コード例 #1
0
def plot_mean_rates(mRates,
                    aa_res_dir,
                    tasks=None,
                    task_lbls=None,
                    baseline=None,
                    xlim=None,
                    ylim=None,
                    ci=68,
                    ffig=None,
                    figsize=(6, 4)):
    """Plot mean rates across tasks."""

    # Init.
    if tasks is None:
        tasks = mRates.keys()

    # Plot mean activity.
    lRates = []
    for task in tasks:
        lrates = pd.DataFrame(mRates[task].unstack(), columns=['rate'])
        lrates['task'] = task
        lRates.append(lrates)
    lRates = pd.concat(lRates)
    lRates['time'] = lRates.index.get_level_values(0)
    lRates['unit'] = lRates.index.get_level_values(1)

    if task_lbls is not None:
        lRates.task.replace(task_lbls, inplace=True)

    # Plot as time series.
    #putil.set_style('notebook', 'white')
    fig = putil.figure(figsize=figsize)
    ax = putil.axes()

    sns.tsplot(lRates,
               time='time',
               value='rate',
               unit='unit',
               condition='task',
               ci=ci,
               ax=ax)

    # Add periods and baseline.
    putil.plot_periods(ax=ax)
    if baseline is not None:
        putil.add_baseline(baseline, ax=ax)

    # Format plot.
    sns.despine(ax=ax)
    putil.set_labels(ax, xlab='time since S1 onset', ylab='rate (sp/s)')
    putil.set_limits(ax, xlim, ylim)
    putil.hide_legend_title(ax)

    # Save plot.
    putil.save_fig(ffig, fig)

    return fig, ax
コード例 #2
0
ファイル: test_RF.py プロジェクト: mnislamraju/seal
def plot_RF_results(RF_res, stims, fdir, sup_title):
    """Plot receptive field results."""

    # Plot distribution of coverage values.
    putil.set_style('poster', 'white')
    fig = putil.figure()
    ax = putil.axes()
    sns.distplot(RF_res.S1_cover, bins=np.arange(0, 1.01, 0.1),
                 kde=False, rug=True, ax=ax)
    putil.set_limits(ax, [0, 1])
    fst = util.format_to_fname(sup_title)
    ffig = fdir + fst + '_S1_coverage.png'
    putil.save_fig(ffig, fig, sup_title)

    # Plot RF coverage and rate during S1 on regression plot for each
    # recording and task.
    tasks = RF_res.index.get_level_values(-1).unique()
    for vname, ylim in [('mean_rate', [0, None]), ('max_rate', [0, None]),
                        ('mDSI', [0, 1])]:
        fig, gs, axes = putil.get_gs_subplots(nrow=len(stims), ncol=len(tasks),
                                              subw=4, subh=4, ax_kws_list=None,
                                              create_axes=True)
        colors = sns.color_palette('muted', len(tasks))
        for istim, stim in enumerate(stims):
            for itask, task in enumerate(tasks):
                # Plot regression plot.
                ax = axes[istim, itask]
                scov, sval = [stim + '_' + name for name in ('cover', vname)]
                df = RF_res.xs(task, level=-1)
                sns.regplot(scov, sval, df, color=colors[itask], ax=ax)
                # Add unit labels.
                uids = df.index.droplevel(0)
                putil.add_unit_labels(ax, uids, df[scov], df[sval])
                # Add stats.
                r, p = sp.stats.pearsonr(df[sval], df[scov])
                pstr = util.format_pvalue(p)
                txt = 'r = {:.2f}, {}'.format(r, pstr)
                ax.text(0.02, 0.98, txt, va='top', ha='left',
                        transform=ax.transAxes)
                # Set labels.
                title = '{} {}'.format(task, stim)
                xlab, ylab = [sn.replace('_', ' ') for sn in (scov, sval)]
                putil.set_labels(ax, xlab, ylab, title)
                # Set limits.
                xlim = [0, 1]
                putil.set_limits(ax, xlim, ylim)

        # Save plot.
        fst = util.format_to_fname(sup_title)
        fname = '{}_cover_{}.png'.format(fst, vname)
        ffig = util.join([fdir, vname, fname])
        putil.save_fig(ffig, fig, sup_title)
コード例 #3
0
ファイル: pauc.py プロジェクト: mnislamraju/seal
def plot_auc_heatmap(aroc_mat,
                     cmap='viridis',
                     events=None,
                     xlbl_freq=500,
                     ylbl_freq=10,
                     xlab='time',
                     ylab='unit index',
                     title='AROC over time',
                     ffig=None,
                     fig=None):
    """Plot ROC AUC of list of units on heatmap."""

    fig = putil.figure(fig)

    # Plot heatmap.
    yticklabels = np.arange(len(aroc_mat.index)) + 1
    ax = pplot.heatmap(aroc_mat,
                       vmin=0,
                       vmax=1,
                       cmap=cmap,
                       xlab=xlab,
                       ylab=ylab,
                       title=title,
                       yticklabels=yticklabels)

    # Format labels.
    xlbls = pd.Series(aroc_mat.columns.map(str))
    xlbls[aroc_mat.columns % xlbl_freq != 0] = ''
    putil.set_xtick_labels(ax, lbls=xlbls)
    putil.rot_xtick_labels(ax, rot=0, ha='center')
    putil.sparsify_tick_labels(fig,
                               ax,
                               'y',
                               istart=ylbl_freq - 1,
                               freq=ylbl_freq,
                               reverse=True)
    putil.hide_tick_marks(ax)
    putil.hide_spines(ax)

    # Plot events.
    if events is not None:
        putil.plot_events(events,
                          add_names=False,
                          color='black',
                          alpha=0.3,
                          ls='-',
                          lw=1,
                          ax=ax)

    # Save plot.
    putil.save_fig(ffig, dpi=300)
コード例 #4
0
ファイル: pauc.py プロジェクト: mnislamraju/seal
def plot_ROC_mean(d_faroc,
                  t1=None,
                  t2=None,
                  ylim=None,
                  colors=None,
                  ylab='AROC',
                  ffig=None):
    """Plot mean ROC curves over given period."""

    # Import results.
    d_aroc = {}
    for name, faroc in d_faroc.items():
        aroc = util.read_objects(faroc, 'aroc')
        d_aroc[name] = aroc.unstack().T

    # Format results.
    laroc = pd.DataFrame(pd.concat(d_aroc), columns=['aroc'])
    laroc['task'] = laroc.index.get_level_values(0)
    laroc['time'] = laroc.index.get_level_values(1)
    laroc['unit'] = laroc.index.get_level_values(2)
    laroc.index = np.arange(len(laroc.index))

    # Init figure.
    fig = putil.figure(figsize=(6, 6))
    ax = sns.tsplot(laroc,
                    time='time',
                    value='aroc',
                    unit='unit',
                    condition='task',
                    color=colors)

    # Highlight stimulus periods.
    putil.plot_periods(ax=ax)

    # Plot mean results.
    [ax.lines[i].set_linewidth(3) for i in range(len(ax.lines))]

    # Add chance level line.
    putil.add_chance_level(ax=ax, alpha=0.8, color='k')
    ax.lines[-1].set_linewidth(1.5)

    # Format plot.
    xlab = 'Time since S1 onset (ms)'
    putil.set_labels(ax, xlab, ylab)
    putil.set_limits(ax, [t1, t2], ylim)
    putil.set_spines(ax, bottom=True, left=True, top=False, right=False)
    putil.set_legend(ax, loc=0)

    # Save plot.
    putil.save_fig(ffig, fig, ytitle=1.05, w_pad=15)
コード例 #5
0
def plot_slope_diffs_btw_groups(fit_res,
                                prd,
                                res_dir,
                                groups=None,
                                figsize=None):
    """Plot differences in slopes between group pairs."""

    # Test pair-wise difference from each other.
    if groups is None:
        groups = fit_res['group'].unique()
    empty_df = pd.DataFrame(np.nan, index=groups, columns=groups)
    pw_diff_v = empty_df.copy()
    pw_diff_p = empty_df.copy()
    pw_diff_a = empty_df.copy()
    for grp1, grp2 in combinations(groups, 2):
        # Get slopes in each task.
        slp_t1 = fit_res.slope[fit_res.group == grp1]
        slp_t2 = fit_res.slope[fit_res.group == grp2]
        # Mean difference value.
        diff = slp_t1.mean() - slp_t2.mean()
        pw_diff_v.loc[grp1, grp2] = diff
        # Do test for statistical difference.
        stat, pval = stats.mann_whithney_u_test(slp_t1, slp_t2)
        pw_diff_p.loc[grp1, grp2] = pval
        # Annotation DF plot.
        a1, a2 = [
            '{:.2f}{}'.format(v, util.star_pvalue(pval)) for v in (diff, -diff)
        ]
        pw_diff_a.loc[grp1, grp2] = a1
    # Plot and save figure of mean pair-wise difference.
    fig = putil.figure(figsize=figsize)
    sns.heatmap(pw_diff_v, annot=pw_diff_a, fmt='', linewidths=0.5, cbar=False)
    title = 'Mean difference in {} slopes (sp/s / s)'.format(prd)
    putil.set_labels(title=title)
    ffig = res_dir + '{}_anticipatory_slope_pairwise_diff.png'.format(prd)
    putil.save_fig(ffig, fig)

    return pw_diff_v
コード例 #6
0
ファイル: pquality.py プロジェクト: mnislamraju/seal
def plot_qm(u,
            bs_stats,
            stab_prd_res,
            prd_inc,
            tr_inc,
            spk_inc,
            add_lbls=False,
            ftempl=None,
            fig=None,
            sps=None):
    """Plot quality metrics related figures."""

    # Init values.
    waveforms = np.array(u.Waveforms)
    wavetime = u.Waveforms.columns * us
    spk_times = np.array(u.SpikeParams['time'], dtype=float)
    base_rate = u.QualityMetrics['baseline']

    # Minimum and maximum gain.
    gmin = u.SessParams['minV']
    gmax = u.SessParams['maxV']

    # %% Init plots.

    # Disable inline plotting to prevent memory leak.
    putil.inline_off()

    # Init figure and gridspec.
    fig = putil.figure(fig)
    if sps is None:
        sps = putil.gridspec(1, 1)[0]
    ogsp = putil.embed_gsp(sps, 2, 1, height_ratios=[0.02, 1])

    info_sps, qm_sps = ogsp[0], ogsp[1]

    # Info header.
    info_ax = fig.add_subplot(info_sps)
    putil.hide_axes(info_ax)
    title = putil.get_unit_info_title(u)
    putil.set_labels(ax=info_ax, title=title, ytitle=0.80)

    # Create axes.
    gsp = putil.embed_gsp(qm_sps, 3, 2, wspace=0.3, hspace=0.4)
    ax_wf_inc, ax_wf_exc = [fig.add_subplot(gsp[0, i]) for i in (0, 1)]
    ax_wf_amp, ax_wf_dur = [fig.add_subplot(gsp[1, i]) for i in (0, 1)]
    ax_amp_dur, ax_rate = [fig.add_subplot(gsp[2, i]) for i in (0, 1)]

    # Trial markers.
    trial_starts, trial_stops = u.TrData.TrialStart, u.TrData.TrialStop
    tr_markers = pd.DataFrame({'time': trial_starts[9::10]})
    tr_markers['label'] = [
        str(itr + 1) if i % 2 else '' for i, itr in enumerate(tr_markers.index)
    ]

    # Common variables, limits and labels.
    WF_T_START = test_sorting.WF_T_START
    spk_t = u.SessParams.sampl_prd * (np.arange(waveforms.shape[1]) -
                                      WF_T_START)
    ses_t_lim = test_sorting.get_start_stop_times(spk_times, trial_starts,
                                                  trial_stops)
    ss, sa = 1.0, 0.8  # marker size and alpha on scatter plot

    # Color spikes by their occurance over session time.
    my_cmap = putil.get_cmap('jet')
    spk_cols = np.tile(np.array([.25, .25, .25, .25]), (len(spk_times), 1))
    if np.any(spk_inc):  # check if there is any spike included
        spk_t_inc = np.array(spk_times[spk_inc])
        tmin, tmax = float(spk_times.min()), float(spk_times.max())
        spk_cols[spk_inc, :] = my_cmap((spk_t_inc - tmin) / (tmax - tmin))
    # Put excluded trials to the front, and randomise order of included trials
    # so later spikes don't systematically cover earlier ones.
    spk_order = np.hstack((np.where(np.invert(spk_inc))[0],
                           np.random.permutation(np.where(spk_inc)[0])))

    # Common labels for plots
    ses_t_lab = 'Recording time (s)'

    # %% Waveform shape analysis.

    # Plot included and excluded waveforms on different axes.
    # Color included by occurance in session time to help detect drifts.
    s_waveforms, s_spk_cols = waveforms[spk_order, :], spk_cols[spk_order]
    wf_t_lim, glim = [min(spk_t), max(spk_t)], [gmin, gmax]
    wf_t_lab, volt_lab = 'WF time ($\mu$s)', 'Voltage'
    for st in ('Included', 'Excluded'):
        ax = ax_wf_inc if st == 'Included' else ax_wf_exc
        spk_idx = spk_inc if st == 'Included' else np.invert(spk_inc)
        tr_idx = tr_inc if st == 'Included' else np.invert(tr_inc)

        nspsk, ntrs = sum(spk_idx), sum(tr_idx)
        title = '{} WFs, {} spikes, {} trials'.format(st, nspsk, ntrs)

        # Select waveforms and colors.
        rand_spk_idx = spk_idx[spk_order]
        wfs = s_waveforms[rand_spk_idx, :]
        cols = s_spk_cols[rand_spk_idx]

        # Plot waveforms.
        xlab, ylab = (wf_t_lab, volt_lab) if add_lbls else (None, None)
        pwaveform.plot_wfs(wfs,
                           spk_t,
                           cols=cols,
                           lw=0.1,
                           alpha=0.05,
                           xlim=wf_t_lim,
                           ylim=glim,
                           title=title,
                           xlab=xlab,
                           ylab=ylab,
                           ax=ax)

    # %% Waveform summary metrics.

    # Init data.
    wf_amp_all = u.SpikeParams['amplitude']
    wf_amp_inc = wf_amp_all[spk_inc]
    wf_dur_all = u.SpikeParams['duration']
    wf_dur_inc = wf_dur_all[spk_inc]

    # Set common limits and labels.
    dur_lim = [0, wavetime[-2] - wavetime[WF_T_START]]  # same across units
    glim = max(wf_amp_all.max(), gmax - gmin)
    amp_lim = [0, glim]

    amp_lab = 'Amplitude'
    dur_lab = 'Duration ($\mu$s)'

    # Waveform amplitude across session time.
    m_amp, sd_amp = wf_amp_inc.mean(), wf_amp_inc.std()
    title = 'WF amplitude: {:.1f} $\pm$ {:.1f}'.format(m_amp, sd_amp)
    xlab, ylab = (ses_t_lab, amp_lab) if add_lbls else (None, None)
    pplot.scatter(spk_times,
                  wf_amp_all,
                  spk_inc,
                  c='m',
                  bc='grey',
                  s=ss,
                  xlab=xlab,
                  ylab=ylab,
                  xlim=ses_t_lim,
                  ylim=amp_lim,
                  edgecolors='',
                  alpha=sa,
                  id_line=False,
                  title=title,
                  ax=ax_wf_amp)

    # Waveform duration across session time.
    mdur, sdur = wf_dur_inc.mean(), wf_dur_inc.std()
    title = 'WF duration: {:.1f} $\pm$ {:.1f} $\mu$s'.format(mdur, sdur)
    xlab, ylab = (ses_t_lab, dur_lab) if add_lbls else (None, None)
    pplot.scatter(spk_times,
                  wf_dur_all,
                  spk_inc,
                  c='c',
                  bc='grey',
                  s=ss,
                  xlab=xlab,
                  ylab=ylab,
                  xlim=ses_t_lim,
                  ylim=dur_lim,
                  edgecolors='',
                  alpha=sa,
                  id_line=False,
                  title=title,
                  ax=ax_wf_dur)

    # Waveform duration against amplitude.
    title = 'WF duration - amplitude'
    xlab, ylab = (dur_lab, amp_lab) if add_lbls else (None, None)
    pplot.scatter(wf_dur_all[spk_order],
                  wf_amp_all[spk_order],
                  c=spk_cols[spk_order],
                  s=ss,
                  xlab=xlab,
                  ylab=ylab,
                  xlim=dur_lim,
                  ylim=amp_lim,
                  edgecolors='',
                  alpha=sa,
                  id_line=False,
                  title=title,
                  ax=ax_amp_dur)

    # %% Firing rate.

    tmean = np.array(bs_stats['tmean'])
    rmean = util.remove_dim_from_series(bs_stats['rate'])
    prd_tstart, prd_tstop = stab_prd_res['tstart'], stab_prd_res['tstop']

    # Color segments depending on whether they are included / excluded.
    def plot_periods(v, color, ax):
        # Plot line segments.
        for i in range(len(prd_inc[:-1])):
            col = color if prd_inc[i] and prd_inc[i + 1] else 'grey'
            x, y = [(tmean[i], tmean[i + 1]), (v[i], v[i + 1])]
            ax.plot(x, y, color=col)
        # Plot line points.
        for i in range(len(prd_inc)):
            col = color if prd_inc[i] else 'grey'
            x, y = [tmean[i], v[i]]
            ax.plot(x,
                    y,
                    color=col,
                    marker='o',
                    markersize=3,
                    markeredgecolor=col)

    # Firing rate over session time.
    title = 'Baseline rate: {:.1f} spike/s'.format(float(base_rate))
    xlab, ylab = (ses_t_lab, putil.FR_lbl) if add_lbls else (None, None)
    ylim = [0, 1.25 * np.max(rmean)]
    plot_periods(rmean, 'b', ax_rate)
    pplot.lines([], [],
                c='b',
                xlim=ses_t_lim,
                ylim=ylim,
                title=title,
                xlab=xlab,
                ylab=ylab,
                ax=ax_rate)

    # Trial markers.
    putil.plot_events(tr_markers,
                      lw=0.5,
                      ls='--',
                      alpha=0.35,
                      y_lbl=0.92,
                      ax=ax_rate)

    # Excluded periods.
    excl_prds = []
    tstart, tstop = ses_t_lim
    if tstart != prd_tstart:
        excl_prds.append(('beg', tstart, prd_tstart))
    if tstop != prd_tstop:
        excl_prds.append(('end', prd_tstop, tstop))
    putil.plot_periods(excl_prds, ymax=0.92, ax=ax_rate)

    # %% Post-formatting.

    # Maximize number of ticks on recording time axes to prevent covering.
    for ax in (ax_wf_amp, ax_wf_dur, ax_rate):
        putil.set_max_n_ticks(ax, 6, 'x')

    # %% Save figure.
    if ftempl is not None:
        fname = ftempl.format(u.name_to_fname())
        putil.save_fig(fname, fig, title, rect_height=0.92)
        putil.inline_on()

    return [ax_wf_inc, ax_wf_exc], ax_wf_amp, ax_wf_dur, ax_amp_dur, ax_rate
コード例 #7
0
ファイル: pplot.py プロジェクト: mnislamraju/seal
def plot_group_violin(res,
                      x,
                      y,
                      groups=None,
                      npval=None,
                      pth=0.01,
                      color='grey',
                      ylim=None,
                      ylab=None,
                      ffig=None):
    """Plot group-wise results on violin plots."""

    if groups is None:
        groups = res['group'].unique()

    # Test difference from zero in each groups.
    ttest_res = {
        group: sp.stats.ttest_1samp(gres[y], 0)
        for group, gres in res.groupby(x)
    }
    ttest_res = pd.DataFrame.from_dict(ttest_res, 'index')

    # Binarize significance test.
    res['is_sign'] = res[npval] < pth if npval is not None else True
    res['direction'] = np.sign(res[y])

    # Set up figure and plot data.
    fig = putil.figure()
    ax = putil.axes()
    putil.add_baseline(ax=ax)
    sns.violinplot(x=x, y=y, data=res, inner=None, order=groups, ax=ax)
    sns.swarmplot(x=x,
                  y=y,
                  hue='is_sign',
                  data=res,
                  color=color,
                  order=groups,
                  hue_order=[True, False],
                  ax=ax)
    putil.set_labels(ax, xlab='', ylab=ylab)
    putil.set_limits(ax, ylim=ylim)
    putil.hide_legend(ax)

    # Add annotations.
    ymin, ymax = ax.get_ylim()
    ylvl = ymax
    for i, group in enumerate(groups):
        gres = res.loc[res.group == group]
        # Mean.
        mean_str = 'Mean:\n' if i == 0 else '\n'
        mean_str += '{:.2f}'.format(gres[y].mean())
        # Non-zero test of distribution.
        str_pval = util.format_pvalue(ttest_res.loc[group, 'pvalue'])
        mean_str += '\n({})'.format(str_pval)
        # Stats on difference from baseline.
        nnonsign, ntot = (~gres.is_sign).sum(), len(gres)
        npos, nneg = [
            sum(gres.is_sign & (gres.direction == d)) for d in (1, -1)
        ]
        sign_to_report = [('+', npos), ('=', nnonsign), ('-', nneg)]
        nsign_str = ''
        for symb, n in sign_to_report:
            prc = str(int(round(100 * n / ntot)))
            nsign_str += '{} {:>3} / {} ({:>2}%)\n'.format(
                symb, int(n), ntot, prc)
        lbl = '{}\n\n{}'.format(mean_str, nsign_str)
        ax.text(i, ylvl, lbl, fontsize='smaller', va='bottom', ha='center')

    # Save plot.
    putil.save_fig(ffig, fig)

    return fig, ax
コード例 #8
0
ファイル: pplot.py プロジェクト: mnislamraju/seal
def cat_mean(df,
             x,
             y,
             add_stats=True,
             fstats=None,
             bar_ylvl=None,
             ci=68,
             add_mean=True,
             mean_ylvl=None,
             ylbl=None,
             fig=None,
             ax=None,
             ffig=None):
    """Plot mean of two categorical dataset."""

    # Init.
    if fig is None and ax is None:
        fig = putil.figure(figsize=(3, 3))
    if ax is None:
        ax = putil.axes()
    if fstats is None:
        fstats = stats.mann_whithney_u_test

    # Plot means as bars.
    sns.barplot(x=x,
                y=y,
                data=df,
                ci=ci,
                ax=ax,
                palette=palette,
                errwidth=errwidth,
                **kwargs)

    # Get plotted vectors.
    ngrps = [t.get_text() for t in ax.get_xticklabels()]
    v1, v2 = [df.loc[df[x] == ngrp, y] for ngrp in ngrps]

    # Add significance bar.
    if add_stats:
        _, pval = fstats(v1, v2)
        pval_str = util.format_pvalue(pval)
        if bar_ylvl is None:
            bar_ylvl = 1.1 * max(v1.mean() + stats.sem(v1),
                                 v2.mean() + stats.sem(v2))
        lines([0.1, 0.9], [bar_ylvl, bar_ylvl], color='grey', ax=ax)
        ax.text(0.5,
                1.01 * bar_ylvl,
                pval_str,
                fontsize='medium',
                fontstyle='italic',
                va='bottom',
                ha='center')

    # Add mean values.
    for vec, xpos in [(v1, 0.2), (v2, 1.2)]:
        mstr = '{:.2f}'.format(vec.mean())
        ypos = 1.005 * vec.mean()
        ax.text(xpos,
                ypos,
                mstr,
                fontstyle='italic',
                fontsize='smaller',
                va='bottom',
                ha='center')

    # Format plot.
    sns.despine()
    putil.hide_legend_title(ax)
    putil.set_labels(ax, '', ylbl)
    putil.sparsify_tick_labels(fig, ax, 'y', freq=2)
    # Save plot.
    putil.save_fig(ffig, fig)

    return ax
コード例 #9
0
ファイル: pupdown.py プロジェクト: mnislamraju/seal
def plot_up_down_raster(Spikes, task, rec, itrs):
    """Plot spike raster for up-down dynamics analysis."""

    # Set params for plotting.
    uids, trs = Spikes.index, Spikes.columns
    plot_trs = trs[itrs]
    ntrs = len(plot_trs)
    nunits = len(uids)
    tr_gap = nunits / 2

    # Init figure.
    putil.set_style('notebook', 'ticks')
    fig = putil.figure(figsize=(10, ntrs))
    ax = fig.add_subplot(111)

    # Per trial, per unit.
    for itr, tr in enumerate(plot_trs):
        for iu, uid in enumerate(uids):

            # Init y level and spike times.
            i = (tr_gap + nunits) * itr + iu
            spk_tr = Spikes.loc[uid, tr]

            # Plot (spike time, y-level) pairs.
            x = np.array(spk_tr.rescale('ms'))
            y = (i+1) * np.ones_like(x)

            patches = [Rectangle((xi-wsp/2, yi-hsp/2), wsp, hsp)
                       for xi, yi in zip(x, y)]
            collection = PatchCollection(patches, facecolor=c, edgecolor=c)
            ax.add_collection(collection)

    # Add stimulus lines.
    for stim in constants.stim_dur.index:
        t_start, t_stop = constants.fixed_tr_prds.loc[stim]
        events = pd.DataFrame([(t_start, 't_start'), (t_stop, 't_stop')],
                              index=['start', 'stop'],
                              columns=['time', 'label'])
        putil.plot_events(events, add_names=False, color='grey',
                          alpha=0.5, ls='-', lw=0.5, ax=ax)

    # Add inter-trial shading.
    for itr in range(ntrs+1):
        ymin = itr * (tr_gap + nunits) - tr_gap + 0.5
        ax.axhspan(ymin, ymin+tr_gap, alpha=.05, color='grey')

    # Set tick labels.
    pos = np.arange(ntrs) * (tr_gap + nunits) + nunits/2
    lbls = plot_trs + 1
    putil.set_ytick_labels(ax, pos, lbls)
    # putil.sparsify_tick_labels(ax, 'y', freq=2, istart=1)
    putil.hide_tick_marks(ax, show_x_tick_mrks=True)

    # Format plot.
    xlim = constants.fixed_tr_prds.loc['whole trial']
    ylim = [-tr_gap/2, ntrs * (nunits+tr_gap)-tr_gap/2]
    xlab = 'Time since S1 onset (ms)'
    ylab = 'Trial number'
    title = '{} {}'.format(rec, task)
    putil.format_plot(ax, xlim, ylim, xlab, ylab, title)
    putil.set_spines(ax, True, False, False, False)

    # Save figure.
    fname = 'UpDown_dynamics_{}_{}.pdf'.format(rec, task)
    ffig = util.join(['results', 'UpDown', fname])
    putil.save_fig(ffig, fig, dpi=600)