), '' + file_data + suffix + ext_data)

    # Delete temporary files
    if remove_temp_files == 1:
        sct.printv('\nRemove temporary files...')
        sct.rmtree(path_tmp)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's')

    # to view results
    sct.printv('\nTo view results, type:')
    sct.printv('fslview ' + file_data + ' ' + file_data + suffix + ' &\n')
コード例 #39
0
def merge_images(list_fname_src, fname_dest, list_fname_warp, param):
    """
    Merge multiple source images onto destination space. All images are warped to the destination space and then added.
    To deal with overlap during merging (e.g. one voxel in destination image is shared with two input images), the
    resulting voxel is divided by the sum of the partial volume of each image. For example, if src(x,y,z)=1 is mapped to
    dest(i,j,k) with a partial volume of 0.5 (because destination voxel is bigger), then its value after linear interpolation
    will be 0.5. To account for partial volume, the resulting voxel will be: dest(i,j,k) = 0.5*0.5/0.5 = 0.5.
    Now, if two voxels overlap in the destination space, let's say: src(x,y,z)=1 and src2'(x',y',z')=1, then the
    resulting value will be: dest(i,j,k) = (0.5*0.5 + 0.5*0.5) / (0.5+0.5) = 0.5. So this function acts like a weighted
    average operator, only in destination voxels that share multiple source voxels.

    Parameters
    ----------
    list_fname_src
    fname_dest
    list_fname_warp
    param

    Returns
    -------

    """

    # create temporary folder
    path_tmp = sct.tmp_create()

    # get dimensions of destination file
    nii_dest = msct_image.Image(fname_dest)

    # initialize variables
    data = np.zeros([
        nii_dest.dim[0], nii_dest.dim[1], nii_dest.dim[2],
        len(list_fname_src)
    ])
    partial_volume = np.zeros([
        nii_dest.dim[0], nii_dest.dim[1], nii_dest.dim[2],
        len(list_fname_src)
    ])
    data_merge = np.zeros([nii_dest.dim[0], nii_dest.dim[1], nii_dest.dim[2]])

    # loop across files
    i_file = 0
    for fname_src in list_fname_src:

        # apply transformation src --> dest
        sct_apply_transfo.main(args=[
            '-i', fname_src, '-d', fname_dest, '-w', list_fname_warp[i_file],
            '-x', param.interp, '-o', 'src_' + str(i_file) +
            '_template.nii.gz', '-v', param.verbose
        ])

        # create binary mask from input file by assigning one to all non-null voxels
        sct_maths.main(args=[
            '-i', fname_src, '-bin',
            str(param.almost_zero), '-o', 'src_' + str(i_file) +
            'native_bin.nii.gz'
        ])

        # apply transformation to binary mask to compute partial volume
        sct_apply_transfo.main(args=[
            '-i', 'src_' + str(i_file) + 'native_bin.nii.gz', '-d', fname_dest,
            '-w', list_fname_warp[i_file], '-x', param.interp, '-o', 'src_' +
            str(i_file) + '_template_partialVolume.nii.gz'
        ])

        # open data
        data[:, :, :, i_file] = msct_image.Image('src_' + str(i_file) +
                                                 '_template.nii.gz').data
        partial_volume[:, :, :, i_file] = msct_image.Image(
            'src_' + str(i_file) + '_template_partialVolume.nii.gz').data
        i_file += 1

    # merge files using partial volume information (and convert nan resulting from division by zero to zeros)
    data_merge = np.divide(np.sum(data * partial_volume, axis=3),
                           np.sum(partial_volume, axis=3))
    data_merge = np.nan_to_num(data_merge)

    # write result in file
    nii_dest.data = data_merge
    nii_dest.setFileName(param.fname_out)
    nii_dest.save()

    # remove temporary folder
    if param.rm_tmp:
        sct.rmtree(path_tmp)
コード例 #40
0
def main(args=None):
    if not args:
        args = sys.argv[1:]

    # initialize parameters
    param = Param()
    # call main function
    parser = get_parser()
    arguments = parser.parse(args)

    fname_data = arguments['-i']
    fname_bvecs = arguments['-bvec']
    average = arguments['-a']
    verbose = int(arguments.get('-v'))
    sct.init_sct(log_level=verbose, update=True)  # Update log level
    remove_temp_files = int(arguments['-r'])
    path_out = arguments['-ofolder']

    if '-bval' in arguments:
        fname_bvals = arguments['-bval']
    else:
        fname_bvals = ''
    if '-bvalmin' in arguments:
        param.bval_min = arguments['-bvalmin']

    # Initialization
    start_time = time.time()

    # sct.printv(arguments)
    sct.printv('\nInput parameters:', verbose)
    sct.printv('  input file ............' + fname_data, verbose)
    sct.printv('  bvecs file ............' + fname_bvecs, verbose)
    sct.printv('  bvals file ............' + fname_bvals, verbose)
    sct.printv('  average ...............' + str(average), verbose)

    # Get full path
    fname_data = os.path.abspath(fname_data)
    fname_bvecs = os.path.abspath(fname_bvecs)
    if fname_bvals:
        fname_bvals = os.path.abspath(fname_bvals)

    # Extract path, file and extension
    path_data, file_data, ext_data = sct.extract_fname(fname_data)

    # create temporary folder
    path_tmp = sct.tmp_create(basename="dmri_separate", verbose=verbose)

    # copy files into tmp folder and convert to nifti
    sct.printv('\nCopy files into temporary folder...', verbose)
    ext = '.nii'
    dmri_name = 'dmri'
    b0_name = file_data + '_b0'
    b0_mean_name = b0_name + '_mean'
    dwi_name = file_data + '_dwi'
    dwi_mean_name = dwi_name + '_mean'

    if not convert(fname_data, os.path.join(path_tmp, dmri_name + ext)):
        sct.printv('ERROR in convert.', 1, 'error')
    sct.copy(fname_bvecs, os.path.join(path_tmp, "bvecs"), verbose=verbose)

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Get size of data
    im_dmri = Image(dmri_name + ext)
    sct.printv('\nGet dimensions data...', verbose)
    nx, ny, nz, nt, px, py, pz, pt = im_dmri.dim
    sct.printv('.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), verbose)

    # Identify b=0 and DWI images
    sct.printv(fname_bvals)
    index_b0, index_dwi, nb_b0, nb_dwi = identify_b0(fname_bvecs, fname_bvals, param.bval_min, verbose)

    # Split into T dimension
    sct.printv('\nSplit along T dimension...', verbose)
    im_dmri_split_list = split_data(im_dmri, 3)
    for im_d in im_dmri_split_list:
        im_d.save()

    # Merge b=0 images
    sct.printv('\nMerge b=0...', verbose)
    from sct_image import concat_data
    l = []
    for it in range(nb_b0):
        l.append(dmri_name + '_T' + str(index_b0[it]).zfill(4) + ext)
    im_out = concat_data(l, 3).save(b0_name + ext)

    # Average b=0 images
    if average:
        sct.printv('\nAverage b=0...', verbose)
        sct.run(['sct_maths', '-i', b0_name + ext, '-o', b0_mean_name + ext, '-mean', 't'], verbose)

    # Merge DWI
    l = []
    for it in range(nb_dwi):
        l.append(dmri_name + '_T' + str(index_dwi[it]).zfill(4) + ext)
    im_out = concat_data(l, 3).save(dwi_name + ext)

    # Average DWI images
    if average:
        sct.printv('\nAverage DWI...', verbose)
        sct.run(['sct_maths', '-i', dwi_name + ext, '-o', dwi_mean_name + ext, '-mean', 't'], verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    fname_b0 = os.path.abspath(os.path.join(path_out, b0_name + ext_data))
    fname_dwi = os.path.abspath(os.path.join(path_out, dwi_name + ext_data))
    fname_b0_mean = os.path.abspath(os.path.join(path_out, b0_mean_name + ext_data))
    fname_dwi_mean = os.path.abspath(os.path.join(path_out, dwi_mean_name + ext_data))
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(os.path.join(path_tmp, b0_name + ext), fname_b0, verbose)
    sct.generate_output_file(os.path.join(path_tmp, dwi_name + ext), fname_dwi, verbose)
    if average:
        sct.generate_output_file(os.path.join(path_tmp, b0_mean_name + ext), fname_b0_mean, verbose)
        sct.generate_output_file(os.path.join(path_tmp, dwi_mean_name + ext), fname_dwi_mean, verbose)

    # Remove temporary files
    if remove_temp_files == 1:
        sct.printv('\nRemove temporary files...', verbose)
        sct.rmtree(path_tmp, verbose=verbose)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', verbose)

    return fname_b0, fname_b0_mean, fname_dwi, fname_dwi_mean
コード例 #41
0
        input_second_fname = ''
        output_fname = 'hausdorff_distance.txt'
        resample_to = 0.1

        if "-d" in arguments:
            input_second_fname = arguments["-d"]
        if "-thinning" in arguments:
            param.thinning = bool(int(arguments["-thinning"]))
        if "-resampling" in arguments:
            resample_to = arguments["-resampling"]
        if "-o" in arguments:
            output_fname = arguments["-o"]
        param.verbose = int(arguments.get('-v'))
        sct.init_sct(log_level=param.verbose, update=True)  # Update log level

        tmp_dir = sct.tmp_create()
        im1_name = "im1.nii.gz"
        sct.copy(input_fname, os.path.join(tmp_dir, im1_name))
        if input_second_fname != '':
            im2_name = 'im2.nii.gz'
            sct.copy(input_second_fname, os.path.join(tmp_dir, im2_name))
        else:
            im2_name = None

        curdir = os.getcwd()
        os.chdir(tmp_dir)

        # now = time.time()
        input_im1 = Image(
            resample_image(im1_name,
                           binary=True,
コード例 #42
0
    def __init__(self, fname_mask, fname_sc, fname_ref, path_template,
                 path_ofolder, verbose):
        self.fname_mask = fname_mask

        self.fname_sc = fname_sc
        self.fname_ref = fname_ref
        self.path_template = path_template
        self.path_ofolder = path_ofolder
        self.verbose = verbose
        self.wrk_dir = os.getcwd()

        if not set(np.unique(Image(fname_mask).data)) == set([0.0, 1.0]):
            if set(np.unique(Image(fname_mask).data)) == set([0.0]):
                printv('WARNING: Empty masked image', self.verbose, 'warning')
            else:
                printv(
                    "ERROR input file %s is not binary file with 0 and 1 values"
                    % fname_mask, 1, 'error')

        # create tmp directory
        self.tmp_dir = tmp_create(verbose=verbose)  # path to tmp directory

        # lesion file where each lesion has a different value
        self.fname_label = extract_fname(
            self.fname_mask)[1] + '_label' + extract_fname(self.fname_mask)[2]

        # initialization of measure sheet
        measure_lst = [
            'label', 'volume [mm3]', 'length [mm]',
            'max_equivalent_diameter [mm]'
        ]
        if self.fname_ref is not None:
            for measure in ['mean', 'std']:
                measure_lst.append(measure + '_' +
                                   extract_fname(self.fname_ref)[1])
        measure_dct = {}
        for column in measure_lst:
            measure_dct[column] = None
        self.measure_pd = pd.DataFrame(data=measure_dct,
                                       index=range(0),
                                       columns=measure_lst)

        # orientation of the input image
        self.orientation = None

        # volume object
        self.volumes = None

        # initialization of proportion measures, related to registrated atlas
        if self.path_template is not None:
            self.path_atlas = self.path_template + 'atlas/'
            self.path_levels = self.path_template + 'template/PAM50_levels.nii.gz'
        else:
            self.path_atlas, self.path_levels = None, None
        self.vert_lst = None
        self.atlas_roi_lst = None
        self.distrib_matrix_dct = {}

        # output names
        self.pickle_name = extract_fname(self.fname_mask)[1] + '_analyzis.pkl'
        self.excel_name = extract_fname(self.fname_mask)[1] + '_analyzis.xls'
コード例 #43
0
def main(args=None):
    if args is None:
        args = sys.argv[1:]

    # initialize parameters
    param = Param()

    # Initialization
    fname_output = ''
    path_out = ''
    fname_src_seg = ''
    fname_dest_seg = ''
    fname_src_label = ''
    fname_dest_label = ''
    generate_warpinv = 1

    start_time = time.time()
    # get path of the toolbox
    status, path_sct = commands.getstatusoutput('echo $SCT_DIR')

    # get default registration parameters
    # step1 = Paramreg(step='1', type='im', algo='syn', metric='MI', iter='5', shrink='1', smooth='0', gradStep='0.5')
    step0 = Paramreg(step='0', type='im', algo='syn', metric='MI', iter='0', shrink='1', smooth='0', gradStep='0.5', slicewise='0', dof='Tx_Ty_Tz_Rx_Ry_Rz')  # only used to put src into dest space
    step1 = Paramreg(step='1', type='im')
    paramreg = ParamregMultiStep([step0, step1])

    parser = get_parser(paramreg=paramreg)

    arguments = parser.parse(args)

    # get arguments
    fname_src = arguments['-i']
    fname_dest = arguments['-d']
    if '-iseg' in arguments:
        fname_src_seg = arguments['-iseg']
    if '-dseg' in arguments:
        fname_dest_seg = arguments['-dseg']
    if '-ilabel' in arguments:
        fname_src_label = arguments['-ilabel']
    if '-dlabel' in arguments:
        fname_dest_label = arguments['-dlabel']
    if '-o' in arguments:
        fname_output = arguments['-o']
    if '-ofolder' in arguments:
        path_out = arguments['-ofolder']
    if '-owarp' in arguments:
        fname_output_warp = arguments['-owarp']
    else:
        fname_output_warp = ''
    if '-initwarp' in arguments:
        fname_initwarp = os.path.abspath(arguments['-initwarp'])
    else:
        fname_initwarp = ''
    if '-initwarpinv' in arguments:
        fname_initwarpinv = os.path.abspath(arguments['-initwarpinv'])
    else:
        fname_initwarpinv = ''
    if '-m' in arguments:
        fname_mask = arguments['-m']
    else:
        fname_mask = ''
    padding = arguments['-z']
    if "-param" in arguments:
        paramreg_user = arguments['-param']
        # update registration parameters
        for paramStep in paramreg_user:
            paramreg.addStep(paramStep)

    identity = int(arguments['-identity'])
    interp = arguments['-x']
    remove_temp_files = int(arguments['-r'])
    verbose = int(arguments['-v'])

    # print arguments
    print '\nInput parameters:'
    print '  Source .............. '+fname_src
    print '  Destination ......... '+fname_dest
    print '  Init transfo ........ '+fname_initwarp
    print '  Mask ................ '+fname_mask
    print '  Output name ......... '+fname_output
    # print '  Algorithm ........... '+paramreg.algo
    # print '  Number of iterations  '+paramreg.iter
    # print '  Metric .............. '+paramreg.metric
    print '  Remove temp files ... '+str(remove_temp_files)
    print '  Verbose ............. '+str(verbose)

    # update param
    param.verbose = verbose
    param.padding = padding
    param.fname_mask = fname_mask
    param.remove_temp_files = remove_temp_files

    # Get if input is 3D
    sct.printv('\nCheck if input data are 3D...', verbose)
    sct.check_if_3d(fname_src)
    sct.check_if_3d(fname_dest)


    # Check if user selected type=seg, but did not input segmentation data
    if 'paramreg_user' in locals():
        if True in ['type=seg' in paramreg_user[i] for i in range(len(paramreg_user))]:
            if fname_src_seg == '' or fname_dest_seg == '':
                sct.printv('\nERROR: if you select type=seg you must specify -iseg and -dseg flags.\n', 1, 'error')

    # Extract path, file and extension
    path_src, file_src, ext_src = sct.extract_fname(fname_src)
    path_dest, file_dest, ext_dest = sct.extract_fname(fname_dest)

    # check if source and destination images have the same name (related to issue #373)
    # If so, change names to avoid conflict of result files and warns the user
    suffix_src, suffix_dest = '_reg', '_reg'
    if file_src == file_dest:
        suffix_src, suffix_dest = '_src_reg', '_dest_reg'

    # define output folder and file name
    if fname_output == '':
        path_out = '' if not path_out else path_out  # output in user's current directory
        file_out = file_src + suffix_src
        file_out_inv = file_dest + suffix_dest
        ext_out = ext_src
    else:
        path, file_out, ext_out = sct.extract_fname(fname_output)
        path_out = path if not path_out else path_out
        file_out_inv = file_out + '_inv'

    # create QC folder
    sct.create_folder(param.path_qc)

    # create temporary folder
    path_tmp = sct.tmp_create()

    # copy files to temporary folder
    from sct_convert import convert
    sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose)
    convert(fname_src, path_tmp+'src.nii')
    convert(fname_dest, path_tmp+'dest.nii')

    if fname_src_seg:
        convert(fname_src_seg, path_tmp+'src_seg.nii')
        convert(fname_dest_seg, path_tmp+'dest_seg.nii')

    if fname_src_label:
        convert(fname_src_label, path_tmp+'src_label.nii')
        convert(fname_dest_label, path_tmp+'dest_label.nii')

    if fname_mask != '':
        convert(fname_mask, path_tmp+'mask.nii.gz')

    # go to tmp folder
    os.chdir(path_tmp)

    # reorient destination to RPI
    sct.run('sct_image -i dest.nii -setorient RPI -o dest_RPI.nii')
    if fname_dest_seg:
        sct.run('sct_image -i dest_seg.nii -setorient RPI -o dest_seg_RPI.nii')
    if fname_dest_label:
        sct.run('sct_image -i dest_label.nii -setorient RPI -o dest_label_RPI.nii')

    if identity:
        # overwrite paramreg and only do one identity transformation
        step0 = Paramreg(step='0', type='im', algo='syn', metric='MI', iter='0', shrink='1', smooth='0', gradStep='0.5')
        paramreg = ParamregMultiStep([step0])

    # Put source into destination space using header (no estimation -- purely based on header)
    # TODO: Check if necessary to do that
    # TODO: use that as step=0
    # sct.printv('\nPut source into destination space using header...', verbose)
    # sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[dest_pad.nii,src.nii,1,16] -c 0 -f 1 -s 0 -o [regAffine,src_regAffine.nii] -n BSpline[3]', verbose)
    # if segmentation, also do it for seg

    # initialize list of warping fields
    warp_forward = []
    warp_inverse = []

    # initial warping is specified, update list of warping fields and skip step=0
    if fname_initwarp:
        sct.printv('\nSkip step=0 and replace with initial transformations: ', param.verbose)
        sct.printv('  '+fname_initwarp, param.verbose)
        # sct.run('cp '+fname_initwarp+' warp_forward_0.nii.gz', verbose)
        warp_forward = [fname_initwarp]
        start_step = 1
        if fname_initwarpinv:
            warp_inverse = [fname_initwarpinv]
        else:
            sct.printv('\nWARNING: No initial inverse warping field was specified, therefore the inverse warping field will NOT be generated.', param.verbose, 'warning')
            generate_warpinv = 0
    else:
        start_step = 0

    # loop across registration steps
    for i_step in range(start_step, len(paramreg.steps)):
        sct.printv('\n--\nESTIMATE TRANSFORMATION FOR STEP #'+str(i_step), param.verbose)
        # identify which is the src and dest
        if paramreg.steps[str(i_step)].type == 'im':
            src = 'src.nii'
            dest = 'dest_RPI.nii'
            interp_step = 'spline'
        elif paramreg.steps[str(i_step)].type == 'seg':
            src = 'src_seg.nii'
            dest = 'dest_seg_RPI.nii'
            interp_step = 'nn'
        elif paramreg.steps[str(i_step)].type == 'label':
            src = 'src_label.nii'
            dest = 'dest_label_RPI.nii'
            interp_step = 'nn'
        else:
            # src = dest = interp_step = None
            sct.printv('ERROR: Wrong image type.', 1, 'error')
        # if step>0, apply warp_forward_concat to the src image to be used
        if i_step > 0:
            sct.printv('\nApply transformation from previous step', param.verbose)
            sct.run('sct_apply_transfo -i '+src+' -d '+dest+' -w '+','.join(warp_forward)+' -o '+sct.add_suffix(src, '_reg')+' -x '+interp_step, verbose)
            src = sct.add_suffix(src, '_reg')
        # register src --> dest
        warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step))
        warp_forward.append(warp_forward_out)
        warp_inverse.insert(0, warp_inverse_out)

    # Concatenate transformations
    sct.printv('\nConcatenate transformations...', verbose)
    sct.run('sct_concat_transfo -w '+','.join(warp_forward)+' -d dest.nii -o warp_src2dest.nii.gz', verbose)
    sct.run('sct_concat_transfo -w '+','.join(warp_inverse)+' -d dest.nii -o warp_dest2src.nii.gz', verbose)

    # Apply warping field to src data
    sct.printv('\nApply transfo source --> dest...', verbose)
    sct.run('sct_apply_transfo -i src.nii -o src_reg.nii -d dest.nii -w warp_src2dest.nii.gz -x '+interp, verbose)
    sct.printv('\nApply transfo dest --> source...', verbose)
    sct.run('sct_apply_transfo -i dest.nii -o dest_reg.nii -d src.nii -w warp_dest2src.nii.gz -x '+interp, verbose)

    # come back to parent folder
    os.chdir('..')

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    # generate: src_reg
    fname_src2dest = sct.generate_output_file(path_tmp+'src_reg.nii', path_out+file_out+ext_out, verbose)
    # generate: forward warping field
    if fname_output_warp == '':
        fname_output_warp = path_out+'warp_'+file_src+'2'+file_dest+'.nii.gz'
    sct.generate_output_file(path_tmp+'warp_src2dest.nii.gz', fname_output_warp, verbose)
    if generate_warpinv:
        # generate: dest_reg
        fname_dest2src = sct.generate_output_file(path_tmp+'dest_reg.nii', path_out+file_out_inv+ext_dest, verbose)
        # generate: inverse warping field
        sct.generate_output_file(path_tmp+'warp_dest2src.nii.gz', path_out+'warp_'+file_dest+'2'+file_src+'.nii.gz', verbose)

    # Delete temporary files
    if remove_temp_files:
        sct.printv('\nRemove temporary files...', verbose)
        sct.run('rm -rf '+path_tmp, verbose)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: '+str(int(round(elapsed_time)))+'s', verbose)
    sct.printv('\nTo view results, type:', verbose)
    sct.printv('fslview '+fname_dest+' '+fname_src2dest+' &', verbose, 'info')
    if generate_warpinv:
        sct.printv('fslview '+fname_src+' '+fname_dest2src+' &\n', verbose, 'info')
コード例 #44
0
def main(args=None):

    # initializations
    initz = ''
    initcenter = ''
    initc2 = 'auto'
    param = Param()

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])
    fname_in = arguments["-i"]
    fname_seg = arguments['-s']
    contrast = arguments['-c']
    path_template = sct.slash_at_the_end(arguments['-t'], 1)
    # if '-o' in arguments:
    #     file_out = arguments["-o"]
    # else:
    #     file_out = ''
    if '-ofolder' in arguments:
        path_output = sct.slash_at_the_end(os.path.abspath(arguments['-ofolder']), slash=1)
    else:
        path_output = sct.slash_at_the_end(os.path.abspath(os.curdir), slash=1)
    if '-initz' in arguments:
        initz = arguments['-initz']
    if '-initcenter' in arguments:
        initcenter = arguments['-initcenter']
    # if user provided text file, parse and overwrite arguments
    if '-initfile' in arguments:
        # open file
        file = open(arguments['-initfile'], 'r')
        initfile = ' '+file.read().replace('\n', '')
        arg_initfile = initfile.split(' ')
        for i in xrange(len(arg_initfile)):
            if arg_initfile[i] == '-initz':
                initz = [int(x) for x in arg_initfile[i+1].split(',')]
            if arg_initfile[i] == '-initcenter':
                initcenter = int(arg_initfile[i+1])
    if '-initc2' in arguments:
        initc2 = 'manual'
    if '-param' in arguments:
        param.update(arguments['-param'][0])
    verbose = int(arguments['-v'])
    remove_tmp_files = int(arguments['-r'])
    denoise = int(arguments['-denoise'])
    laplacian = int(arguments['-laplacian'])

    # if verbose, import matplotlib
    # if verbose == 2:
        # import matplotlib.pyplot as plt

    # create temporary folder
    printv('\nCreate temporary folder...', verbose)
    path_tmp = tmp_create(verbose=verbose)
    # path_tmp = '/Users/julien/Dropbox/documents/processing/20160813_wang/t12/tmp.160814213032_725693/'

    # Copying input data to tmp folder
    printv('\nCopying input data to tmp folder...', verbose)
    run('sct_convert -i '+fname_in+' -o '+path_tmp+'data.nii')
    run('sct_convert -i '+fname_seg+' -o '+path_tmp+'segmentation.nii.gz')

    # Go go temp folder
    os.chdir(path_tmp)

    # create label to identify disc
    printv('\nCreate label to identify disc...', verbose)
    initauto = False
    if initz:
        create_label_z('segmentation.nii.gz', initz[0], initz[1])  # create label located at z_center
    elif initcenter:
        # find z centered in FOV
        nii = Image('segmentation.nii.gz')
        nii.change_orientation('RPI')  # reorient to RPI
        nx, ny, nz, nt, px, py, pz, pt = nii.dim  # Get dimensions
        z_center = int(round(nz/2))  # get z_center
        create_label_z('segmentation.nii.gz', z_center, initcenter)  # create label located at z_center
    else:
        initauto = True
        # printv('\nERROR: You need to initialize the disc detection algorithm using one of these two options: -initz, -initcenter\n', 1, 'error')

    # Straighten spinal cord
    printv('\nStraighten spinal cord...', verbose)
    # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
    if os.path.isfile('../warp_curve2straight.nii.gz') and os.path.isfile('../warp_straight2curve.nii.gz') and os.path.isfile('../straight_ref.nii.gz'):
        # if they exist, copy them into current folder
        sct.printv('WARNING: Straightening was already run previously. Copying warping fields...', verbose, 'warning')
        shutil.copy('../warp_curve2straight.nii.gz', 'warp_curve2straight.nii.gz')
        shutil.copy('../warp_straight2curve.nii.gz', 'warp_straight2curve.nii.gz')
        shutil.copy('../straight_ref.nii.gz', 'straight_ref.nii.gz')
        # apply straightening
        sct.run('sct_apply_transfo -i data.nii -w warp_curve2straight.nii.gz -d straight_ref.nii.gz -o data_straight.nii')
    else:
        run('sct_straighten_spinalcord -i data.nii -s segmentation.nii.gz -r 0 -qc 0')

    # resample to 0.5mm isotropic to match template resolution
    printv('\nResample to 0.5mm isotropic...', verbose)
    run('sct_resample -i data_straight.nii -mm 0.5x0.5x0.5 -x linear -o data_straightr.nii', verbose)
    # run('sct_resample -i segmentation.nii.gz -mm 0.5x0.5x0.5 -x linear -o segmentationr.nii.gz', verbose)
    # run('sct_resample -i labelz.nii.gz -mm 0.5x0.5x0.5 -x linear -o labelzr.nii', verbose)

    # Apply straightening to segmentation
    # N.B. Output is RPI
    printv('\nApply straightening to segmentation...', verbose)
    run('sct_apply_transfo -i segmentation.nii.gz -d data_straightr.nii -w warp_curve2straight.nii.gz -o segmentation_straight.nii.gz -x linear', verbose)
    # Threshold segmentation at 0.5
    run('sct_maths -i segmentation_straight.nii.gz -thr 0.5 -o segmentation_straight.nii.gz', verbose)

    if initauto:
        init_disc = []
    else:
        # Apply straightening to z-label
        printv('\nDilate z-label and apply straightening...', verbose)
        run('sct_apply_transfo -i labelz.nii.gz -d data_straightr.nii -w warp_curve2straight.nii.gz -o labelz_straight.nii.gz -x nn', verbose)
        # get z value and disk value to initialize labeling
        printv('\nGet z and disc values from straight label...', verbose)
        init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz')
        printv('.. '+str(init_disc), verbose)

    # denoise data
    if denoise:
        printv('\nDenoise data...', verbose)
        run('sct_maths -i data_straightr.nii -denoise h=0.05 -o data_straightr.nii', verbose)

    # apply laplacian filtering
    if laplacian:
        printv('\nApply Laplacian filter...', verbose)
        run('sct_maths -i data_straightr.nii -laplacian 1 -o data_straightr.nii', verbose)

    # detect vertebral levels on straight spinal cord
    vertebral_detection('data_straightr.nii', 'segmentation_straight.nii.gz', contrast, param, init_disc=init_disc, verbose=verbose, path_template=path_template, initc2=initc2, path_output=path_output)

    # un-straighten labeled spinal cord
    printv('\nUn-straighten labeling...', verbose)
    run('sct_apply_transfo -i segmentation_straight_labeled.nii.gz -d segmentation.nii.gz -w warp_straight2curve.nii.gz -o segmentation_labeled.nii.gz -x nn', verbose)

    # Clean labeled segmentation
    printv('\nClean labeled segmentation (correct interpolation errors)...', verbose)
    clean_labeled_segmentation('segmentation_labeled.nii.gz', 'segmentation.nii.gz', 'segmentation_labeled.nii.gz')

    # label discs
    printv('\nLabel discs...', verbose)
    label_discs('segmentation_labeled.nii.gz', verbose=verbose)

    # come back to parent folder
    os.chdir('..')

    # Generate output files
    path_seg, file_seg, ext_seg = extract_fname(fname_seg)
    printv('\nGenerate output files...', verbose)
    generate_output_file(path_tmp+'segmentation_labeled.nii.gz', path_output+file_seg+'_labeled'+ext_seg)
    generate_output_file(path_tmp+'segmentation_labeled_disc.nii.gz', path_output+file_seg+'_labeled_discs'+ext_seg)
    # copy straightening files in case subsequent SCT functions need them
    generate_output_file(path_tmp+'warp_curve2straight.nii.gz', path_output+'warp_curve2straight.nii.gz', verbose)
    generate_output_file(path_tmp+'warp_straight2curve.nii.gz', path_output+'warp_straight2curve.nii.gz', verbose)
    generate_output_file(path_tmp+'straight_ref.nii.gz', path_output+'straight_ref.nii.gz', verbose)

    # Remove temporary files
    if remove_tmp_files == 1:
        printv('\nRemove temporary files...', verbose)
        run('rm -rf '+path_tmp)

    # to view results
    printv('\nDone! To view results, type:', verbose)
    printv('fslview '+fname_in+' '+path_output+file_seg+'_labeled'+' -l Random-Rainbow -t 0.5 &\n', verbose, 'info')
コード例 #45
0
def main():

    # initialization
    fname_mask = ''

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])
    fname_data = arguments['-i']
    fname_mask = arguments['-m']
    vert_label_fname = arguments["-vertfile"]
    vert_levels = arguments["-vert"]
    slices_of_interest = arguments["-z"]
    index_vol = arguments['-vol']
    method = arguments["-method"]
    remove_temp_files = int(arguments['-r'])
    verbose = int(arguments['-v'])

    # Check if data are in RPI
    input_im = Image(fname_data)
    input_orient = get_orientation(input_im)

    # If orientation is not RPI, change to RPI
    if input_orient != 'RPI':
        sct.printv(
            '\nCreate temporary folder to change the orientation of the NIFTI files into RPI...',
            verbose)
        path_tmp = sct.tmp_create()
        # change orientation and load data
        sct.printv('\nChange input image orientation and load it...', verbose)
        input_im_rpi = orientation(input_im,
                                   ori='RPI',
                                   set=True,
                                   fname_out=os.path.join(
                                       path_tmp, "input_RPI.nii"))
        input_data = input_im_rpi.data
        # Do the same for the mask
        sct.printv('\nChange mask orientation and load it...', verbose)
        mask_im_rpi = orientation(Image(fname_mask),
                                  ori='RPI',
                                  set=True,
                                  fname_out=os.path.join(
                                      path_tmp, "mask_RPI.nii"))
        mask_data = mask_im_rpi.data
        # Do the same for vertebral labeling if present
        if vert_levels != 'None':
            sct.printv(
                '\nChange vertebral labeling file orientation and load it...',
                verbose)
            vert_label_im_rpi = orientation(Image(vert_label_fname),
                                            ori='RPI',
                                            set=True,
                                            fname_out=os.path.join(
                                                path_tmp,
                                                "vert_labeling_RPI.nii"))
            vert_labeling_data = vert_label_im_rpi.data
        # Remove the temporary folder used to change the NIFTI files orientation into RPI
        if remove_temp_files:
            sct.printv('\nRemove the temporary folder...', verbose)
            sct.rmtree(path_tmp, True)
    else:
        # Load data
        sct.printv('\nLoad data...', verbose)
        input_data = input_im.data
        mask_data = Image(fname_mask).data
        if vert_levels != 'None':
            vert_labeling_data = Image(vert_label_fname).data
    sct.printv('\tDone.', verbose)

    # Get slices corresponding to vertebral levels
    if vert_levels != 'None':
        from sct_extract_metric import get_slices_matching_with_vertebral_levels
        slices_of_interest, actual_vert_levels, warning_vert_levels = get_slices_matching_with_vertebral_levels(
            mask_data, vert_levels, vert_labeling_data, verbose)

    # Remove slices that were not selected
    if slices_of_interest == 'None':
        slices_of_interest = '0:' + str(mask_data.shape[2] - 1)
    slices_boundary = slices_of_interest.split(':')
    slices_of_interest_list = range(int(slices_boundary[0]),
                                    int(slices_boundary[1]) + 1)
    # Crop
    input_data = input_data[:, :, slices_of_interest_list, :]
    mask_data = mask_data[:, :, slices_of_interest_list]

    # if user selected all slices (-vol -1), then assign index_vol
    if index_vol[0] == -1:
        index_vol = range(0, input_data.shape[3], 1)

    # Get signal and noise
    indexes_roi = np.where(mask_data == 1)
    if method == 'mult':
        # get voxels in ROI to obtain a (x*y*z)*t 2D matrix
        input_data_in_roi = input_data[indexes_roi]
        # compute signal and STD across by averaging across time
        signal = np.mean(input_data_in_roi[:, index_vol])
        std_input_temporal = np.std(input_data_in_roi[:, index_vol], 1)
        noise = np.mean(std_input_temporal)
    elif method == 'diff':
        # if user did not select two volumes, then exit with error
        if not len(index_vol) == 2:
            sct.printv(
                'ERROR: ' + str(len(index_vol)) +
                ' volumes were specified. Method "diff" should be used with exactly two volumes.',
                1, 'error')
        data_1 = input_data[:, :, :, index_vol[0]]
        data_2 = input_data[:, :, :, index_vol[1]]
        # compute voxel-average of voxelwise sum
        signal = np.mean(np.add(data_1[indexes_roi], data_2[indexes_roi]))
        # compute voxel-STD of voxelwise substraction, multiplied by sqrt(2) as described in equation 7 of Dietrich et al.
        noise = np.std(np.subtract(data_1[indexes_roi],
                                   data_2[indexes_roi])) * np.sqrt(2)

    # compute SNR
    SNR = signal / noise

    # Display result
    sct.printv('\nSNR_' + method + ' = ' + str(SNR) + '\n', type='info')
コード例 #46
0
    def crop_with_gui(self):
        import matplotlib.pyplot as plt
        import matplotlib.image as mpimg
        # Initialization
        fname_data = self.input_filename
        suffix_out = '_crop'
        remove_temp_files = self.rm_tmp_files
        verbose = self.verbose

        # Check file existence
        sct.printv('\nCheck file existence...', verbose)
        sct.check_file_exist(fname_data, verbose)

        # Get dimensions of data
        sct.printv('\nGet dimensions of data...', verbose)
        nx, ny, nz, nt, px, py, pz, pt = Image(fname_data).dim
        sct.printv('.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), verbose)
        # check if 4D data
        if not nt == 1:
            sct.printv('\nERROR in ' + os.path.basename(__file__) + ': Data should be 3D.\n', 1, 'error')
            sys.exit(2)

        # sct.printv(arguments)
        sct.printv('\nCheck parameters:')
        sct.printv('  data ................... ' + fname_data)

        # Extract path/file/extension
        path_data, file_data, ext_data = sct.extract_fname(fname_data)
        path_out, file_out, ext_out = '', file_data + suffix_out, ext_data

        path_tmp = sct.tmp_create() + "/"

        # copy files into tmp folder
        from sct_convert import convert
        sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose)
        convert(fname_data, os.path.join(path_tmp, "data.nii"))

        # go to tmp folder
        curdir = os.getcwd()
        os.chdir(path_tmp)

        # change orientation
        sct.printv('\nChange orientation to RPI...', verbose)
        Image('data.nii').change_orientation("RPI").save('data_rpi.nii')

        # get image of medial slab
        sct.printv('\nGet image of medial slab...', verbose)
        image_array = nibabel.load('data_rpi.nii').get_data()
        nx, ny, nz = image_array.shape
        scipy.misc.imsave('image.jpg', image_array[math.floor(nx / 2), :, :])

        # Display the image
        sct.printv('\nDisplay image and get cropping region...', verbose)
        fig = plt.figure()
        # fig = plt.gcf()
        # ax = plt.gca()
        ax = fig.add_subplot(111)
        img = mpimg.imread("image.jpg")
        implot = ax.imshow(img.T)
        implot.set_cmap('gray')
        plt.gca().invert_yaxis()
        # mouse callback
        ax.set_title('Left click on the top and bottom of your cropping field.\n Right click to remove last point.\n Close window when your done.')
        line, = ax.plot([], [], 'ro')  # empty line
        cropping_coordinates = LineBuilder(line)
        plt.show()
        # disconnect callback
        # fig.canvas.mpl_disconnect(line)

        # check if user clicked two times
        if len(cropping_coordinates.xs) != 2:
            sct.printv('\nERROR: You have to select two points. Exit program.\n', 1, 'error')
            sys.exit(2)

        # convert coordinates to integer
        zcrop = [int(i) for i in cropping_coordinates.ys]

        # sort coordinates
        zcrop.sort()

        # crop image
        sct.printv('\nCrop image...', verbose)
        nii = Image('data_rpi.nii')
        data_crop = nii.data[:, :, zcrop[0]:zcrop[1]]
        nii.data = data_crop
        nii.absolutepath = 'data_rpi_crop.nii'
        nii.save()

        # come back
        os.chdir(curdir)

        sct.printv('\nGenerate output files...', verbose)
        sct.generate_output_file(os.path.join(path_tmp, "data_rpi_crop.nii"), os.path.join(path_out, file_out + ext_out))

        # Remove temporary files
        if remove_temp_files == 1:
            sct.printv('\nRemove temporary files...')
            sct.rmtree(path_tmp)

        sct.display_viewer_syntax(files=[os.path.join(path_out, file_out + ext_out)])
コード例 #47
0
    def execute(self):
        print 'Execution of the SCAD algorithm'

        vesselness_file_name = "imageVesselNessFilter.nii.gz"
        raw_file_name = "raw.nii"

        if self.debug:
            import matplotlib.pyplot as plt # import for debug purposes

        # create tmp and copy input
        path_tmp = sct.tmp_create()
        sct.tmp_copy_nifti(self.input_image.absolutepath, path_tmp, raw_file_name)

        if self.vesselness_provided:
            sct.run('cp '+vesselness_file_name+' '+path_tmp+vesselness_file_name)
        os.chdir(path_tmp)

        # get input image information
        img = Image(raw_file_name)

        # save original orientation and change image to RPI
        self.raw_orientation = img.change_orientation()

        # get body symmetry
        sym = SymmetryDetector(raw_file_name, self.contrast, crop_xy=1)
        self.raw_symmetry = sym.execute()

        # vesselness filter
        if not self.vesselness_provided:
            sct.run('sct_vesselness -i '+raw_file_name+' -t ' + self._contrast)

        # load vesselness filter data and perform minimum path on it
        img = Image(vesselness_file_name)
        raw_orientation = img.change_orientation()
        self.minimum_path_data, self.J1_min_path, self.J2_min_path = get_minimum_path(img.data, invert=1, debug=1, smooth_factor=1)

        # Apply an exponent to the minimum path
        self.minimum_path_powered = np.power(self.minimum_path_data, self.minimum_path_exponent)

        # Saving in Image since smooth_minimal_path needs pixel dimensions
        img.data = self.minimum_path_powered

        # smooth resulting minimal path
        self.smoothed_min_path = smooth_minimal_path(img)

        # normalise symmetry values between 0 and 1
        normalised_symmetry = equalize_array_histogram(self.raw_symmetry)

        # multiply normalised symmetry data with the minimum path result
        self.spine_detect_data = np.multiply(self.smoothed_min_path.data, normalised_symmetry)

        # extract the centerline from the minimal path image
        centerline_with_outliers = get_centerline(self.spine_detect_data, self.spine_detect_data.shape)
        img.data = centerline_with_outliers
        img.change_orientation()
        img.file_name = "centerline_with_outliers"
        img.save()

        # use a b-spline to smooth out the centerline
        x, y, z, dx, dy, dz = smooth_centerline("centerline_with_outliers.nii.gz")

        # save the centerline
        centerline_dim = img.dim
        img.data = np.zeros(centerline_dim)
        for i in range(0, np.size(x)-1):
            img.data[int(x[i]), int(y[i]), int(z[i])] = 1

        img.change_orientation(raw_orientation)
        img.file_name = "centerline"
        img.save()

        # copy back centerline
        os.chdir('../')
        sct.tmp_copy_nifti(path_tmp + 'centerline.nii.gz',self.input_image.path,self.input_image.file_name+'_centerline'+self.input_image.ext)

        if self.rm_tmp_file == 1:
            import shutil
            shutil.rmtree(path_tmp)

        if self.produce_output:
            self.produce_output_files()
コード例 #48
0
def main():

    # Initialization
    size_data = 61
    size_label = 1  # put zero for labels that are single points.
    dice_acceptable = 0.39  # computed DICE should be 0.931034
    test_passed = 0
    remove_temp_files = 1
    verbose = 1

    # Check input parameters
    try:
        opts, args = getopt.getopt(sys.argv[1:], 'hvr:')
    except getopt.GetoptError:
        usage()
    for opt, arg in opts:
        if opt == '-h':
            usage()
        elif opt in ('-v'):
            verbose = int(arg)
        elif opt in ('-r'):
            remove_temp_files = int(arg)

    path_tmp = sct.tmp_create(basename="test_ants", verbose=verbose)

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Initialise numpy volumes
    data_src = np.zeros((size_data, size_data, size_data), dtype=np.int16)
    data_dest = np.zeros((size_data, size_data, size_data), dtype=np.int16)

    # add labels for src image (curved).
    # Labels can be big (more than single point), because when applying NN interpolation, single points might disappear
    data_src[20 - size_label:20 + size_label + 1, 20 - size_label:20 + size_label + 1, 10 - size_label:10 + size_label + 1] = 1
    data_src[30 - size_label:30 + size_label + 1, 30 - size_label:30 + size_label + 1, 30 - size_label:30 + size_label + 1] = 2
    data_src[20 - size_label:20 + size_label + 1, 20 - size_label:20 + size_label + 1, 50 - size_label:50 + size_label + 1] = 3

    # add labels for dest image (straight).
    # Here, no need for big labels (bigger than single point) because these labels will not be re-interpolated.
    data_dest[30 - size_label:30 + size_label + 1, 30 - size_label:30 + size_label + 1, 10 - size_label:10 + size_label + 1] = 1
    data_dest[30 - size_label:30 + size_label + 1, 30 - size_label:30 + size_label + 1, 30 - size_label:30 + size_label + 1] = 2
    data_dest[30 - size_label:30 + size_label + 1, 30 - size_label:30 + size_label + 1, 50 - size_label:50 + size_label + 1] = 3

    # save as nifti
    img_src = nib.Nifti1Image(data_src, np.eye(4))
    nib.save(img_src, 'data_src.nii.gz')
    img_dest = nib.Nifti1Image(data_dest, np.eye(4))
    nib.save(img_dest, 'data_dest.nii.gz')

    # Estimate rigid transformation
    sct.printv('\nEstimate rigid transformation between paired landmarks...', verbose)
    # TODO fixup isct_ants* parsers
    sct.run(['isct_antsRegistration',
     '-d', '3',
     '-t', 'syn[1,3,1]',
     '-m', 'MeanSquares[data_dest.nii.gz,data_src.nii.gz,1,3]',
     '-f', '2',
     '-s', '0',
     '-o', '[src2reg,data_src_reg.nii.gz]',
     '-c', '5',
     '-v', '1',
     '-n', 'NearestNeighbor'], verbose, is_sct_binary=True)

    # # Apply rigid transformation
    # sct.printv('\nApply rigid transformation to curved landmarks...', verbose)
    # sct.run('sct_apply_transfo -i data_src.nii.gz -o data_src_rigid.nii.gz -d data_dest.nii.gz -w curve2straight_rigid.txt -p nn', verbose)
    #
    # # Estimate b-spline transformation curve --> straight
    # sct.printv('\nEstimate b-spline transformation: curve --> straight...', verbose)
    # sct.run('isct_ANTSLandmarksBSplineTransform data_dest.nii.gz data_src_rigid.nii.gz warp_curve2straight_intermediate.nii.gz 5x5x5 3 2 0', verbose)
    #
    # # Concatenate rigid and non-linear transformations...
    # sct.printv('\nConcatenate rigid and non-linear transformations...', verbose)
    # cmd = 'isct_ComposeMultiTransform 3 warp_curve2straight.nii.gz -R data_dest.nii.gz warp_curve2straight_intermediate.nii.gz curve2straight_rigid.txt'
    # sct.printv('>> '+cmd, verbose)
    # sct.run(cmd)
    #
    # # Apply deformation to input image
    # sct.printv('\nApply transformation to input image...', verbose)
    # sct.run('sct_apply_transfo -i data_src.nii.gz -o data_src_warp.nii.gz -d data_dest.nii.gz -w warp_curve2straight.nii.gz -p nn', verbose)
    #
    # Compute DICE coefficient between src and dest
    sct.printv('\nCompute DICE coefficient...', verbose)
    sct.run(["sct_dice_coefficient",
     "-i", "data_dest.nii.gz",
     "-d", "data_src_reg.nii.gz",
     "-o", "dice.txt"], verbose)
    with open("dice.txt", "r") as file_dice:
        dice = float(file_dice.read().replace('3D Dice coefficient = ', ''))
    sct.printv('Dice coeff = ' + str(dice) + ' (should be above ' + str(dice_acceptable) + ')', verbose)

    # Check if DICE coefficient is above acceptable value
    if dice > dice_acceptable:
        test_passed = 1

    # come back
    os.chdir(curdir)

    # Delete temporary files
    if remove_temp_files == 1:
        sct.printv('\nDelete temporary files...', verbose)
        sct.rmtree(path_tmp)

    # output result for parent function
    if test_passed:
        sct.printv('\nTest passed!\n', verbose)
        sys.exit(0)
    else:
        sct.printv('\nTest failed!\n', verbose)
        sys.exit(1)
コード例 #49
0
def main():
    parser = get_parser()
    param = Param()

    arguments = parser.parse(sys.argv[1:])

    # get arguments
    fname_data = arguments['-i']
    fname_seg = arguments['-s']
    fname_landmarks = arguments['-l']
    if '-ofolder' in arguments:
        path_output = arguments['-ofolder']
    else:
        path_output = ''
    path_template = sct.slash_at_the_end(arguments['-t'], 1)
    contrast_template = arguments['-c']
    remove_temp_files = int(arguments['-r'])
    verbose = int(arguments['-v'])
    if '-param-straighten' in arguments:
        param.param_straighten = arguments['-param-straighten']
    if 'cpu-nb' in arguments:
        arg_cpu = ' -cpu-nb '+arguments['-cpu-nb']
    else:
        arg_cpu = ''
    if '-param' in arguments:
        paramreg_user = arguments['-param']
        # update registration parameters
        for paramStep in paramreg_user:
            paramreg.addStep(paramStep)

    # initialize other parameters
    file_template_label = param.file_template_label
    output_type = param.output_type
    zsubsample = param.zsubsample
    # smoothing_sigma = param.smoothing_sigma

    # capitalize letters for contrast
    if contrast_template == 't1':
        contrast_template = 'T1'
    elif contrast_template == 't2':
        contrast_template = 'T2'

    # retrieve file_template based on contrast
    fname_template_list = glob(path_template+param.folder_template+'*'+contrast_template+'.nii.gz')
    # TODO: make sure there is only one file -- check if file is there otherwise it crashes
    fname_template = fname_template_list[0]

    # retrieve file_template_seg
    fname_template_seg_list = glob(path_template+param.folder_template+'*cord.nii.gz')
    # TODO: make sure there is only one file
    fname_template_seg = fname_template_seg_list[0]

    # start timer
    start_time = time.time()

    # get absolute path - TO DO: remove! NEVER USE ABSOLUTE PATH...
    path_template = os.path.abspath(path_template+param.folder_template)

    # get fname of the template + template objects
    # fname_template = sct.slash_at_the_end(path_template, 1)+file_template
    fname_template_label = sct.slash_at_the_end(path_template, 1)+file_template_label
    # fname_template_seg = sct.slash_at_the_end(path_template, 1)+file_template_seg

    # check file existence
    sct.printv('\nCheck template files...')
    sct.check_file_exist(fname_template, verbose)
    sct.check_file_exist(fname_template_label, verbose)
    sct.check_file_exist(fname_template_seg, verbose)

    # print arguments
    sct.printv('\nCheck parameters:', verbose)
    sct.printv('.. Data:                 '+fname_data, verbose)
    sct.printv('.. Landmarks:            '+fname_landmarks, verbose)
    sct.printv('.. Segmentation:         '+fname_seg, verbose)
    sct.printv('.. Path template:        '+path_template, verbose)
    sct.printv('.. Path output:          '+path_output, verbose)
    sct.printv('.. Output type:          '+str(output_type), verbose)
    sct.printv('.. Remove temp files:    '+str(remove_temp_files), verbose)

    sct.printv('\nParameters for registration:')
    for pStep in range(1, len(paramreg.steps)+1):
        sct.printv('Step #'+paramreg.steps[str(pStep)].step, verbose)
        sct.printv('.. Type #'+paramreg.steps[str(pStep)].type, verbose)
        sct.printv('.. Algorithm................ '+paramreg.steps[str(pStep)].algo, verbose)
        sct.printv('.. Metric................... '+paramreg.steps[str(pStep)].metric, verbose)
        sct.printv('.. Number of iterations..... '+paramreg.steps[str(pStep)].iter, verbose)
        sct.printv('.. Shrink factor............ '+paramreg.steps[str(pStep)].shrink, verbose)
        sct.printv('.. Smoothing factor......... '+paramreg.steps[str(pStep)].smooth, verbose)
        sct.printv('.. Gradient step............ '+paramreg.steps[str(pStep)].gradStep, verbose)
        sct.printv('.. Degree of polynomial..... '+paramreg.steps[str(pStep)].poly, verbose)

    path_data, file_data, ext_data = sct.extract_fname(fname_data)

    sct.printv('\nCheck input labels...')
    # check if label image contains coherent labels
    image_label = Image(fname_landmarks)
    # -> all labels must be different
    labels = image_label.getNonZeroCoordinates(sorting='value')
    hasDifferentLabels = True
    for lab in labels:
        for otherlabel in labels:
            if lab != otherlabel and lab.hasEqualValue(otherlabel):
                hasDifferentLabels = False
                break
    if not hasDifferentLabels:
        sct.printv('ERROR: Wrong landmarks input. All labels must be different.', verbose, 'error')
    # all labels must be available in tempalte
    image_label_template = Image(fname_template_label)
    labels_template = image_label_template.getNonZeroCoordinates(sorting='value')
    if labels[-1].value > labels_template[-1].value:
        sct.printv('ERROR: Wrong landmarks input. Labels must have correspondence in template space. \nLabel max '
                   'provided: ' + str(labels[-1].value) + '\nLabel max from template: ' +
                   str(labels_template[-1].value), verbose, 'error')

    # create temporary folder
    path_tmp = sct.tmp_create(verbose=verbose)

    # set temporary file names
    ftmp_data = 'data.nii'
    ftmp_seg = 'seg.nii.gz'
    ftmp_label = 'label.nii.gz'
    ftmp_template = 'template.nii'
    ftmp_template_seg = 'template_seg.nii.gz'
    ftmp_template_label = 'template_label.nii.gz'

    # copy files to temporary folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose)
    sct.run('sct_convert -i '+fname_data+' -o '+path_tmp+ftmp_data)
    sct.run('sct_convert -i '+fname_seg+' -o '+path_tmp+ftmp_seg)
    sct.run('sct_convert -i '+fname_landmarks+' -o '+path_tmp+ftmp_label)
    sct.run('sct_convert -i '+fname_template+' -o '+path_tmp+ftmp_template)
    sct.run('sct_convert -i '+fname_template_seg+' -o '+path_tmp+ftmp_template_seg)
    sct.run('sct_convert -i '+fname_template_label+' -o '+path_tmp+ftmp_template_label)

    # go to tmp folder
    os.chdir(path_tmp)

    # smooth segmentation (jcohenadad, issue #613)
    sct.printv('\nSmooth segmentation...', verbose)
    sct.run('sct_maths -i '+ftmp_seg+' -smooth 1.5 -o '+add_suffix(ftmp_seg, '_smooth'))
    ftmp_seg = add_suffix(ftmp_seg, '_smooth')

    # resample data to 1mm isotropic
    sct.printv('\nResample data to 1mm isotropic...', verbose)
    sct.run('sct_resample -i '+ftmp_data+' -mm 1.0x1.0x1.0 -x linear -o '+add_suffix(ftmp_data, '_1mm'))
    ftmp_data = add_suffix(ftmp_data, '_1mm')
    sct.run('sct_resample -i '+ftmp_seg+' -mm 1.0x1.0x1.0 -x linear -o '+add_suffix(ftmp_seg, '_1mm'))
    ftmp_seg = add_suffix(ftmp_seg, '_1mm')
    # N.B. resampling of labels is more complicated, because they are single-point labels, therefore resampling with neighrest neighbour can make them disappear. Therefore a more clever approach is required.
    resample_labels(ftmp_label, ftmp_data, add_suffix(ftmp_label, '_1mm'))
    ftmp_label = add_suffix(ftmp_label, '_1mm')

    # Change orientation of input images to RPI
    sct.printv('\nChange orientation of input images to RPI...', verbose)
    sct.run('sct_image -i '+ftmp_data+' -setorient RPI -o '+add_suffix(ftmp_data, '_rpi'))
    ftmp_data = add_suffix(ftmp_data, '_rpi')
    sct.run('sct_image -i '+ftmp_seg+' -setorient RPI -o '+add_suffix(ftmp_seg, '_rpi'))
    ftmp_seg = add_suffix(ftmp_seg, '_rpi')
    sct.run('sct_image -i '+ftmp_label+' -setorient RPI -o '+add_suffix(ftmp_label, '_rpi'))
    ftmp_label = add_suffix(ftmp_label, '_rpi')

    # get landmarks in native space
    # crop segmentation
    # output: segmentation_rpi_crop.nii.gz
    status_crop, output_crop = sct.run('sct_crop_image -i '+ftmp_seg+' -o '+add_suffix(ftmp_seg, '_crop')+' -dim 2 -bzmax', verbose)
    ftmp_seg = add_suffix(ftmp_seg, '_crop')
    cropping_slices = output_crop.split('Dimension 2: ')[1].split('\n')[0].split(' ')

    # straighten segmentation
    sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose)
    sct.run('sct_straighten_spinalcord -i '+ftmp_seg+' -s '+ftmp_seg+' -o '+add_suffix(ftmp_seg, '_straight')+' -qc 0 -r 0 -v '+str(verbose)+' '+param.param_straighten+arg_cpu, verbose)
    # N.B. DO NOT UPDATE VARIABLE ftmp_seg BECAUSE TEMPORARY USED LATER
    # re-define warping field using non-cropped space (to avoid issue #367)
    sct.run('sct_concat_transfo -w warp_straight2curve.nii.gz -d '+ftmp_data+' -o warp_straight2curve.nii.gz')

    # Label preparation:
    # --------------------------------------------------------------------------------
    # Remove unused label on template. Keep only label present in the input label image
    sct.printv('\nRemove unused label on template. Keep only label present in the input label image...', verbose)
    sct.run('sct_label_utils -p remove -i '+ftmp_template_label+' -o '+ftmp_template_label+' -r '+ftmp_label)

    # Dilating the input label so they can be straighten without losing them
    sct.printv('\nDilating input labels using 3vox ball radius')
    sct.run('sct_maths -i '+ftmp_label+' -o '+add_suffix(ftmp_label, '_dilate')+' -dilate 3')
    ftmp_label = add_suffix(ftmp_label, '_dilate')

    # Apply straightening to labels
    sct.printv('\nApply straightening to labels...', verbose)
    sct.run('sct_apply_transfo -i '+ftmp_label+' -o '+add_suffix(ftmp_label, '_straight')+' -d '+add_suffix(ftmp_seg, '_straight')+' -w warp_curve2straight.nii.gz -x nn')
    ftmp_label = add_suffix(ftmp_label, '_straight')

    # Create crosses for the template labels and get coordinates
    sct.printv('\nCreate a 15 mm cross for the template labels...', verbose)
    template_image = Image(ftmp_template_label)
    coordinates_input = template_image.getNonZeroCoordinates(sorting='value')
    # jcohenadad, issue #628 <<<<<
    # landmark_template = ProcessLabels.get_crosses_coordinates(coordinates_input, gapxy=15)
    landmark_template = coordinates_input
    # >>>>>
    if verbose == 2:
        # TODO: assign cross to image before saving
        template_image.setFileName(add_suffix(ftmp_template_label, '_cross'))
        template_image.save(type='minimize_int')

    # Create crosses for the input labels into straight space and get coordinates
    sct.printv('\nCreate a 15 mm cross for the input labels...', verbose)
    label_straight_image = Image(ftmp_label)
    coordinates_input = label_straight_image.getCoordinatesAveragedByValue()  # landmarks are sorted by value
    # jcohenadad, issue #628 <<<<<
    # landmark_straight = ProcessLabels.get_crosses_coordinates(coordinates_input, gapxy=15)
    landmark_straight = coordinates_input
    # >>>>>
    if verbose == 2:
        # TODO: assign cross to image before saving
        label_straight_image.setFileName(add_suffix(ftmp_label, '_cross'))
        label_straight_image.save(type='minimize_int')

    # Reorganize landmarks
    points_fixed, points_moving = [], []
    for coord in landmark_straight:
        point_straight = label_straight_image.transfo_pix2phys([[coord.x, coord.y, coord.z]])
        points_moving.append([point_straight[0][0], point_straight[0][1], point_straight[0][2]])

    for coord in landmark_template:
        point_template = template_image.transfo_pix2phys([[coord.x, coord.y, coord.z]])
        points_fixed.append([point_template[0][0], point_template[0][1], point_template[0][2]])

    # Register curved landmarks on straight landmarks based on python implementation
    sct.printv('\nComputing rigid transformation (algo=translation-scaling-z) ...', verbose)

    import msct_register_landmarks
    # for some reason, the moving and fixed points are inverted between ITK transform and our python-based transform.
    # and for another unknown reason, x and y dimensions have a negative sign (at least for translation and center of rotation).
    if verbose == 2:
        show_transfo = True
    else:
        show_transfo = False
    (rotation_matrix, translation_array, points_moving_reg, points_moving_barycenter) = msct_register_landmarks.getRigidTransformFromLandmarks(points_moving, points_fixed, constraints='translation-scaling-z', show=show_transfo)
    # writing rigid transformation file
    text_file = open("straight2templateAffine.txt", "w")
    text_file.write("#Insight Transform File V1.0\n")
    text_file.write("#Transform 0\n")
    text_file.write("Transform: AffineTransform_double_3_3\n")
    text_file.write("Parameters: %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f\n" % (
        rotation_matrix[0, 0], rotation_matrix[0, 1], rotation_matrix[0, 2],
        rotation_matrix[1, 0], rotation_matrix[1, 1], rotation_matrix[1, 2],
        rotation_matrix[2, 0], rotation_matrix[2, 1], rotation_matrix[2, 2],
        -translation_array[0, 0], -translation_array[0, 1], translation_array[0, 2]))
    text_file.write("FixedParameters: %.9f %.9f %.9f\n" % (-points_moving_barycenter[0],
                                                           -points_moving_barycenter[1],
                                                           points_moving_barycenter[2]))
    text_file.close()

    # Concatenate transformations: curve --> straight --> affine
    sct.printv('\nConcatenate transformations: curve --> straight --> affine...', verbose)
    sct.run('sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt -d template.nii -o warp_curve2straightAffine.nii.gz')

    # Apply transformation
    sct.printv('\nApply transformation...', verbose)
    sct.run('sct_apply_transfo -i '+ftmp_data+' -o '+add_suffix(ftmp_data, '_straightAffine')+' -d '+ftmp_template+' -w warp_curve2straightAffine.nii.gz')
    ftmp_data = add_suffix(ftmp_data, '_straightAffine')
    sct.run('sct_apply_transfo -i '+ftmp_seg+' -o '+add_suffix(ftmp_seg, '_straightAffine')+' -d '+ftmp_template+' -w warp_curve2straightAffine.nii.gz -x linear')
    ftmp_seg = add_suffix(ftmp_seg, '_straightAffine')

    # threshold and binarize
    sct.printv('\nBinarize segmentation...', verbose)
    sct.run('sct_maths -i '+ftmp_seg+' -thr 0.4 -o '+add_suffix(ftmp_seg, '_thr'))
    sct.run('sct_maths -i '+add_suffix(ftmp_seg, '_thr')+' -bin -o '+add_suffix(ftmp_seg, '_thr_bin'))
    ftmp_seg = add_suffix(ftmp_seg, '_thr_bin')

    # find min-max of anat2template (for subsequent cropping)
    zmin_template, zmax_template = find_zmin_zmax(ftmp_seg)

    # crop template in z-direction (for faster processing)
    sct.printv('\nCrop data in template space (for faster processing)...', verbose)
    sct.run('sct_crop_image -i '+ftmp_template+' -o '+add_suffix(ftmp_template, '_crop')+' -dim 2 -start '+str(zmin_template)+' -end '+str(zmax_template))
    ftmp_template = add_suffix(ftmp_template, '_crop')
    sct.run('sct_crop_image -i '+ftmp_template_seg+' -o '+add_suffix(ftmp_template_seg, '_crop')+' -dim 2 -start '+str(zmin_template)+' -end '+str(zmax_template))
    ftmp_template_seg = add_suffix(ftmp_template_seg, '_crop')
    sct.run('sct_crop_image -i '+ftmp_data+' -o '+add_suffix(ftmp_data, '_crop')+' -dim 2 -start '+str(zmin_template)+' -end '+str(zmax_template))
    ftmp_data = add_suffix(ftmp_data, '_crop')
    sct.run('sct_crop_image -i '+ftmp_seg+' -o '+add_suffix(ftmp_seg, '_crop')+' -dim 2 -start '+str(zmin_template)+' -end '+str(zmax_template))
    ftmp_seg = add_suffix(ftmp_seg, '_crop')

    # sub-sample in z-direction
    sct.printv('\nSub-sample in z-direction (for faster processing)...', verbose)
    sct.run('sct_resample -i '+ftmp_template+' -o '+add_suffix(ftmp_template, '_sub')+' -f 1x1x'+zsubsample, verbose)
    ftmp_template = add_suffix(ftmp_template, '_sub')
    sct.run('sct_resample -i '+ftmp_template_seg+' -o '+add_suffix(ftmp_template_seg, '_sub')+' -f 1x1x'+zsubsample, verbose)
    ftmp_template_seg = add_suffix(ftmp_template_seg, '_sub')
    sct.run('sct_resample -i '+ftmp_data+' -o '+add_suffix(ftmp_data, '_sub')+' -f 1x1x'+zsubsample, verbose)
    ftmp_data = add_suffix(ftmp_data, '_sub')
    sct.run('sct_resample -i '+ftmp_seg+' -o '+add_suffix(ftmp_seg, '_sub')+' -f 1x1x'+zsubsample, verbose)
    ftmp_seg = add_suffix(ftmp_seg, '_sub')

    # Registration straight spinal cord to template
    sct.printv('\nRegister straight spinal cord to template...', verbose)

    # loop across registration steps
    warp_forward = []
    warp_inverse = []
    for i_step in range(1, len(paramreg.steps)+1):
        sct.printv('\nEstimate transformation for step #'+str(i_step)+'...', verbose)
        # identify which is the src and dest
        if paramreg.steps[str(i_step)].type == 'im':
            src = ftmp_data
            dest = ftmp_template
            interp_step = 'linear'
        elif paramreg.steps[str(i_step)].type == 'seg':
            src = ftmp_seg
            dest = ftmp_template_seg
            interp_step = 'nn'
        else:
            sct.printv('ERROR: Wrong image type.', 1, 'error')
        # if step>1, apply warp_forward_concat to the src image to be used
        if i_step > 1:
            # sct.run('sct_apply_transfo -i '+src+' -d '+dest+' -w '+','.join(warp_forward)+' -o '+sct.add_suffix(src, '_reg')+' -x '+interp_step, verbose)
            sct.run('sct_apply_transfo -i '+src+' -d '+dest+' -w '+','.join(warp_forward)+' -o '+add_suffix(src, '_reg')+' -x '+interp_step, verbose)
            src = add_suffix(src, '_reg')
        # register src --> dest
        warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step))
        warp_forward.append(warp_forward_out)
        warp_inverse.append(warp_inverse_out)

    # Concatenate transformations:
    sct.printv('\nConcatenate transformations: anat --> template...', verbose)
    sct.run('sct_concat_transfo -w warp_curve2straightAffine.nii.gz,'+','.join(warp_forward)+' -d template.nii -o warp_anat2template.nii.gz', verbose)
    # sct.run('sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt,'+','.join(warp_forward)+' -d template.nii -o warp_anat2template.nii.gz', verbose)
    sct.printv('\nConcatenate transformations: template --> anat...', verbose)
    warp_inverse.reverse()
    sct.run('sct_concat_transfo -w '+','.join(warp_inverse)+',-straight2templateAffine.txt,warp_straight2curve.nii.gz -d data.nii -o warp_template2anat.nii.gz', verbose)

    # Apply warping fields to anat and template
    if output_type == 1:
        sct.run('sct_apply_transfo -i template.nii -o template2anat.nii.gz -d data.nii -w warp_template2anat.nii.gz -crop 1', verbose)
        sct.run('sct_apply_transfo -i data.nii -o anat2template.nii.gz -d template.nii -w warp_anat2template.nii.gz -crop 1', verbose)

    # come back to parent folder
    os.chdir('..')

   # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(path_tmp+'warp_template2anat.nii.gz', path_output+'warp_template2anat.nii.gz', verbose)
    sct.generate_output_file(path_tmp+'warp_anat2template.nii.gz', path_output+'warp_anat2template.nii.gz', verbose)
    if output_type == 1:
        sct.generate_output_file(path_tmp+'template2anat.nii.gz', path_output+'template2anat'+ext_data, verbose)
        sct.generate_output_file(path_tmp+'anat2template.nii.gz', path_output+'anat2template'+ext_data, verbose)

    # Delete temporary files
    if remove_temp_files:
        sct.printv('\nDelete temporary files...', verbose)
        sct.run('rm -rf '+path_tmp)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: '+str(int(round(elapsed_time)))+'s', verbose)

    # to view results
    sct.printv('\nTo view results, type:', verbose)
    sct.printv('fslview '+fname_data+' '+path_output+'template2anat -b 0,4000 &', verbose, 'info')
    sct.printv('fslview '+fname_template+' -b 0,5000 '+path_output+'anat2template &\n', verbose, 'info')
コード例 #50
0
def main(args=None):
    if args is None:
        args = sys.argv[1:]

    # get parser
    parser = get_parser()
    arguments = parser.parse(args)

    if '-d' in arguments:
        param.download = int(arguments['-d'])
    if '-p' in arguments:
        param.path_data = arguments['-p']
    if '-f' in arguments:
        param.function_to_test = arguments['-f']
    if '-r' in arguments:
        param.remove_tmp_file = int(arguments['-r'])

    # path_data = param.path_data
    function_to_test = param.function_to_test
    # function_to_avoid = param.function_to_avoid
    remove_tmp_file = param.remove_tmp_file

    start_time = time.time()

    # # download data
    # if param.download:
    #     downloaddata()
    #
    # get absolute path and add slash at the end
    param.path_data = sct.slash_at_the_end(os.path.abspath(param.path_data), 1)

    # check existence of testing data folder
    if not os.path.isdir(param.path_data) or param.download:
        downloaddata()

    # display path to data
    sct.printv('\nPath to testing data: '+param.path_data, param.verbose)

    # create temp folder that will have all results and go in it
    param.path_tmp = sct.tmp_create()
    # param.path_tmp = sct.slash_at_the_end('tmp.'+time.strftime("%y%m%d%H%M%S"), 1)
    # sct.create_folder(param.path_tmp)
    os.chdir(param.path_tmp)

    # get list of all scripts to test
    functions = fill_functions()

    # loop across all functions and test them
    status = []
    [status.append(test_function(f)) for f in functions if function_to_test == f]
    if not status:
        for f in functions:
            status.append(test_function(f))
    print 'status: '+str(status)

    # display elapsed time
    elapsed_time = time.time() - start_time
    print 'Finished! Elapsed time: '+str(int(round(elapsed_time)))+'s\n'

    # remove temp files
    if param.remove_tmp_file:
        sct.printv('\nRemove temporary files...', param.verbose)
        sct.run('rm -rf '+param.path_tmp, param.verbose)

    e = 0
    if sum(status) != 0:
        e = 1
    print e

    sys.exit(e)
コード例 #51
0
def eddy_correct(param):

    sct.printv('\n\n\n\n===================================================', param.verbose)
    sct.printv('              Running: eddy_correct', param.verbose)
    sct.printv('===================================================\n', param.verbose)

    path_tmp = sct.tmp_create()

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    fname_data    = param.fname_data
    min_norm      = param.min_norm
    cost_function = param.cost_function_flirt
    verbose       = param.verbose

    sct.printv(('Input File:' + param.fname_data), verbose)
    sct.printv(('Bvecs File:' + param.fname_bvecs), verbose)

    # Extract path, file and extension
    path_data, file_data, ext_data = sct.extract_fname(fname_data)

    if param.mat_eddy == '':
        param.mat_eddy = 'mat_eddy'
    if not os.path.exists(param.mat_eddy):
        os.makedirs(param.mat_eddy)
    mat_eddy    = param.mat_eddy

    # Schedule file for FLIRT
    schedule_file = os.path.join(path_sct , 'flirtsch', 'schedule_TxTy_2mmScale.sch')
    sct.printv(('\n.. Schedule file: ' + schedule_file), verbose)

    # Swap X-Y dimension (to have X as phase-encoding direction)
    if param.swapXY == 1:
        sct.printv('\nSwap X-Y dimension (to have X as phase-encoding direction)', verbose)
        fname_data_new = 'tmp.data_swap'
        cmd = [fsloutput, 'fslswapdim', fname_data, '-y', '-x', '-z', fname_data_new]
        status, output = sct.run(cmd, verbose)
        sct.printv(('\n.. updated data file name: ' + fname_data_new), verbose)
    else:
        fname_data_new = fname_data

    # Get size of data
    sct.printv('\nGet dimensions data...', verbose)
    nx, ny, nz, nt, px, py, pz, pt = Image(fname_data).dim
    sct.printv('.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), verbose)

    # split along T dimension
    sct.printv('\nSplit along T dimension...', verbose)
    from sct_image import split_data
    im_to_split = Image(fname_data_new + '.nii')
    im_split_list = split_data(im_to_split, 3)
    for im in im_split_list:
        im.save()

    # cmd = [fsloutput, 'fslsplit', fname_data_new, file_data + '_T']
    # status, output = sct.run(cmd,verbose)

    # Slice-wise or Volume based method
    if param.slicewise:
        nb_loops = nz
        file_suffix = []
        for iZ in range(nz):
            file_suffix.append('_Z' + str(iZ).zfill(4))
    else:
        nb_loops = 1
        file_suffix = ['']

    # Identify pairs of opposite gradient directions
    sct.printv('\nIdentify pairs of opposite gradient directions...', verbose)

    # Open bvecs file
    sct.printv('\nOpen bvecs file...', verbose)
    bvecs = []
    with open(param.fname_bvecs) as f:
        for line in f:
            bvecs_new = list(map(float, line.split()))
            bvecs.append(bvecs_new)

    # Check if bvecs file is nx3
    if not len(bvecs[0][:]) == 3:
        sct.printv('.. WARNING: bvecs file is 3xn instead of nx3. Consider using sct_dmri_transpose_bvecs.', verbose)
        sct.printv('Transpose bvecs...', verbose)
        # transpose bvecs
        bvecs = list(zip(*bvecs))
    bvecs = np.array(bvecs)

    opposite_gradients_iT = []
    opposite_gradients_jT = []
    index_identified = []
    index_b0 = []
    for iT in range(nt - 1):
        if np.linalg.norm(bvecs[iT, :]) != 0:
            if iT not in index_identified:
                jT = iT + 1
                if np.linalg.norm((bvecs[iT, :] + bvecs[jT, :])) < min_norm:
                    sct.printv(('.. Opposite gradient for #' + str(iT) + ' is: #' + str(jT)), verbose)
                    opposite_gradients_iT.append(iT)
                    opposite_gradients_jT.append(jT)
                    index_identified.append(iT)
        else:
            index_b0.append(iT)
            sct.printv(('.. Opposite gradient for #' + str(iT) + ' is: NONE (b=0)'), verbose)
    nb_oppositeGradients = len(opposite_gradients_iT)
    sct.printv(('.. Number of gradient directions: ' + str(2 * nb_oppositeGradients) + ' (2*' + str(nb_oppositeGradients) + ')'), verbose)
    sct.printv('.. Index b=0: ' + str(index_b0), verbose)

    # =========================================================================
    #	Find transformation
    # =========================================================================
    for iN in range(nb_oppositeGradients):
        i_plus = opposite_gradients_iT[iN]
        i_minus = opposite_gradients_jT[iN]

        sct.printv(('\nFinding affine transformation between volumes #' + str(i_plus) + ' and #' + str(i_minus) + ' (' + str(iN) + '/' + str(nb_oppositeGradients) + ')'), verbose)
        sct.printv('------------------------------------------------------------------------------------\n', verbose)

        # Slicewise correction
        if param.slicewise:
            sct.printv('\nSplit volumes across Z...', verbose)
            fname_plus = file_data + '_T' + str(i_plus).zfill(4)
            fname_plus_Z = file_data + '_T' + str(i_plus).zfill(4) + '_Z'
            im_plus = Image(fname_plus + '.nii')
            im_plus_split_list = split_data(im_plus, 2)
            for im_p in im_plus_split_list:
                im_p.save()
            # cmd = fsloutput + 'fslsplit ' + fname_plus + ' ' + fname_plus_Z + ' -z'
            # status, output = sct.run(cmd,verbose)

            fname_minus = file_data + '_T' + str(i_minus).zfill(4)
            fname_minus_Z = file_data + '_T' + str(i_minus).zfill(4) + '_Z'
            im_minus = Image(fname_minus + '.nii')
            im_minus_split_list = split_data(im_minus, 2)
            for im_m in im_minus_split_list:
                im_m.save()            # cmd = fsloutput + 'fslsplit ' + fname_minus + ' ' + fname_minus_Z + ' -z'
            # status, output = sct.run(cmd,verbose)

        # loop across Z
        for iZ in range(nb_loops):
            fname_plus = file_data + '_T' + str(i_plus).zfill(4) + file_suffix[iZ]

            fname_minus = file_data + '_T' + str(i_minus).zfill(4) + file_suffix[iZ]
            # Find transformation on opposite gradient directions
            sct.printv('\nFind transformation for each pair of opposite gradient directions...', verbose)
            fname_plus_corr = file_data + '_T' + str(i_plus).zfill(4) + file_suffix[iZ] + '_corr_'
            omat = 'mat_' + file_data + '_T' + str(i_plus).zfill(4) + file_suffix[iZ] + '.txt'
            cmd = [fsloutput, 'flirt', '-in', fname_plus, '-ref', fname_minus, '-paddingsize', '3', '-schedule', schedule_file, '-verbose', '2', '-omat', omat, '-cost', cost_function, '-forcescaling']
            status, output = sct.run(cmd, verbose)

            file =  open(omat)
            Matrix = np.loadtxt(file)
            file.close()
            M = Matrix[0:4, 0:4]
            sct.printv(('.. Transformation matrix:\n' + str(M)), verbose)
            sct.printv(('.. Output matrix file: ' + omat), verbose)

            # Divide affine transformation by two
            sct.printv('\nDivide affine transformation by two...', verbose)
            A = (M - np.identity(4)) / 2
            Mplus = np.identity(4) + A
            omat_plus = os.path.join(mat_eddy, 'mat.T' + str(i_plus) + '_Z' + str(iZ) + '.txt')
            file =  open(omat_plus, 'w')
            np.savetxt(omat_plus, Mplus, fmt='%.6e', delimiter='  ', newline='\n', header='', footer='', comments='#')
            file.close()
            sct.printv(('.. Output matrix file (plus): ' + omat_plus), verbose)

            Mminus = np.identity(4) - A
            omat_minus = os.path.join(mat_eddy, 'mat.T' + str(i_minus) + '_Z' + str(iZ) + '.txt')
            file =  open(omat_minus, 'w')
            np.savetxt(omat_minus, Mminus, fmt='%.6e', delimiter='  ', newline='\n', header='', footer='', comments='#')
            file.close()
            sct.printv(('.. Output matrix file (minus): ' + omat_minus), verbose)

    # =========================================================================
    #	Apply affine transformation
    # =========================================================================

    sct.printv('\nApply affine transformation matrix', verbose)
    sct.printv('------------------------------------------------------------------------------------\n', verbose)

    for iN in range(nb_oppositeGradients):
        for iFile in range(2):
            if iFile == 0:
                i_file = opposite_gradients_iT[iN]
            else:
                i_file = opposite_gradients_jT[iN]

            for iZ in range(nb_loops):
                fname = file_data + '_T' + str(i_file).zfill(4) + file_suffix[iZ]
                fname_corr = fname + '_corr_' + '__div2'
                omat = os.path.join(mat_eddy, 'mat.T' + str(i_file) + '_Z' + str(iZ) + '.txt')
                cmd = [fsloutput, 'flirt', '-in', fname, '-ref', fname, '-out', fname_corr, '-init', omat, '-applyxfm', '-paddingsize', '3', '-interp', param.interp]
                status, output = sct.run(cmd, verbose)

    # =========================================================================
    #	Merge back across Z
    # =========================================================================

    sct.printv('\nMerge across Z', verbose)
    sct.printv('------------------------------------------------------------------------------------\n', verbose)

    for iN in range(nb_oppositeGradients):
        i_plus = opposite_gradients_iT[iN]
        fname_plus_corr = file_data + '_T' + str(i_plus).zfill(4) + '_corr_' + '__div2'
        cmd = [fsloutput, 'fslmerge', '-z', fname_plus_corr]

        for iZ in range(nz):
            fname_plus_Z_corr = file_data + '_T' + str(i_plus).zfill(4) + file_suffix[iZ] + '_corr_' + '__div2'
            cmd = cmd + [fname_plus_Z_corr]
        status, output = sct.run(cmd, verbose)

        i_minus = opposite_gradients_jT[iN]
        fname_minus_corr = file_data + '_T' + str(i_minus).zfill(4) + '_corr_' + '__div2'
        cmd = [fsloutput, 'fslmerge', '-z', fname_minus_corr]

        for iZ in range(nz):
            fname_minus_Z_corr = file_data + '_T' + str(i_minus).zfill(4) + file_suffix[iZ] + '_corr_' + '__div2'
            cmd = cmd + [fname_minus_Z_corr]
        status, output = sct.run(cmd, verbose)

    # =========================================================================
    #	Merge files back
    # =========================================================================
    sct.printv('\nMerge back across T...', verbose)
    sct.printv('------------------------------------------------------------------------------------\n', verbose)

    fname_data_corr = os.path.join(param.output_path, file_data + '_eddy')
    cmd = [fsloutput, 'fslmerge', '-t', fname_data_corr]

    for iT in range(nt):
        if os.path.isfile((os.path.join(path_tmp, file_data) + '_T' + str(iT).zfill(4) + '_corr_' + '__div2.nii')):
            fname_data_corr_3d = file_data + '_T' + str(iT).zfill(4) + '_corr_' + '__div2'
        elif iT in index_b0:
            fname_data_corr_3d = file_data + '_T' + str(iT).zfill(4)

        cmd = cmd + [fname_data_corr_3d]
    status, output = sct.run(cmd, verbose)

    # Swap back X-Y dimensions
    if param.swapXY == 1:
        fname_data_final = fname_data
        sct.printv('\nSwap back X-Y dimensions', verbose)
        cmd = [fsloutput, 'fslswapdim', fname_data_corr, '-y', '-x', '-z', fname_data_final]
        status, output = sct.run(cmd, verbose)
    else:
        fname_data_final = fname_data_corr

    sct.printv(('... File created: ' + fname_data_final), verbose)

    sct.printv('\n===================================================', verbose)
    sct.printv('              Completed: eddy_correct', verbose)
    sct.printv('===================================================\n\n\n', verbose)

    # come back
    os.chdir(curdir)

    # Delete temporary files
    if param.delete_tmp_files == 1:
        sct.printv('\nDelete temporary files...')
        sct.rmtree(path_tmp)
コード例 #52
0
def main(args=None):

    # initialization
    start_time = time.time()
    path_out = '.'
    param = Param()

    # reducing the number of CPU used for moco (see issue #201)
    os.environ["ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"] = "1"

    # get path of the toolbox
    # status, param.path_sct = sct.run('echo $SCT_DIR')

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])

    param.fname_data = arguments['-i']
    param.fname_bvecs = arguments['-bvec']

    if '-bval' in arguments:
        param.fname_bvals = arguments['-bval']
    if '-bvalmin' in arguments:
        param.bval_min = arguments['-bvalmin']
    if '-g' in arguments:
        param.group_size = arguments['-g']
    if '-m' in arguments:
        param.fname_mask = arguments['-m']
    if '-param' in arguments:
        param.update(arguments['-param'])
    if '-thr' in arguments:
        param.otsu = arguments['-thr']
    if '-x' in arguments:
        param.interp = arguments['-x']
    if '-ofolder' in arguments:
        path_out = arguments['-ofolder']
    if '-r' in arguments:
        param.remove_temp_files = int(arguments['-r'])
    if '-v' in arguments:
        param.verbose = int(arguments['-v'])

    # Get full path
    param.fname_data = os.path.abspath(param.fname_data)
    param.fname_bvecs = os.path.abspath(param.fname_bvecs)
    if param.fname_bvals != '':
        param.fname_bvals = os.path.abspath(param.fname_bvals)
    if param.fname_mask != '':
        param.fname_mask = os.path.abspath(param.fname_mask)

    # Extract path, file and extension
    path_data, file_data, ext_data = sct.extract_fname(param.fname_data)
    path_mask, file_mask, ext_mask = sct.extract_fname(param.fname_mask)

    path_tmp = sct.tmp_create(basename="dmri_moco", verbose=param.verbose)

    # names of files in temporary folder
    ext = '.nii'
    dmri_name = 'dmri'
    mask_name = 'mask'
    bvecs_fname = 'bvecs.txt'

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...',
               param.verbose)
    convert(param.fname_data, os.path.join(path_tmp, dmri_name + ext))
    sct.copy(param.fname_bvecs,
             os.path.join(path_tmp, bvecs_fname),
             verbose=param.verbose)
    if param.fname_mask != '':
        sct.copy(param.fname_mask,
                 os.path.join(path_tmp, mask_name + ext_mask),
                 verbose=param.verbose)

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # update field in param (because used later).
    # TODO: make this cleaner...
    if param.fname_mask != '':
        param.fname_mask = mask_name + ext_mask

    # run moco
    dmri_moco(param)

    # come back
    os.chdir(curdir)

    # Generate output files
    fname_dmri_moco = os.path.join(path_out,
                                   file_data + param.suffix + ext_data)
    sct.create_folder(path_out)
    sct.printv('\nGenerate output files...', param.verbose)
    sct.generate_output_file(
        os.path.join(path_tmp, dmri_name + param.suffix + ext),
        os.path.join(path_out, file_data + param.suffix + ext_data),
        param.verbose)
    sct.generate_output_file(
        os.path.join(path_tmp, "b0_mean.nii"),
        os.path.join(path_out, 'b0' + param.suffix + '_mean' + ext_data),
        param.verbose)
    sct.generate_output_file(
        os.path.join(path_tmp, "dwi_mean.nii"),
        os.path.join(path_out, 'dwi' + param.suffix + '_mean' + ext_data),
        param.verbose)

    # Delete temporary files
    if param.remove_temp_files == 1:
        sct.printv('\nDelete temporary files...', param.verbose)
        sct.rmtree(path_tmp, verbose=param.verbose)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv(
        '\nFinished! Elapsed time: ' + str(int(round(elapsed_time))) + 's',
        param.verbose)

    sct.display_viewer_syntax([fname_dmri_moco, file_data], mode='ortho,ortho')
コード例 #53
0
def create_mask():
    fsloutput = 'export FSLOUTPUTTYPE=NIFTI; '  # for faster processing, all outputs are in NIFTI

    # parse argument for method
    method_type = param.process[0]
    # check method val
    if not method_type == 'center':
        method_val = param.process[1]

    # check existence of input files
    if method_type == 'centerline':
        sct.check_file_exist(method_val, param.verbose)

    # Extract path/file/extension
    path_data, file_data, ext_data = sct.extract_fname(param.fname_data)

    # Get output folder and file name
    if param.fname_out == '':
        param.fname_out = param.file_prefix+file_data+ext_data

    # create temporary folder
    sct.printv('\nCreate temporary folder...', param.verbose)
    path_tmp = sct.tmp_create(param.verbose)
    # )sct.slash_at_the_end('tmp.'+time.strftime("%y%m%d%H%M%S"), 1)
    # sct.run('mkdir '+path_tmp, param.verbose)

    sct.printv('\nCheck orientation...', param.verbose)
    orientation_input = get_orientation(Image(param.fname_data))
    sct.printv('.. '+orientation_input, param.verbose)
    reorient_coordinates = False

    # copy input data to tmp folder
    convert(param.fname_data, path_tmp+'data.nii')
    if method_type == 'centerline':
        convert(method_val, path_tmp+'centerline.nii.gz')
    if method_type == 'point':
        convert(method_val, path_tmp+'point.nii.gz')

    # go to tmp folder
    os.chdir(path_tmp)

    # reorient to RPI
    sct.printv('\nReorient to RPI...', param.verbose)
    # if not orientation_input == 'RPI':
    sct.run('sct_image -i data.nii -o data_RPI.nii -setorient RPI -v 0', verbose=False)
    if method_type == 'centerline':
        sct.run('sct_image -i centerline.nii.gz -o centerline_RPI.nii.gz -setorient RPI -v 0', verbose=False)
    if method_type == 'point':
        sct.run('sct_image -i point.nii.gz -o point_RPI.nii.gz -setorient RPI -v 0', verbose=False)
    #
    # if method_type == 'centerline':
    #     orientation_centerline = get_orientation_3d(method_val, filename=True)
    #     if not orientation_centerline == 'RPI':
    #         sct.run('sct_image -i ' + method_val + ' -o ' + path_tmp + 'centerline.nii.gz' + ' -setorient RPI -v 0', verbose=False)
    #     else:
    #         convert(method_val, path_tmp+'centerline.nii.gz')

    # Get dimensions of data
    sct.printv('\nGet dimensions of data...', param.verbose)
    nx, ny, nz, nt, px, py, pz, pt = Image('data_RPI.nii').dim
    sct.printv('  ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz)+ ' x ' + str(nt), param.verbose)
    # in case user input 4d data
    if nt != 1:
        sct.printv('WARNING in '+os.path.basename(__file__)+': Input image is 4d but output mask will 3D.', param.verbose, 'warning')
        # extract first volume to have 3d reference
        nii = Image('data_RPI.nii')
        data3d = nii.data[:,:,:,0]
        nii.data = data3d
        nii.save()

    if method_type == 'coord':
        # parse to get coordinate
        coord = map(int, method_val.split('x'))

    if method_type == 'point':
        # get file name
        fname_point = method_val
        # extract coordinate of point
        sct.printv('\nExtract coordinate of point...', param.verbose)
        # TODO: change this way to remove dependence to sct.run. ProcessLabels.display_voxel returns list of coordinates
        status, output = sct.run('sct_label_utils -i point_RPI.nii.gz -display', param.verbose)
        # parse to get coordinate
        coord = output[output.find('Position=')+10:-17].split(',')

    if method_type == 'center':
        # set coordinate at center of FOV
        coord = round(float(nx)/2), round(float(ny)/2)

    if method_type == 'centerline':
        # get name of centerline from user argument
        fname_centerline = 'centerline_RPI.nii.gz'
    else:
        # generate volume with line along Z at coordinates 'coord'
        sct.printv('\nCreate line...', param.verbose)
        fname_centerline = create_line('data_RPI.nii', coord, nz)

    # create mask
    sct.printv('\nCreate mask...', param.verbose)
    centerline = nibabel.load(fname_centerline)  # open centerline
    hdr = centerline.get_header()  # get header
    hdr.set_data_dtype('uint8')  # set imagetype to uint8
    spacing = hdr.structarr['pixdim']
    data_centerline = centerline.get_data()  # get centerline
    z_centerline_not_null = [iz for iz in range(0, nz, 1) if data_centerline[:, :, iz].any()]
    # get center of mass of the centerline
    cx = [0] * nz
    cy = [0] * nz
    for iz in range(0, nz, 1):
        if iz in z_centerline_not_null:
            cx[iz], cy[iz] = ndimage.measurements.center_of_mass(numpy.array(data_centerline[:, :, iz]))
    # create 2d masks
    file_mask = 'data_mask'
    for iz in range(nz):
        if iz not in z_centerline_not_null:
            # write an empty nifty volume
            img = nibabel.Nifti1Image(data_centerline[:, :, iz], None, hdr)
            nibabel.save(img, (file_mask + str(iz) + '.nii'))
        else:
            center = numpy.array([cx[iz], cy[iz]])
            mask2d = create_mask2d(center, param.shape, param.size, nx, ny, even=param.even, spacing=spacing)
            # Write NIFTI volumes
            img = nibabel.Nifti1Image(mask2d, None, hdr)
            nibabel.save(img, (file_mask+str(iz)+'.nii'))
    # merge along Z
    # cmd = 'fslmerge -z mask '

    # CHANGE THAT CAN IMPACT SPEED:
    # related to issue #755, we cannot open more than 256 files at one time.
    # to solve this issue, we do not open more than 100 files
    '''
    im_list = []
    im_temp = []
    for iz in range(nz_not_null):
        if iz != 0 and iz % 100 == 0:
            im_temp.append(concat_data(im_list, 2))
            im_list = [Image(file_mask + str(iz) + '.nii')]
        else:
            im_list.append(Image(file_mask+str(iz)+'.nii'))

    if im_temp:
        im_temp.append(concat_data(im_list, 2))
        im_out = concat_data(im_temp, 2, no_expand=True)
    else:
        im_out = concat_data(im_list, 2)
    '''
    fname_list = [file_mask + str(iz) + '.nii' for iz in range(nz)]
    im_out = concat_data(fname_list, dim=2)
    im_out.setFileName('mask_RPI.nii.gz')
    im_out.save()

    # reorient if necessary
    # if not orientation_input == 'RPI':
    sct.run('sct_image -i mask_RPI.nii.gz -o mask.nii.gz -setorient ' + orientation_input, param.verbose)

    # copy header input --> mask
    im_dat = Image('data.nii')
    im_mask = Image('mask.nii.gz')
    im_mask = copy_header(im_dat, im_mask)
    im_mask.save()

    # come back to parent folder
    os.chdir('..')

    # Generate output files
    sct.printv('\nGenerate output files...', param.verbose)
    sct.generate_output_file(path_tmp+'mask.nii.gz', param.fname_out)

    # Remove temporary files
    if param.remove_tmp_files == 1:
        sct.printv('\nRemove temporary files...', param.verbose)
        sct.run('rm -rf '+path_tmp, param.verbose, error_exit='warning')

    # to view results
    sct.printv('\nDone! To view results, type:', param.verbose)
    sct.printv('fslview '+param.fname_data+' '+param.fname_out+' -l Red -t 0.5 &', param.verbose, 'info')
    print
コード例 #54
0
    def apply(self):
        # Initialization
        fname_src = self.input_filename  # source image (moving)
        list_warp = self.list_warp  # list of warping fields
        fname_out = self.output_filename  # output
        fname_dest = self.fname_dest  # destination image (fix)
        verbose = self.verbose
        remove_temp_files = self.remove_temp_files
        crop_reference = self.crop  # if = 1, put 0 everywhere around warping field, if = 2, real crop

        islabel = False
        if self.interp == 'label':
            islabel = True
            self.interp = 'nn'

        interp = sct.get_interpolation('isct_antsApplyTransforms', self.interp)

        # Parse list of warping fields
        sct.printv('\nParse list of warping fields...', verbose)
        use_inverse = []
        fname_warp_list_invert = []
        # list_warp = list_warp.replace(' ', '')  # remove spaces
        # list_warp = list_warp.split(",")  # parse with comma
        for idx_warp, path_warp in enumerate(self.list_warp):
            # Check if this transformation should be inverted
            if path_warp in self.list_warpinv:
                use_inverse.append('-i')
                # list_warp[idx_warp] = path_warp[1:]  # remove '-'
                fname_warp_list_invert += [[use_inverse[idx_warp], list_warp[idx_warp]]]
            else:
                use_inverse.append('')
                fname_warp_list_invert += [[path_warp]]
            path_warp = list_warp[idx_warp]
            if path_warp.endswith((".nii", ".nii.gz")) \
             and Image(list_warp[idx_warp]).header.get_intent()[0] != 'vector':
                raise ValueError("Displacement field in {} is invalid: should be encoded" \
                 " in a 5D file with vector intent code" \
                 " (see https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h" \
                 .format(path_warp))
        # need to check if last warping field is an affine transfo
        isLastAffine = False
        path_fname, file_fname, ext_fname = sct.extract_fname(fname_warp_list_invert[-1][-1])
        if ext_fname in ['.txt', '.mat']:
            isLastAffine = True

        # check if destination file is 3d
        if not sct.check_if_3d(fname_dest):
            sct.printv('ERROR: Destination data must be 3d')

        # N.B. Here we take the inverse of the warp list, because sct_WarpImageMultiTransform concatenates in the reverse order
        fname_warp_list_invert.reverse()
        fname_warp_list_invert = functools.reduce(lambda x, y: x + y, fname_warp_list_invert)

        # Extract path, file and extension
        path_src, file_src, ext_src = sct.extract_fname(fname_src)
        path_dest, file_dest, ext_dest = sct.extract_fname(fname_dest)

        # Get output folder and file name
        if fname_out == '':
            path_out = ''  # output in user's current directory
            file_out = file_src + '_reg'
            ext_out = ext_src
            fname_out = os.path.join(path_out, file_out + ext_out)

        # Get dimensions of data
        sct.printv('\nGet dimensions of data...', verbose)
        img_src = Image(fname_src)
        nx, ny, nz, nt, px, py, pz, pt = img_src.dim
        # nx, ny, nz, nt, px, py, pz, pt = sct.get_dimension(fname_src)
        sct.printv('  ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), verbose)

        # if 3d
        if nt == 1:
            # Apply transformation
            sct.printv('\nApply transformation...', verbose)
            if nz in [0, 1]:
                dim = '2'
            else:
                dim = '3'
            # if labels, dilate before resampling
            if islabel:
                sct.printv("\nDilate labels before warping...")
                path_tmp = sct.tmp_create(basename="apply_transfo", verbose=verbose)
                fname_dilated_labels = os.path.join(path_tmp, "dilated_data.nii")
                # dilate points
                sct.run(['sct_maths',
                         '-i', fname_src,
                         '-o', fname_dilated_labels,
                         '-dilate', '2'])
                fname_src = fname_dilated_labels

            sct.printv("\nApply transformation and resample to destination space...", verbose)
            sct.run(['isct_antsApplyTransforms',
                     '-d', dim,
                     '-i', fname_src,
                     '-o', fname_out,
                     '-t'
                     ] + fname_warp_list_invert + ['-r', fname_dest] + interp, verbose=verbose, is_sct_binary=True)

        # if 4d, loop across the T dimension
        else:
            if islabel:
                raise NotImplementedError

            dim = '4'
            path_tmp = sct.tmp_create(basename="apply_transfo", verbose=verbose)

            # convert to nifti into temp folder
            sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose)
            img_src.save(os.path.join(path_tmp, "data.nii"))
            sct.copy(fname_dest, os.path.join(path_tmp, file_dest + ext_dest))
            fname_warp_list_tmp = []
            for fname_warp in list_warp:
                path_warp, file_warp, ext_warp = sct.extract_fname(fname_warp)
                sct.copy(fname_warp, os.path.join(path_tmp, file_warp + ext_warp))
                fname_warp_list_tmp.append(file_warp + ext_warp)
            fname_warp_list_invert_tmp = fname_warp_list_tmp[::-1]

            curdir = os.getcwd()
            os.chdir(path_tmp)

            # split along T dimension
            sct.printv('\nSplit along T dimension...', verbose)

            im_dat = Image('data.nii')
            im_header = im_dat.hdr
            data_split_list = sct_image.split_data(im_dat, 3)
            for im in data_split_list:
                im.save()

            # apply transfo
            sct.printv('\nApply transformation to each 3D volume...', verbose)
            for it in range(nt):
                file_data_split = 'data_T' + str(it).zfill(4) + '.nii'
                file_data_split_reg = 'data_reg_T' + str(it).zfill(4) + '.nii'

                status, output = sct.run(['isct_antsApplyTransforms',
                                          '-d', '3',
                                          '-i', file_data_split,
                                          '-o', file_data_split_reg,
                                          '-t',
                                          ] + fname_warp_list_invert_tmp + [
                    '-r', file_dest + ext_dest,
                ] + interp, verbose, is_sct_binary=True)

            # Merge files back
            sct.printv('\nMerge file back...', verbose)
            import glob
            path_out, name_out, ext_out = sct.extract_fname(fname_out)
            # im_list = [Image(file_name) for file_name in glob.glob('data_reg_T*.nii')]
            # concat_data use to take a list of image in input, now takes a list of file names to open the files one by one (see issue #715)
            fname_list = glob.glob('data_reg_T*.nii')
            fname_list.sort()
            im_out = sct_image.concat_data(fname_list, 3, im_header['pixdim'])
            im_out.save(name_out + ext_out)

            os.chdir(curdir)
            sct.generate_output_file(os.path.join(path_tmp, name_out + ext_out), fname_out)
            # Delete temporary folder if specified
            if remove_temp_files:
                sct.printv('\nRemove temporary files...', verbose)
                sct.rmtree(path_tmp, verbose=verbose)

        # Copy affine matrix from destination space to make sure qform/sform are the same
        sct.printv("Copy affine matrix from destination space to make sure qform/sform are the same.", verbose)
        im_src_reg = Image(fname_out)
        im_src_reg.copy_qform_from_ref(Image(fname_dest))
        im_src_reg.save(verbose=0)  # set verbose=0 to avoid warning message about rewriting file

        if islabel:
            sct.printv("\nTake the center of mass of each registered dilated labels...")
            sct.run(['sct_label_utils',
                     '-i', fname_out,
                     '-o', fname_out,
                     '-cubic-to-point'])
            if remove_temp_files:
                sct.printv('\nRemove temporary files...', verbose)
                sct.rmtree(path_tmp, verbose=verbose)

        # 2. crop the resulting image using dimensions from the warping field
        warping_field = fname_warp_list_invert[-1]
        # if last warping field is an affine transfo, we need to compute the space of the concatenate warping field:
        if isLastAffine:
            sct.printv('WARNING: the resulting image could have wrong apparent results. You should use an affine transformation as last transformation...', verbose, 'warning')
        else:
            if crop_reference in [1, 2]:
                # Extract only the first ndim of the warping field
                img_warp = Image(warping_field)
                if dim == '2':
                    img_warp_ndim = Image(img_src.data[:, :], hdr=img_warp.hdr)
                elif dim in ['3', '4']:
                    img_warp_ndim = Image(img_src.data[:, :, :], hdr=img_warp.hdr)
                # Set zero to everything outside the warping field
                cropper = ImageCropper(Image(fname_out))
                cropper.get_bbox_from_ref(img_warp_ndim)
                if crop_reference == 1:
                    img_out = cropper.crop(background=0)
                elif crop_reference == 2:
                    img_out = cropper.crop()
                img_out.save(fname_out)

        sct.display_viewer_syntax([fname_dest, fname_out], verbose=verbose)
コード例 #55
0
def main(args=None):

    # initialization
    start_time = time.time()
    param = Param()

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])

    param.fname_data = arguments['-i']
    if '-g' in arguments:
        param.group_size = arguments['-g']
    if '-m' in arguments:
        param.fname_mask = arguments['-m']
    if '-param' in arguments:
        param.update(arguments['-param'])
    if '-x' in arguments:
        param.interp = arguments['-x']
    if '-ofolder' in arguments:
        path_out = arguments['-ofolder']
    if '-r' in arguments:
        param.remove_temp_files = int(arguments['-r'])
    param.verbose = int(arguments.get('-v'))
    sct.init_sct(log_level=param.verbose, update=True)  # Update log level

    sct.printv('\nInput parameters:', param.verbose)
    sct.printv('  input file ............' + param.fname_data, param.verbose)

    # Get full path
    param.fname_data = os.path.abspath(param.fname_data)
    if param.fname_mask != '':
        param.fname_mask = os.path.abspath(param.fname_mask)

    # Extract path, file and extension
    path_data, file_data, ext_data = sct.extract_fname(param.fname_data)

    path_tmp = sct.tmp_create(basename="fmri_moco", verbose=param.verbose)

    # Copying input data to tmp folder and convert to nii
    # TODO: no need to do that (takes time for nothing)
    sct.printv('\nCopying input data to tmp folder and convert to nii...', param.verbose)
    convert(param.fname_data, os.path.join(path_tmp, "fmri.nii"), squeeze_data=False)

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # run moco
    fmri_moco(param)

    # come back
    os.chdir(curdir)

    # Generate output files
    fname_fmri_moco = os.path.join(path_out, file_data + param.suffix + ext_data)
    sct.create_folder(path_out)
    sct.printv('\nGenerate output files...', param.verbose)
    sct.generate_output_file(os.path.join(path_tmp, "fmri" + param.suffix + '.nii'), fname_fmri_moco, param.verbose)
    sct.generate_output_file(os.path.join(path_tmp, "fmri" + param.suffix + '_mean.nii'), os.path.join(path_out, file_data + param.suffix + '_mean' + ext_data), param.verbose)

    # Delete temporary files
    if param.remove_temp_files == 1:
        sct.printv('\nDelete temporary files...', param.verbose)
        sct.rmtree(path_tmp, verbose=param.verbose)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', param.verbose)

    sct.display_viewer_syntax([fname_fmri_moco, file_data], mode='ortho,ortho')
コード例 #56
0
def main(args=None):

    # initializations
    param = Param()

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(args)
    fname_data = arguments['-i']
    fname_seg = arguments['-s']
    if '-l' in arguments:
        fname_landmarks = arguments['-l']
        label_type = 'body'
    elif '-ldisc' in arguments:
        fname_landmarks = arguments['-ldisc']
        label_type = 'disc'
    else:
        sct.printv('ERROR: Labels should be provided.', 1, 'error')
    if '-ofolder' in arguments:
        path_output = arguments['-ofolder']
    else:
        path_output = ''

    param.path_qc = arguments.get("-qc", None)

    path_template = arguments['-t']
    contrast_template = arguments['-c']
    ref = arguments['-ref']
    remove_temp_files = int(arguments['-r'])
    verbose = int(arguments['-v'])
    param.verbose = verbose  # TODO: not clean, unify verbose or param.verbose in code, but not both
    # if '-straighten-fitting' in arguments:
    param.straighten_fitting = arguments['-straighten-fitting']
    # if '-cpu-nb' in arguments:
    #     arg_cpu = ' -cpu-nb '+str(arguments['-cpu-nb'])
    # else:
    #     arg_cpu = ''
    # registration parameters
    if '-param' in arguments:
        # reset parameters but keep step=0 (might be overwritten if user specified step=0)
        paramreg = ParamregMultiStep([step0])
        if ref == 'subject':
            paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz'
        # add user parameters
        for paramStep in arguments['-param']:
            paramreg.addStep(paramStep)
    else:
        paramreg = ParamregMultiStep([step0, step1, step2])
        # if ref=subject, initialize registration using different affine parameters
        if ref == 'subject':
            paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz'

    # initialize other parameters
    zsubsample = param.zsubsample

    # retrieve template file names
    file_template_vertebral_labeling = get_file_label(
        os.path.join(path_template, 'template'), 'vertebral labeling')
    file_template = get_file_label(
        os.path.join(path_template, 'template'),
        contrast_template.upper() + '-weighted template')
    file_template_seg = get_file_label(os.path.join(path_template, 'template'),
                                       'spinal cord')

    # start timer
    start_time = time.time()

    # get fname of the template + template objects
    fname_template = os.path.join(path_template, 'template', file_template)
    fname_template_vertebral_labeling = os.path.join(
        path_template, 'template', file_template_vertebral_labeling)
    fname_template_seg = os.path.join(path_template, 'template',
                                      file_template_seg)
    fname_template_disc_labeling = os.path.join(path_template, 'template',
                                                'PAM50_label_disc.nii.gz')

    # check file existence
    # TODO: no need to do that!
    sct.printv('\nCheck template files...')
    sct.check_file_exist(fname_template, verbose)
    sct.check_file_exist(fname_template_vertebral_labeling, verbose)
    sct.check_file_exist(fname_template_seg, verbose)
    path_data, file_data, ext_data = sct.extract_fname(fname_data)

    # sct.printv(arguments)
    sct.printv('\nCheck parameters:', verbose)
    sct.printv('  Data:                 ' + fname_data, verbose)
    sct.printv('  Landmarks:            ' + fname_landmarks, verbose)
    sct.printv('  Segmentation:         ' + fname_seg, verbose)
    sct.printv('  Path template:        ' + path_template, verbose)
    sct.printv('  Remove temp files:    ' + str(remove_temp_files), verbose)

    # check input labels
    labels = check_labels(fname_landmarks, label_type=label_type)

    vertebral_alignment = False
    if len(labels) > 2 and label_type == 'disc':
        vertebral_alignment = True

    path_tmp = sct.tmp_create(basename="register_to_template", verbose=verbose)

    # set temporary file names
    ftmp_data = 'data.nii'
    ftmp_seg = 'seg.nii.gz'
    ftmp_label = 'label.nii.gz'
    ftmp_template = 'template.nii'
    ftmp_template_seg = 'template_seg.nii.gz'
    ftmp_template_label = 'template_label.nii.gz'

    # copy files to temporary folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...',
               verbose)
    Image(fname_data).save(os.path.join(path_tmp, ftmp_data))
    Image(fname_seg).save(os.path.join(path_tmp, ftmp_seg))
    Image(fname_landmarks).save(os.path.join(path_tmp, ftmp_label))
    Image(fname_template).save(os.path.join(path_tmp, ftmp_template))
    Image(fname_template_seg).save(os.path.join(path_tmp, ftmp_template_seg))
    Image(fname_template_vertebral_labeling).save(
        os.path.join(path_tmp, ftmp_template_label))
    if label_type == 'disc':
        Image(fname_template_disc_labeling).save(
            os.path.join(path_tmp, ftmp_template_label))

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Generate labels from template vertebral labeling
    if label_type == 'body':
        sct.printv('\nGenerate labels from template vertebral labeling',
                   verbose)
        ftmp_template_label_, ftmp_template_label = ftmp_template_label, sct.add_suffix(
            ftmp_template_label, "_body")
        sct_label_utils.main(args=[
            '-i', ftmp_template_label_, '-vert-body', '0', '-o',
            ftmp_template_label
        ])

    # check if provided labels are available in the template
    sct.printv('\nCheck if provided labels are available in the template',
               verbose)
    image_label_template = Image(ftmp_template_label)
    labels_template = image_label_template.getNonZeroCoordinates(
        sorting='value')
    if labels[-1].value > labels_template[-1].value:
        sct.printv(
            'ERROR: Wrong landmarks input. Labels must have correspondence in template space. \nLabel max '
            'provided: ' + str(labels[-1].value) +
            '\nLabel max from template: ' + str(labels_template[-1].value),
            verbose, 'error')

    # if only one label is present, force affine transformation to be Tx,Ty,Tz only (no scaling)
    if len(labels) == 1:
        paramreg.steps['0'].dof = 'Tx_Ty_Tz'
        sct.printv(
            'WARNING: Only one label is present. Forcing initial transformation to: '
            + paramreg.steps['0'].dof, 1, 'warning')

    # Project labels onto the spinal cord centerline because later, an affine transformation is estimated between the
    # template's labels (centered in the cord) and the subject's labels (assumed to be centered in the cord).
    # If labels are not centered, mis-registration errors are observed (see issue #1826)
    ftmp_label = project_labels_on_spinalcord(ftmp_label, ftmp_seg)

    # binarize segmentation (in case it has values below 0 caused by manual editing)
    sct.printv('\nBinarize segmentation', verbose)
    ftmp_seg_, ftmp_seg = ftmp_seg, sct.add_suffix(ftmp_seg, "_bin")
    sct.run(['sct_maths', '-i', ftmp_seg_, '-bin', '0.5', '-o', ftmp_seg])

    # Switch between modes: subject->template or template->subject
    if ref == 'template':

        # resample data to 1mm isotropic
        sct.printv('\nResample data to 1mm isotropic...', verbose)
        sct.run([
            'sct_resample', '-i', ftmp_data, '-mm', '1.0x1.0x1.0', '-x',
            'linear', '-o',
            add_suffix(ftmp_data, '_1mm')
        ])
        ftmp_data = add_suffix(ftmp_data, '_1mm')
        sct.run([
            'sct_resample', '-i', ftmp_seg, '-mm', '1.0x1.0x1.0', '-x',
            'linear', '-o',
            add_suffix(ftmp_seg, '_1mm')
        ])
        ftmp_seg = add_suffix(ftmp_seg, '_1mm')
        # N.B. resampling of labels is more complicated, because they are single-point labels, therefore resampling
        # with nearest neighbour can make them disappear.
        resample_labels(ftmp_label, ftmp_data, add_suffix(ftmp_label, '_1mm'))
        ftmp_label = add_suffix(ftmp_label, '_1mm')

        # Change orientation of input images to RPI
        sct.printv('\nChange orientation of input images to RPI...', verbose)

        ftmp_data = Image(ftmp_data).change_orientation(
            "RPI", generate_path=True).save().absolutepath
        ftmp_seg = Image(ftmp_seg).change_orientation(
            "RPI", generate_path=True).save().absolutepath
        ftmp_label = Image(ftmp_label).change_orientation(
            "RPI", generate_path=True).save().absolutepath

        ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_crop')
        if vertebral_alignment:
            # cropping the segmentation based on the label coverage to ensure good registration with vertebral alignment
            # See https://github.com/neuropoly/spinalcordtoolbox/pull/1669 for details
            image_labels = Image(ftmp_label)
            coordinates_labels = image_labels.getNonZeroCoordinates(
                sorting='z')
            nx, ny, nz, nt, px, py, pz, pt = image_labels.dim
            offset_crop = 10.0 * pz  # cropping the image 10 mm above and below the highest and lowest label
            cropping_slices = [
                coordinates_labels[0].z - offset_crop,
                coordinates_labels[-1].z + offset_crop
            ]
            # make sure that the cropping slices do not extend outside of the slice range (issue #1811)
            if cropping_slices[0] < 0:
                cropping_slices[0] = 0
            if cropping_slices[1] > nz:
                cropping_slices[1] = nz
            msct_image.spatial_crop(
                Image(ftmp_seg_),
                dict(((2,
                       np.int32(np.round(cropping_slices))), ))).save(ftmp_seg)
        else:
            # if we do not align the vertebral levels, we crop the segmentation from top to bottom
            im_seg_rpi = Image(ftmp_seg_)
            bottom = 0
            for data in msct_image.SlicerOneAxis(im_seg_rpi, "IS"):
                if (data != 0).any():
                    break
                bottom += 1
            top = im_seg_rpi.data.shape[2]
            for data in msct_image.SlicerOneAxis(im_seg_rpi, "SI"):
                if (data != 0).any():
                    break
                top -= 1
            msct_image.spatial_crop(im_seg_rpi, dict(
                ((2, (bottom, top)), ))).save(ftmp_seg)

        # straighten segmentation
        sct.printv(
            '\nStraighten the spinal cord using centerline/segmentation...',
            verbose)

        # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
        fn_warp_curve2straight = os.path.join(curdir,
                                              "warp_curve2straight.nii.gz")
        fn_warp_straight2curve = os.path.join(curdir,
                                              "warp_straight2curve.nii.gz")
        fn_straight_ref = os.path.join(curdir, "straight_ref.nii.gz")

        cache_input_files = [ftmp_seg]
        if vertebral_alignment:
            cache_input_files += [
                ftmp_template_seg,
                ftmp_label,
                ftmp_template_label,
            ]
        cache_sig = sct.cache_signature(input_files=cache_input_files, )
        cachefile = os.path.join(curdir, "straightening.cache")
        if sct.cache_valid(
                cachefile, cache_sig
        ) and os.path.isfile(fn_warp_curve2straight) and os.path.isfile(
                fn_warp_straight2curve) and os.path.isfile(fn_straight_ref):
            sct.printv(
                'Reusing existing warping field which seems to be valid',
                verbose, 'warning')
            sct.copy(fn_warp_curve2straight, 'warp_curve2straight.nii.gz')
            sct.copy(fn_warp_straight2curve, 'warp_straight2curve.nii.gz')
            sct.copy(fn_straight_ref, 'straight_ref.nii.gz')
            # apply straightening
            sct.run([
                'sct_apply_transfo', '-i', ftmp_seg, '-w',
                'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz',
                '-o',
                add_suffix(ftmp_seg, '_straight')
            ])
        else:
            from sct_straighten_spinalcord import SpinalCordStraightener
            sc_straight = SpinalCordStraightener(ftmp_seg, ftmp_seg)
            sc_straight.algo_fitting = param.straighten_fitting
            sc_straight.output_filename = add_suffix(ftmp_seg, '_straight')
            sc_straight.path_output = './'
            sc_straight.qc = '0'
            sc_straight.remove_temp_files = remove_temp_files
            sc_straight.verbose = verbose

            if vertebral_alignment:
                sc_straight.centerline_reference_filename = ftmp_template_seg
                sc_straight.use_straight_reference = True
                sc_straight.discs_input_filename = ftmp_label
                sc_straight.discs_ref_filename = ftmp_template_label

            sc_straight.straighten()
            sct.cache_save(cachefile, cache_sig)

        # N.B. DO NOT UPDATE VARIABLE ftmp_seg BECAUSE TEMPORARY USED LATER
        # re-define warping field using non-cropped space (to avoid issue #367)
        s, o = sct.run([
            'sct_concat_transfo', '-w', 'warp_straight2curve.nii.gz', '-d',
            ftmp_data, '-o', 'warp_straight2curve.nii.gz'
        ])

        if vertebral_alignment:
            sct.copy('warp_curve2straight.nii.gz',
                     'warp_curve2straightAffine.nii.gz')
        else:
            # Label preparation:
            # --------------------------------------------------------------------------------
            # Remove unused label on template. Keep only label present in the input label image
            sct.printv(
                '\nRemove unused label on template. Keep only label present in the input label image...',
                verbose)
            sct.run([
                'sct_label_utils', '-i', ftmp_template_label, '-o',
                ftmp_template_label, '-remove', ftmp_label
            ])

            # Dilating the input label so they can be straighten without losing them
            sct.printv('\nDilating input labels using 3vox ball radius')
            sct.run([
                'sct_maths', '-i', ftmp_label, '-o',
                add_suffix(ftmp_label, '_dilate'), '-dilate', '3'
            ])
            ftmp_label = add_suffix(ftmp_label, '_dilate')

            # Apply straightening to labels
            sct.printv('\nApply straightening to labels...', verbose)
            sct.run([
                'sct_apply_transfo', '-i', ftmp_label, '-o',
                add_suffix(ftmp_label, '_straight'), '-d',
                add_suffix(ftmp_seg, '_straight'), '-w',
                'warp_curve2straight.nii.gz', '-x', 'nn'
            ])
            ftmp_label = add_suffix(ftmp_label, '_straight')

            # Compute rigid transformation straight landmarks --> template landmarks
            sct.printv('\nEstimate transformation for step #0...', verbose)
            from msct_register_landmarks import register_landmarks
            try:
                register_landmarks(ftmp_label,
                                   ftmp_template_label,
                                   paramreg.steps['0'].dof,
                                   fname_affine='straight2templateAffine.txt',
                                   verbose=verbose)
            except Exception:
                sct.printv(
                    'ERROR: input labels do not seem to be at the right place. Please check the position of the labels. See documentation for more details: https://www.slideshare.net/neuropoly/sct-course-20190121/42',
                    verbose=verbose,
                    type='error')

            # Concatenate transformations: curve --> straight --> affine
            sct.printv(
                '\nConcatenate transformations: curve --> straight --> affine...',
                verbose)
            sct.run([
                'sct_concat_transfo', '-w',
                'warp_curve2straight.nii.gz,straight2templateAffine.txt', '-d',
                'template.nii', '-o', 'warp_curve2straightAffine.nii.gz'
            ])

        # Apply transformation
        sct.printv('\nApply transformation...', verbose)
        sct.run([
            'sct_apply_transfo', '-i', ftmp_data, '-o',
            add_suffix(ftmp_data, '_straightAffine'), '-d', ftmp_template,
            '-w', 'warp_curve2straightAffine.nii.gz'
        ])
        ftmp_data = add_suffix(ftmp_data, '_straightAffine')
        sct.run([
            'sct_apply_transfo', '-i', ftmp_seg, '-o',
            add_suffix(ftmp_seg, '_straightAffine'), '-d', ftmp_template, '-w',
            'warp_curve2straightAffine.nii.gz', '-x', 'linear'
        ])
        ftmp_seg = add_suffix(ftmp_seg, '_straightAffine')
        """
        # Benjamin: Issue from Allan Martin, about the z=0 slice that is screwed up, caused by the affine transform.
        # Solution found: remove slices below and above landmarks to avoid rotation effects
        points_straight = []
        for coord in landmark_template:
            points_straight.append(coord.z)
        min_point, max_point = int(np.round(np.min(points_straight))), int(np.round(np.max(points_straight)))
        ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_black')
        msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, (min_point,max_point)),))).save(ftmp_seg)

        """
        # open segmentation
        im = Image(ftmp_seg)
        im_new = msct_image.empty_like(im)
        # binarize
        im_new.data = im.data > 0.5
        # find min-max of anat2template (for subsequent cropping)
        zmin_template, zmax_template = msct_image.find_zmin_zmax(im_new,
                                                                 threshold=0.5)
        # save binarized segmentation
        im_new.save(add_suffix(ftmp_seg, '_bin'))  # unused?
        # crop template in z-direction (for faster processing)
        # TODO: refactor to use python module instead of doing i/o
        sct.printv('\nCrop data in template space (for faster processing)...',
                   verbose)
        ftmp_template_, ftmp_template = ftmp_template, add_suffix(
            ftmp_template, '_crop')
        msct_image.spatial_crop(Image(ftmp_template_),
                                dict(
                                    ((2,
                                      (zmin_template,
                                       zmax_template)), ))).save(ftmp_template)

        ftmp_template_seg_, ftmp_template_seg = ftmp_template_seg, add_suffix(
            ftmp_template_seg, '_crop')
        msct_image.spatial_crop(
            Image(ftmp_template_seg_),
            dict(((2, (zmin_template,
                       zmax_template)), ))).save(ftmp_template_seg)

        ftmp_data_, ftmp_data = ftmp_data, add_suffix(ftmp_data, '_crop')
        msct_image.spatial_crop(Image(ftmp_data_),
                                dict(((2, (zmin_template,
                                           zmax_template)), ))).save(ftmp_data)

        ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_crop')
        msct_image.spatial_crop(Image(ftmp_seg_),
                                dict(((2, (zmin_template,
                                           zmax_template)), ))).save(ftmp_seg)

        # sub-sample in z-direction
        # TODO: refactor to use python module instead of doing i/o
        sct.printv('\nSub-sample in z-direction (for faster processing)...',
                   verbose)
        sct.run([
            'sct_resample', '-i', ftmp_template, '-o',
            add_suffix(ftmp_template, '_sub'), '-f', '1x1x' + zsubsample
        ], verbose)
        ftmp_template = add_suffix(ftmp_template, '_sub')
        sct.run([
            'sct_resample', '-i', ftmp_template_seg, '-o',
            add_suffix(ftmp_template_seg, '_sub'), '-f', '1x1x' + zsubsample
        ], verbose)
        ftmp_template_seg = add_suffix(ftmp_template_seg, '_sub')
        sct.run([
            'sct_resample', '-i', ftmp_data, '-o',
            add_suffix(ftmp_data, '_sub'), '-f', '1x1x' + zsubsample
        ], verbose)
        ftmp_data = add_suffix(ftmp_data, '_sub')
        sct.run([
            'sct_resample', '-i', ftmp_seg, '-o',
            add_suffix(ftmp_seg, '_sub'), '-f', '1x1x' + zsubsample
        ], verbose)
        ftmp_seg = add_suffix(ftmp_seg, '_sub')

        # Registration straight spinal cord to template
        sct.printv('\nRegister straight spinal cord to template...', verbose)

        # loop across registration steps
        warp_forward = []
        warp_inverse = []
        for i_step in range(1, len(paramreg.steps)):
            sct.printv(
                '\nEstimate transformation for step #' + str(i_step) + '...',
                verbose)
            # identify which is the src and dest
            if paramreg.steps[str(i_step)].type == 'im':
                src = ftmp_data
                dest = ftmp_template
                interp_step = 'linear'
            elif paramreg.steps[str(i_step)].type == 'seg':
                src = ftmp_seg
                dest = ftmp_template_seg
                interp_step = 'nn'
            else:
                sct.printv('ERROR: Wrong image type.', 1, 'error')
            # if step>1, apply warp_forward_concat to the src image to be used
            if i_step > 1:
                # sct.run('sct_apply_transfo -i '+src+' -d '+dest+' -w '+','.join(warp_forward)+' -o '+sct.add_suffix(src, '_reg')+' -x '+interp_step, verbose)
                # apply transformation from previous step, to use as new src for registration
                sct.run([
                    'sct_apply_transfo', '-i', src, '-d', dest, '-w',
                    ','.join(warp_forward), '-o',
                    add_suffix(src,
                               '_regStep' + str(i_step - 1)), '-x', interp_step
                ], verbose)
                src = add_suffix(src, '_regStep' + str(i_step - 1))
            # register src --> dest
            # TODO: display param for debugging
            warp_forward_out, warp_inverse_out = register(
                src, dest, paramreg, param, str(i_step))
            warp_forward.append(warp_forward_out)
            warp_inverse.append(warp_inverse_out)

        # Concatenate transformations:
        sct.printv('\nConcatenate transformations: anat --> template...',
                   verbose)
        sct.run([
            'sct_concat_transfo', '-w',
            'warp_curve2straightAffine.nii.gz,' + ','.join(warp_forward), '-d',
            'template.nii', '-o', 'warp_anat2template.nii.gz'
        ], verbose)
        # sct.run('sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt,'+','.join(warp_forward)+' -d template.nii -o warp_anat2template.nii.gz', verbose)
        sct.printv('\nConcatenate transformations: template --> anat...',
                   verbose)
        warp_inverse.reverse()

        if vertebral_alignment:
            sct.run([
                'sct_concat_transfo', '-w',
                ','.join(warp_inverse) + ',warp_straight2curve.nii.gz', '-d',
                'data.nii', '-o', 'warp_template2anat.nii.gz'
            ], verbose)
        else:
            sct.run([
                'sct_concat_transfo', '-w', ','.join(warp_inverse) +
                ',-straight2templateAffine.txt,warp_straight2curve.nii.gz',
                '-d', 'data.nii', '-o', 'warp_template2anat.nii.gz'
            ], verbose)

    # register template->subject
    elif ref == 'subject':

        # Change orientation of input images to RPI
        sct.printv('\nChange orientation of input images to RPI...', verbose)
        ftmp_data = Image(ftmp_data).change_orientation(
            "RPI", generate_path=True).save().absolutepath
        ftmp_seg = Image(ftmp_seg).change_orientation(
            "RPI", generate_path=True).save().absolutepath
        ftmp_label = Image(ftmp_label).change_orientation(
            "RPI", generate_path=True).save().absolutepath

        # Remove unused label on template. Keep only label present in the input label image
        sct.printv(
            '\nRemove unused label on template. Keep only label present in the input label image...',
            verbose)
        sct.run([
            'sct_label_utils', '-i', ftmp_template_label, '-o',
            ftmp_template_label, '-remove', ftmp_label
        ])

        # Add one label because at least 3 orthogonal labels are required to estimate an affine transformation. This
        # new label is added at the level of the upper most label (lowest value), at 1cm to the right.
        for i_file in [ftmp_label, ftmp_template_label]:
            im_label = Image(i_file)
            coord_label = im_label.getCoordinatesAveragedByValue(
            )  # N.B. landmarks are sorted by value
            # Create new label
            from copy import deepcopy
            new_label = deepcopy(coord_label[0])
            # move it 5mm to the left (orientation is RAS)
            nx, ny, nz, nt, px, py, pz, pt = im_label.dim
            new_label.x = np.round(coord_label[0].x + 5.0 / px)
            # assign value 99
            new_label.value = 99
            # Add to existing image
            im_label.data[int(new_label.x),
                          int(new_label.y),
                          int(new_label.z)] = new_label.value
            # Overwrite label file
            # im_label.absolutepath = 'label_rpi_modif.nii.gz'
            im_label.save()

        # Bring template to subject space using landmark-based transformation
        sct.printv('\nEstimate transformation for step #0...', verbose)
        from msct_register_landmarks import register_landmarks
        warp_forward = ['template2subjectAffine.txt']
        warp_inverse = ['-template2subjectAffine.txt']
        try:
            register_landmarks(ftmp_template_label,
                               ftmp_label,
                               paramreg.steps['0'].dof,
                               fname_affine=warp_forward[0],
                               verbose=verbose,
                               path_qc="./")
        except Exception:
            sct.printv(
                'ERROR: input labels do not seem to be at the right place. Please check the position of the labels. See documentation for more details: https://www.slideshare.net/neuropoly/sct-course-20190121/42',
                verbose=verbose,
                type='error')

        # loop across registration steps
        for i_step in range(1, len(paramreg.steps)):
            sct.printv(
                '\nEstimate transformation for step #' + str(i_step) + '...',
                verbose)
            # identify which is the src and dest
            if paramreg.steps[str(i_step)].type == 'im':
                src = ftmp_template
                dest = ftmp_data
                interp_step = 'linear'
            elif paramreg.steps[str(i_step)].type == 'seg':
                src = ftmp_template_seg
                dest = ftmp_seg
                interp_step = 'nn'
            else:
                sct.printv('ERROR: Wrong image type.', 1, 'error')
            # apply transformation from previous step, to use as new src for registration
            sct.run([
                'sct_apply_transfo', '-i', src, '-d', dest, '-w',
                ','.join(warp_forward), '-o',
                add_suffix(src,
                           '_regStep' + str(i_step - 1)), '-x', interp_step
            ], verbose)
            src = add_suffix(src, '_regStep' + str(i_step - 1))
            # register src --> dest
            # TODO: display param for debugging
            warp_forward_out, warp_inverse_out = register(
                src, dest, paramreg, param, str(i_step))
            warp_forward.append(warp_forward_out)
            warp_inverse.insert(0, warp_inverse_out)

        # Concatenate transformations:
        sct.printv('\nConcatenate transformations: template --> subject...',
                   verbose)
        sct.run([
            'sct_concat_transfo', '-w', ','.join(warp_forward), '-d',
            'data.nii', '-o', 'warp_template2anat.nii.gz'
        ], verbose)
        sct.printv('\nConcatenate transformations: subject --> template...',
                   verbose)
        sct.run([
            'sct_concat_transfo', '-w', ','.join(warp_inverse), '-d',
            'template.nii', '-o', 'warp_anat2template.nii.gz'
        ], verbose)

    # Apply warping fields to anat and template
    sct.run([
        'sct_apply_transfo', '-i', 'template.nii', '-o',
        'template2anat.nii.gz', '-d', 'data.nii', '-w',
        'warp_template2anat.nii.gz', '-crop', '1'
    ], verbose)
    sct.run([
        'sct_apply_transfo', '-i', 'data.nii', '-o', 'anat2template.nii.gz',
        '-d', 'template.nii', '-w', 'warp_anat2template.nii.gz', '-crop', '1'
    ], verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    fname_template2anat = os.path.join(path_output, 'template2anat' + ext_data)
    fname_anat2template = os.path.join(path_output, 'anat2template' + ext_data)
    sct.generate_output_file(
        os.path.join(path_tmp, "warp_template2anat.nii.gz"),
        os.path.join(path_output, "warp_template2anat.nii.gz"), verbose)
    sct.generate_output_file(
        os.path.join(path_tmp, "warp_anat2template.nii.gz"),
        os.path.join(path_output, "warp_anat2template.nii.gz"), verbose)
    sct.generate_output_file(os.path.join(path_tmp, "template2anat.nii.gz"),
                             fname_template2anat, verbose)
    sct.generate_output_file(os.path.join(path_tmp, "anat2template.nii.gz"),
                             fname_anat2template, verbose)
    if ref == 'template':
        # copy straightening files in case subsequent SCT functions need them
        sct.generate_output_file(
            os.path.join(path_tmp, "warp_curve2straight.nii.gz"),
            os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose)
        sct.generate_output_file(
            os.path.join(path_tmp, "warp_straight2curve.nii.gz"),
            os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose)
        sct.generate_output_file(
            os.path.join(path_tmp, "straight_ref.nii.gz"),
            os.path.join(path_output, "straight_ref.nii.gz"), verbose)

    # Delete temporary files
    if remove_temp_files:
        sct.printv('\nDelete temporary files...', verbose)
        sct.rmtree(path_tmp, verbose=verbose)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv(
        '\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's',
        verbose)

    if param.path_qc is not None:
        generate_qc(fname_data,
                    fname_in2=fname_template2anat,
                    fname_seg=fname_seg,
                    args=args,
                    path_qc=os.path.abspath(param.path_qc),
                    process='sct_register_to_template')
    sct.display_viewer_syntax([fname_data, fname_template2anat],
                              verbose=verbose)
    sct.display_viewer_syntax([fname_template, fname_anat2template],
                              verbose=verbose)
コード例 #57
0
def main(args=None):

    # Initialization
    param = Param()
    start_time = time.time()

    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])

    fname_anat = arguments['-i']
    fname_centerline = arguments['-s']
    if '-smooth' in arguments:
        sigma = arguments['-smooth']
    if '-param' in arguments:
        param.update(arguments['-param'])
    if '-r' in arguments:
        remove_temp_files = int(arguments['-r'])
    verbose = int(arguments.get('-v'))
    sct.init_sct(log_level=verbose, update=True)  # Update log level

    # Display arguments
    sct.printv('\nCheck input arguments...')
    sct.printv('  Volume to smooth .................. ' + fname_anat)
    sct.printv('  Centerline ........................ ' + fname_centerline)
    sct.printv('  Sigma (mm) ........................ ' + str(sigma))
    sct.printv('  Verbose ........................... ' + str(verbose))

    # Check that input is 3D:
    from spinalcordtoolbox.image import Image
    nx, ny, nz, nt, px, py, pz, pt = Image(fname_anat).dim
    dim = 4  # by default, will be adjusted later
    if nt == 1:
        dim = 3
    if nz == 1:
        dim = 2
    if dim == 4:
        sct.printv('WARNING: the input image is 4D, please split your image to 3D before smoothing spinalcord using :\n'
                   'sct_image -i ' + fname_anat + ' -split t -o ' + fname_anat, verbose, 'warning')
        sct.printv('4D images not supported, aborting ...', verbose, 'error')

    # Extract path/file/extension
    path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat)
    path_centerline, file_centerline, ext_centerline = sct.extract_fname(fname_centerline)

    path_tmp = sct.tmp_create(basename="smooth_spinalcord", verbose=verbose)

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose)
    sct.copy(fname_anat, os.path.join(path_tmp, "anat" + ext_anat))
    sct.copy(fname_centerline, os.path.join(path_tmp, "centerline" + ext_centerline))

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # convert to nii format
    convert('anat' + ext_anat, 'anat.nii')
    convert('centerline' + ext_centerline, 'centerline.nii')

    # Change orientation of the input image into RPI
    sct.printv('\nOrient input volume to RPI orientation...')
    fname_anat_rpi = msct_image.Image("anat.nii") \
     .change_orientation("RPI", generate_path=True) \
     .save() \
     .absolutepath

    # Change orientation of the input image into RPI
    sct.printv('\nOrient centerline to RPI orientation...')
    fname_centerline_rpi = msct_image.Image("centerline.nii") \
     .change_orientation("RPI", generate_path=True) \
     .save() \
     .absolutepath

    # Straighten the spinal cord
    # straighten segmentation
    sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose)
    cache_sig = sct.cache_signature(input_files=[fname_anat_rpi, fname_centerline_rpi],
                                    input_params={"x": "spline"})
    cachefile = os.path.join(curdir, "straightening.cache")
    if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(os.path.join(curdir, 'warp_curve2straight.nii.gz')) and os.path.isfile(os.path.join(curdir, 'warp_straight2curve.nii.gz')) and os.path.isfile(os.path.join(curdir, 'straight_ref.nii.gz')):
        # if they exist, copy them into current folder
        sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning')
        sct.copy(os.path.join(curdir, 'warp_curve2straight.nii.gz'), 'warp_curve2straight.nii.gz')
        sct.copy(os.path.join(curdir, 'warp_straight2curve.nii.gz'), 'warp_straight2curve.nii.gz')
        sct.copy(os.path.join(curdir, 'straight_ref.nii.gz'), 'straight_ref.nii.gz')
        # apply straightening
        sct.run(['sct_apply_transfo', '-i', fname_anat_rpi, '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'anat_rpi_straight.nii', '-x', 'spline'], verbose)
    else:
        sct.run(['sct_straighten_spinalcord', '-i', fname_anat_rpi, '-o', 'anat_rpi_straight.nii', '-s', fname_centerline_rpi, '-x', 'spline', '-param', 'algo_fitting='+param.algo_fitting], verbose)
        sct.cache_save(cachefile, cache_sig)
        # move warping fields locally (to use caching next time)
        sct.copy('warp_curve2straight.nii.gz', os.path.join(curdir, 'warp_curve2straight.nii.gz'))
        sct.copy('warp_straight2curve.nii.gz', os.path.join(curdir, 'warp_straight2curve.nii.gz'))

    # Smooth the straightened image along z
    sct.printv('\nSmooth the straightened image...')
    sigma_smooth = ",".join([str(i) for i in sigma])
    sct_maths.main(args=['-i', 'anat_rpi_straight.nii',
                         '-smooth', sigma_smooth,
                         '-o', 'anat_rpi_straight_smooth.nii',
                         '-v', '0'])
    # Apply the reversed warping field to get back the curved spinal cord
    sct.printv('\nApply the reversed warping field to get back the curved spinal cord...')
    sct.run(['sct_apply_transfo', '-i', 'anat_rpi_straight_smooth.nii', '-o', 'anat_rpi_straight_smooth_curved.nii', '-d', 'anat.nii', '-w', 'warp_straight2curve.nii.gz', '-x', 'spline'], verbose)

    # replace zeroed voxels by original image (issue #937)
    sct.printv('\nReplace zeroed voxels by original image...', verbose)
    nii_smooth = Image('anat_rpi_straight_smooth_curved.nii')
    data_smooth = nii_smooth.data
    data_input = Image('anat.nii').data
    indzero = np.where(data_smooth == 0)
    data_smooth[indzero] = data_input[indzero]
    nii_smooth.data = data_smooth
    nii_smooth.save('anat_rpi_straight_smooth_curved_nonzero.nii')

    # come back
    os.chdir(curdir)

    # Generate output file
    sct.printv('\nGenerate output file...')
    sct.generate_output_file(os.path.join(path_tmp, "anat_rpi_straight_smooth_curved_nonzero.nii"),
                             file_anat + '_smooth' + ext_anat)

    # Remove temporary files
    if remove_temp_files == 1:
        sct.printv('\nRemove temporary files...')
        sct.rmtree(path_tmp)

    # Display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's\n')

    sct.display_viewer_syntax([file_anat, file_anat + '_smooth'], verbose=verbose)
コード例 #58
0
def main():

    # Initialization
    fname_data = ''
    interp_factor = param.interp_factor
    remove_temp_files = param.remove_temp_files
    verbose = param.verbose
    suffix = param.suffix
    smoothing_sigma = param.smoothing_sigma

    # start timer
    start_time = time.time()

    # get path of the toolbox
    path_sct = os.environ.get("SCT_DIR",
                              os.path.dirname(os.path.dirname(__file__)))

    # Parameters for debug mode
    if param.debug:
        fname_data = os.path.join(path_sct, 'testing', 'data', 'errsm_23',
                                  't2', 't2_manual_segmentation.nii.gz')
        remove_temp_files = 0
        param.mask_size = 10
    else:
        # Check input parameters
        try:
            opts, args = getopt.getopt(sys.argv[1:], 'hi:v:r:s:')
        except getopt.GetoptError:
            usage()
        if not opts:
            usage()
        for opt, arg in opts:
            if opt == '-h':
                usage()
            elif opt in ('-i'):
                fname_data = arg
            elif opt in ('-r'):
                remove_temp_files = int(arg)
            elif opt in ('-s'):
                smoothing_sigma = arg
            elif opt in ('-v'):
                verbose = int(arg)

    # display usage if a mandatory argument is not provided
    if fname_data == '':
        usage()

    # sct.printv(arguments)
    sct.printv('\nCheck parameters:')
    sct.printv('  segmentation ........... ' + fname_data)
    sct.printv('  interp factor .......... ' + str(interp_factor))
    sct.printv('  smoothing sigma ........ ' + str(smoothing_sigma))

    # check existence of input files
    sct.printv('\nCheck existence of input files...')
    sct.check_file_exist(fname_data, verbose)

    # Extract path, file and extension
    path_data, file_data, ext_data = sct.extract_fname(fname_data)

    path_tmp = sct.tmp_create(basename="binary_to_trilinear", verbose=verbose)

    from sct_convert import convert
    sct.printv('\nCopying input data to tmp folder and convert to nii...',
               param.verbose)
    convert(fname_data, os.path.join(path_tmp, "data.nii"))

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Get dimensions of data
    sct.printv('\nGet dimensions of data...', verbose)
    nx, ny, nz, nt, px, py, pz, pt = Image('data.nii').dim
    sct.printv('.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), verbose)

    # upsample data
    sct.printv('\nUpsample data...', verbose)
    sct.run([
        "sct_resample", "-i", "data.nii", "-x", "linear", "-vox",
        str(nx * interp_factor) + 'x' + str(ny * interp_factor) + 'x' +
        str(nz * interp_factor), "-o", "data_up.nii"
    ], verbose)

    # Smooth along centerline
    sct.printv('\nSmooth along centerline...', verbose)
    sct.run([
        "sct_smooth_spinalcord", "-i", "data_up.nii", "-s", "data_up.nii",
        "-smooth",
        str(smoothing_sigma), "-r",
        str(remove_temp_files), "-v",
        str(verbose)
    ], verbose)

    # downsample data
    sct.printv('\nDownsample data...', verbose)
    sct.run([
        "sct_resample", "-i", "data_up_smooth.nii", "-x", "linear", "-vox",
        str(nx) + 'x' + str(ny) + 'x' + str(nz), "-o",
        "data_up_smooth_down.nii"
    ], verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    sct.printv('\nGenerate output files...')
    fname_out = sct.generate_output_file(
        os.path.join(path_tmp, "data_up_smooth_down.nii"),
        '' + file_data + suffix + ext_data)

    # Delete temporary files
    if remove_temp_files == 1:
        sct.printv('\nRemove temporary files...')
        sct.rmtree(path_tmp)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: ' +
               str(int(np.round(elapsed_time))) + 's')

    # to view results
    sct.printv('\nTo view results, type:')
    sct.printv('fslview ' + file_data + ' ' + file_data + suffix + ' &\n')