def data_plot(customers): customers.head() customers.describe() customers.info() sns.set_palette("GnBu_d") sns.set_style('whitegrid') sns.jointplot(x='Time on Website', y='Yearly Amount Spent', data=customers) sns.show() sns.jointplot(x='Time on App', y='Yearly Amount Spent', data=customers) sns.show() sns.jointplot(x='Time on App', y='Length of Membership', kind='hex', data=customers) sns.show() sns.pairplot(customers) sns.show() sns.lmplot(x='Length of Membership', y='Yearly Amount Spent', data=customers) sns.show()
def data_plot(df): sns.set_style('whitegrid') sns.lmplot('Room.Board', 'Grad.Rate', data=df, hue='Private', palette='coolwarm', size=6, aspect=1, fit_reg=False) sns.show() sns.set_style('whitegrid') sns.lmplot('Outstate', 'F.Undergrad', data=df, hue='Private', palette='coolwarm', size=6, aspect=1, fit_reg=False) sns.show() sns.set_style('darkgrid') g = sns.FacetGrid(df, hue="Private", palette='coolwarm', size=6, aspect=2) g = g.map(plt.hist, 'Outstate', bins=20, alpha=0.7) sns.show() sns.set_style('darkgrid') g = sns.FacetGrid(df, hue="Private", palette='coolwarm', size=6, aspect=2) g = g.map(plt.hist, 'Grad.Rate', bins=20, alpha=0.7) sns.show()
def data_plot(ad_data): sns.set_style('whitegrid') ad_data['Age'].hist(bins=30) plt.xlabel('Age') sns.jointplot(x='Age',y='Area Income',data=ad_data) sns.show() sns.jointplot(x='Age',y='Daily Time Spent on Site',data=ad_data,color='red',kind='kde'); sns.show() sns.jointplot(x='Daily Time Spent on Site',y='Daily Internet Usage',data=ad_data,color='green') sns.show() sns.pairplot(ad_data,hue='Clicked on Ad',palette='bwr') sns.show()
def plot_data(yelp): sns.set_style('white') get_ipython().run_line_magic('matplotlib', 'inline') sns.show() g = sns.FacetGrid(yelp,col='stars') g.map(plt.hist,'text length') sns.show() sns.boxplot(x='stars',y='text length',data=yelp,palette='rainbow') sns.show() sns.countplot(x='stars',data=yelp,palette='rainbow') sns.show() stars = yelp.groupby('stars').mean() stars.corr().show() sns.heatmap(stars.corr(),cmap='coolwarm',annot=True).show()
merged_model.save("whole_model.h5") f = open("binarizer.pkl", "wb") f.write(pickle.dumps(lb)) f.close() print("Saved model to disk") predicted_classes = merged_model.predict_classes(test_imgs) cm = confusion_matrix([np.where(r == 1)[0][0] for r in labels_test], predicted_classes) plt.figure(figsize=(14, 10)) sns.heatmap(cm, annot=True) sns.show() sns.savefig("confusion_matrix.png") plt.style.use("ggplot") plt.figure(figsize=(14, 10)) N = EPOCHS plt.plot(np.arange(0, N), train.history["loss"], label="train_loss") plt.plot(np.arange(0, N), train.history["val_loss"], label="val_loss") plt.plot(np.arange(0, N), train.history["acc"], label="acc") plt.plot(np.arange(0, N), train.history["val_acc"], label="acc") plt.title("Training Loss and Accuracy") plt.xlabel("Epoch #") plt.ylabel("Loss/Accuracy") plt.legend(loc="upper left") plt.show()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 18 09:57:49 2019 @author: chance """ import matplotlib.pyplot as plt import seaborn as sns # data prepare iris = sns.load_dataset("iris") # use seaborn sns.pairplot(iris) sns.show(s)