コード例 #1
0
ファイル: plotting_daw.py プロジェクト: memarsh/rl-daw
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

datafile = open("all_data.txt", "r").readlines()
all_data = np.zeros((4, len(datafile)))

for i, line in enumerate(datafile):
    total = line.split(" ")
    all_data[:, i] = total

df = pd.DataFrame(data=all_data)
sns.plot(data=df)
コード例 #2
0
ax.set_xlabel('something', fontsize=16)
ax.set_title('I am title', fontsize=20)

ax.set_xlim([0.,50.])
ax.set_ylim([0, 100])

plt.show()

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

## Lineplot
# Seaborn
ax = sns.pointplot(x=x, y=y, hue='gender',data=df, marker=['o','x'], linestyle=['-','--'], join=True, 
                   color='#bb3f3f', order=['Dinner','Lunch'], estimator=np.median, capsize=.2)
# Matplotlib
ax = sns.plot(x,y)
ax.set_ylabel('y', fontsize=16)
ax.set_xlabel('x', fontsize=16)
ax.set_title('title', fontsize=20)

ax.set_xlim([0.,50.])
ax.set_ylim([0, 100])

plt.show()

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

## Heatmap (Correlate)
# Seaborn
mean_corr = bcw_mean[[x for x in bcw_mean.columns if x not in 'id']].corr()
コード例 #3
0
# coding=utf-8

import seaborn as sns
import matplotlib as mt
import pandas as pd
import numpy as np
import sys

if __name__ == "__main__":
    # 一维线性回归数据
    data1 = pd.read_csv('resources/data1.txt', header=None, names=['x', 'y'])
    print(data1)

    # 二维线性回归数据
    data2 = pd.read_csv('resources/data2.txt',
                        header=None,
                        names=['x', 'y', 'z'])
    print(data2)

    sns.jointplot(x='x', y='y', data=data1)
    sns.jointplot(x='x', y='y', data=data2)
    sns.plot([1, 2, 3, 4])
    sns.plt.show()


def plot(data, x_name='x', y_name='y'):
    sns.jointplot(x=x_name, y=y_name, data=data)
    sns.plt.show()
コード例 #4
0
def main():
    # Initialisieren aller Pygame-Module und
    # Fenster erstellen (wir bekommen eine Surface, die den Bildschirm repräsentiert).
    pygame.init()

    agent = DQNAgent()
    counter_games = 0
    record = 0
    while counter_games < 150:
        screen = pygame.display.set_mode((800, 600))

        # Titel des Fensters setzen, Mauszeiger nicht verstecken und Tastendrücke wiederholt senden.
        pygame.display.set_caption("Pygame-Tutorial: Animation")
        pygame.mouse.set_visible(1)
        pygame.key.set_repeat(1, 30)
        pygame.font.init()  # you have to call this at the start,
        myfont = pygame.font.SysFont('Comic Sans MS', 30)

        # Clock-Objekt erstellen, das wir benötigen, um die Framerate zu begrenzen.
        clock = pygame.time.Clock()

        # Wir erstellen eine Tilemap.
        map = Tilemap.Tilemap()

        event = AutoInput.AutoInput()

        # Die Schleife, und damit unser Spiel, läuft solange running == True.
        running = True
        max_steps_reached = False
        max_steps = 100
        step = 0
        max_score = map.player.pos_x
        max_score_evolution = []
        while running and not max_steps_reached:
            agent.epsilon = 80 - counter_games
            #get old state
            state_old = agent.get_state(map)
            map.player.pos_x_old = map.player.pos_x

            #perform random actions based on agent.epsilon, or choose the action
            if randint(0, 200) < agent.epsilon:
                final_move = to_categorical(randint(0, 2), num_classes=3)
            else:
                # predict action based on the old state
                prediction = agent.model.predict(state_old.reshape((1, 7)))
                final_move = to_categorical(np.argmax(prediction[0]),
                                            num_classes=3)

            # Framerate auf 30 Frames pro Sekunde beschränken.
            # Pygame wartet, falls das Programm schneller läuft.
            clock.tick(30)

            # screen Surface mit Schwarz (RGB = 0, 0, 0) füllen.
            screen.fill((198, 209, 255))

            map.handle_input(final_move)

            #continue jump animation after
            if map.player.isjump:
                map.player.jump()

            # Die Tilemap auf die screen-Surface rendern.
            map.render(screen)
            textsurface = myfont.render(
                "Game " + str(counter_games) + " Step " + str(step) +
                " Max Score " + str(max_score), False, (0, 0, 0))
            screen.blit(textsurface, (50, 50))

            #Print Hindernis onto map and check if there should be a new one
            if not map.isThereHindernis:
                map.createNewHindernis()
                map.isThereHindernis = True

            map.hindernis.move()
            map.hindernis.render(screen)
            map.checkHindernisOnMap()

            state_new = agent.get_state(map)

            crash = map.collisionDetection()

            #set treward for the new state
            reward = agent.set_reward(map.player, crash)
            #train short memory base on the new action and state
            agent.train_short_memory(state_old, final_move, reward, state_new,
                                     running)

            # Inhalt von screen anzeigen
            pygame.display.flip()

            if map.player.pos_x > max_score:
                max_score = map.player.pos_x

            step += 1
            if step >= max_steps:
                max_steps_reached = True
                max_score_evolution.append(max_score)

        agent.remember(state_old, final_move, reward, state_new, running)
        #record = get_record(map.player.pos_x, record)
        #if display_option:
        #    #display(player1, food1, game, record)
        #    pygame.time.wait(speed)

        agent.replay_new(agent.memory)
        counter_games += 1

    agent.model.save_weights('weights.hdf5')
    sns.plot(max_score_evolution)
# ##### The segmentation with 4 clusters looks good as it has segmented the high frequent and high monetary customer with less recency time

# In[540]:

retail_RFM_melt = pd.melt(retail_RFM_k4.reset_index(),
                          id_vars=['CustomerID', 'Cluster'],
                          value_vars=['Recency', 'Frequency', 'MonetaryValue'],
                          var_name='Attribute',
                          value_name='Value')
retail_RFM_melt = pd.DataFrame(retail_RFM_melt)

# In[ ]:

plt.title('Snake Plot for standardized variables')
sns.plot(x="Attribute", y="Value", hue='Cluster', data=retail_RFM_melt)

# In[542]:

cluster_avg = retail_RFM_k4.groupby(['Cluster']).mean()
population_avg = retail_RFM.mean()
relative_imp = cluster_avg / population_avg - 1

# In[543]:

#Relative distance from each parameter
plt.figure(figsize=(10, 2))
sns.heatmap(relative_imp, annot=True, cmap='RdYlGn')

# ### 4. Conclusion
コード例 #6
0

# In[31]:

df.set_index('line').grouby(plot()


# In[30]:

df.plot(x='sample', y='number_of_rhizoids', subplots=True)


# In[25]:

import seaborn as sns
sns.plot(df)


# In[8]:

from numpy.random import choice


# In[9]:

get_ipython().magic('pinfo choice')


# In[4]:

### Using an index, which is what I would do.
コード例 #7
0
ファイル: roadmap.py プロジェクト: akodate/DSI-SF-2-akodate
ax.set_xlabel('something', fontsize=16)
ax.set_title('I am title', fontsize=20)

ax.set_xlim([0.,50.])
ax.set_ylim([0, 100])

plt.show()

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

## Lineplot
# Seaborn
ax = sns.pointplot(x=x, y=y, hue='gender',data=df, marker=['o','x'], linestyle=['-','--'], join=True, 
                   color='#bb3f3f', order=['Dinner','Lunch'], estimator=np.median, capsize=.2)
# Matplotlib
ax = sns.plot(x,y)
ax.set_ylabel('y', fontsize=16)
ax.set_xlabel('x', fontsize=16)
ax.set_title('title', fontsize=20)

ax.set_xlim([0.,50.])
ax.set_ylim([0, 100])

plt.show()

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

## Heatmap (Correlate)
# Seaborn
corr = df.corr
ax = sns.heatmap(corr, vmin=0, vmin=1, annot=False, square=True, linewidths=.5, cmap="YlGnBu", cbar=True)
コード例 #8
0
# In[3]:

path = '../../resources/SimpleRegressionDataSet/simple_regression.csv'

# In[4]:

data_1 = pd.read_csv(path, header=None)

# In[5]:

data_1.head(n=10)

# In[12]:

data_1.columns = ['population', 'profit']
data_1.head(n=2)

# In[ ]:

import seaborn as sns
sns.set(color_codes=True)
tips = sns.load_dataset("tips")
plot = sns.lmplot(x="population", y="profit", data=data_1)

# In[ ]:

plot = sns.plot(x="population", y="profit", data=data_1)

# In[ ]:
コード例 #9
0
ファイル: best_n_knn.py プロジェクト: msris108/ML-PROJECTS
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
'''
PROJECT TO DETERMINE BEST VALUE FOR KNN

-given artificial dataset
-code can be used for parameter tuning
'''

df = pd.read_csv('KNN_Project_Data')

df.head()

sns.pairplot(df, hue='TARGET CLASS', palette='coolwarm')
sns.plot()

scaler = StandardScaler()
scaler.fit(df.drop('TARGET CLASS', axis=1))

scaled_features = scaler.transform(df.drop('TARGET CLASS', axis=1))

df_feat = pd.DataFrame(scaled_features, columns=df.columns[:-1])
df_feat.head()

X_train, X_test, y_train, y_test = train_test_split(scaled_features,
                                                    df['TARGET CLASS'],
                                                    test_size=0.30)

knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train, y_train)
コード例 #10
0
                        orient='v')
OARGBvCHM.set(xlabel='Feature groups', ylabel='UA (%)')
loc, labels = plt.xticks()
sns.despine()
OARGBvCHMFig = OARGBvCHM.get_figure()
OARGBvCHMFig.savefig(
    r"C:\Users\Study\OneDrive - University of the Sunshine Coast\Documents\Thesis\Manuscript\Figures\Table5_ModelPerf\UA-Pine-RGBvCHM-Delta.pdf",
    bbox_inches='tight',
    dpi=300)

# %%
plt.figure(figsize=(13, 6))
sns.set_theme(style="ticks")
OARGBvCHM = sns.plot(accValues['UA-Lan round'],
                     palette='colorblind',
                     order=['RGB', 'TEX', 'RGB-TEX'],
                     capsize=0.025,
                     orient='v')
OARGBvCHM.set(xlabel='Feature groups', ylabel='UA (%)')
loc, labels = plt.xticks()
sns.despine()
OARGBvCHMFig = OARGBvCHM.get_figure()
OARGBvCHMFig.savefig(
    r"C:\Users\Study\OneDrive - University of the Sunshine Coast\Documents\Thesis\Manuscript\Figures\Table5_ModelPerf\UA-Pine-RGBvTEX-Delta.pdf",
    bbox_inches='tight',
    dpi=300)

# %%
g = sns.FacetGrid(accValues,
                  col=['Lantana', 'Slash pine'],
                  col_wrap=2,
コード例 #11
0

data_df = df[['GeoID', 'Date'] + sir_cols]
us_data = data_df[data_df["GeoID"] == "United States__nan"]


# In[ ]:





# In[2]:


sns.plot(us_data["Date"], us_data["Infected"])


# In[ ]:


odeint()


# In[10]:


# routine to forecast the next X days given an SIR model and params

def forecast_future(S, I, R, beta, gamma, days):
    y_i = S, I, R
コード例 #12
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 24 10:26:22 2018

@author: peternagy96
"""

import pickle
from matplotlib import pyplot as plt
import seaborn as sb

results = pickle.load(open('final_results_0.332.p', 'rb'))

plt.figure()

sb.set_style('darkgrid')
pred_hist = sb.load_dataset(results['pred_hist'])
sb.plot(pred_hist)

plt.show()