コード例 #1
0
ファイル: pdecoding.py プロジェクト: mnislamraju/seal
def plot_weights(ax, Coefs, prds=None, xlim=None, xlab=tlab,
                 ylab='unit coefficient', title='', ytitle=1.04):
    """Plot decoding weights."""

    # Unstack dataframe with results.
    lCoefs = pd.DataFrame(Coefs.unstack().unstack(), columns=['coef'])
    lCoefs['time'] = lCoefs.index.get_level_values(0)
    lCoefs['value'] = lCoefs.index.get_level_values(1)
    lCoefs['uid'] = lCoefs.index.get_level_values(2)
    lCoefs.index = np.arange(len(lCoefs.index))

    # Plot time series.
    sns.tsplot(lCoefs, time='time', value='coef', unit='value',
               condition='uid', ax=ax)

    # Add chance level line and stimulus periods.
    putil.add_chance_level(ax=ax, ylevel=0)
    putil.plot_periods(prds, ax=ax)

    # Set axis limits.
    xlim = xlim if xlim is not None else tlim
    putil.set_limits(ax, xlim)

    # Format plot.
    putil.set_labels(ax, xlab, ylab, title, ytitle)
    putil.hide_legend(ax)
コード例 #2
0
ファイル: pselectivity.py プロジェクト: mnislamraju/seal
def plot_DR_3x3(u, fig=None, sps=None):
    """Plot 3x3 direction response plot, with polar plot in center."""

    if not u.to_plot():
        return

    # Init subplots.
    sps, fig = putil.sps_fig(sps, fig)
    gsp = putil.embed_gsp(sps, 3, 3)  # inner gsp with subplots

    # Polar plot.
    putil.set_style('notebook', 'white')
    ax_polar = fig.add_subplot(gsp[4], polar=True)
    for stim in constants.stim_dur.index:  # for each stimulus
        stim_resp = u.get_stim_resp_vals(stim, 'Dir')
        resp_stats = util.calc_stim_resp_stats(stim_resp)
        dirs, resp = np.array(resp_stats.index) * deg, resp_stats['mean']
        c = putil.stim_colors[stim]
        baseline = u.get_baseline()
        ptuning.plot_DR(dirs, resp, color=c, baseline=baseline, ax=ax_polar)
    putil.hide_ticks(ax_polar, 'y')

    # Raster-rate plots.
    putil.set_style('notebook', 'ticks')
    rr_pos = [5, 2, 1, 0, 3, 6, 7, 8]  # Position of each direction.
    rr_dir_plot_pos = pd.Series(constants.all_dirs, index=rr_pos)

    rate_axs = []
    for isp, d in rr_dir_plot_pos.iteritems():

        # Prepare plot formatting.
        first_dir = (isp == 0)

        # Plot direction response across trial periods.
        res = plot_SR(u, 'Dir', [d], fig=fig, sps=gsp[isp], no_labels=True)
        draster_axs, drate_axs, _ = res

        # Remove axis ticks.
        for i, ax in enumerate(drate_axs):
            first_prd = (i == 0)
            show_x_tick_lbls = first_dir
            show_y_tick_lbls = first_dir & first_prd
            putil.hide_tick_labels(ax, show_x_tick_lbls, show_y_tick_lbls)

        # Add task name as title (to top center axes).
        if isp == 1:
            ttl = u.get_task() + (' [excluded]' if u.is_excluded() else '')
            putil.set_labels(draster_axs[0],
                             title=ttl,
                             ytitle=1.10,
                             title_kws={'loc': 'right'})

        rate_axs.extend(drate_axs)
        rate_axs.extend(drate_axs)

    # Match scale of y axes.
    putil.sync_axes(rate_axs, sync_y=True)
    [putil.adjust_decorators(ax) for ax in rate_axs]

    return ax_polar, rate_axs
コード例 #3
0
def plot_mean_rates(mRates,
                    aa_res_dir,
                    tasks=None,
                    task_lbls=None,
                    baseline=None,
                    xlim=None,
                    ylim=None,
                    ci=68,
                    ffig=None,
                    figsize=(6, 4)):
    """Plot mean rates across tasks."""

    # Init.
    if tasks is None:
        tasks = mRates.keys()

    # Plot mean activity.
    lRates = []
    for task in tasks:
        lrates = pd.DataFrame(mRates[task].unstack(), columns=['rate'])
        lrates['task'] = task
        lRates.append(lrates)
    lRates = pd.concat(lRates)
    lRates['time'] = lRates.index.get_level_values(0)
    lRates['unit'] = lRates.index.get_level_values(1)

    if task_lbls is not None:
        lRates.task.replace(task_lbls, inplace=True)

    # Plot as time series.
    #putil.set_style('notebook', 'white')
    fig = putil.figure(figsize=figsize)
    ax = putil.axes()

    sns.tsplot(lRates,
               time='time',
               value='rate',
               unit='unit',
               condition='task',
               ci=ci,
               ax=ax)

    # Add periods and baseline.
    putil.plot_periods(ax=ax)
    if baseline is not None:
        putil.add_baseline(baseline, ax=ax)

    # Format plot.
    sns.despine(ax=ax)
    putil.set_labels(ax, xlab='time since S1 onset', ylab='rate (sp/s)')
    putil.set_limits(ax, xlim, ylim)
    putil.hide_legend_title(ax)

    # Save plot.
    putil.save_fig(ffig, fig)

    return fig, ax
コード例 #4
0
ファイル: prepare.py プロジェクト: mnislamraju/seal
 def plot_inc_exc_trials(IncTrsMat, ax, title=None, ytitle=None,
                         xlab='Trial #', ylab=None,):
     # Plot on heatmap.
     sns.heatmap(IncTrsMat, cmap='RdYlGn', center=0.5, cbar=False, ax=ax)
     # Set tick labels.
     putil.hide_tick_marks(ax)
     tr_ticks = [1] + list(np.arange(25, IncTrsMat.shape[1]+1, 25))
     ax.xaxis.set_ticks(tr_ticks)
     ax.set_xticklabels(tr_ticks)
     putil.rot_xtick_labels(ax, 0)
     putil.rot_ytick_labels(ax, 0, va='center')
     putil.set_labels(ax, xlab, ylab, title, ytitle)
コード例 #5
0
ファイル: test_RF.py プロジェクト: mnislamraju/seal
def plot_RF_results(RF_res, stims, fdir, sup_title):
    """Plot receptive field results."""

    # Plot distribution of coverage values.
    putil.set_style('poster', 'white')
    fig = putil.figure()
    ax = putil.axes()
    sns.distplot(RF_res.S1_cover, bins=np.arange(0, 1.01, 0.1),
                 kde=False, rug=True, ax=ax)
    putil.set_limits(ax, [0, 1])
    fst = util.format_to_fname(sup_title)
    ffig = fdir + fst + '_S1_coverage.png'
    putil.save_fig(ffig, fig, sup_title)

    # Plot RF coverage and rate during S1 on regression plot for each
    # recording and task.
    tasks = RF_res.index.get_level_values(-1).unique()
    for vname, ylim in [('mean_rate', [0, None]), ('max_rate', [0, None]),
                        ('mDSI', [0, 1])]:
        fig, gs, axes = putil.get_gs_subplots(nrow=len(stims), ncol=len(tasks),
                                              subw=4, subh=4, ax_kws_list=None,
                                              create_axes=True)
        colors = sns.color_palette('muted', len(tasks))
        for istim, stim in enumerate(stims):
            for itask, task in enumerate(tasks):
                # Plot regression plot.
                ax = axes[istim, itask]
                scov, sval = [stim + '_' + name for name in ('cover', vname)]
                df = RF_res.xs(task, level=-1)
                sns.regplot(scov, sval, df, color=colors[itask], ax=ax)
                # Add unit labels.
                uids = df.index.droplevel(0)
                putil.add_unit_labels(ax, uids, df[scov], df[sval])
                # Add stats.
                r, p = sp.stats.pearsonr(df[sval], df[scov])
                pstr = util.format_pvalue(p)
                txt = 'r = {:.2f}, {}'.format(r, pstr)
                ax.text(0.02, 0.98, txt, va='top', ha='left',
                        transform=ax.transAxes)
                # Set labels.
                title = '{} {}'.format(task, stim)
                xlab, ylab = [sn.replace('_', ' ') for sn in (scov, sval)]
                putil.set_labels(ax, xlab, ylab, title)
                # Set limits.
                xlim = [0, 1]
                putil.set_limits(ax, xlim, ylim)

        # Save plot.
        fst = util.format_to_fname(sup_title)
        fname = '{}_cover_{}.png'.format(fst, vname)
        ffig = util.join([fdir, vname, fname])
        putil.save_fig(ffig, fig, sup_title)
コード例 #6
0
def raster_rate(spk_list,
                rate_list,
                names=None,
                prds=None,
                evts=None,
                cols=None,
                baseline=None,
                title=None,
                rs_ylab=True,
                rate_kws=None,
                fig=None,
                ffig=None,
                sps=None):
    """Plot raster and rate plots."""

    if rate_kws is None:
        rate_kws = dict()

    # Init subplots.
    sps, fig = putil.sps_fig(sps, fig)
    gsp = putil.embed_gsp(sps, 2, 1, height_ratios=[.66, 1], hspace=.15)
    n_sets = max(len(spk_list), 1)  # let's add an empty axes if no data
    gsp_raster = putil.embed_gsp(gsp[0], n_sets, 1, hspace=.15)
    gsp_rate = putil.embed_gsp(gsp[1], 1, 1)

    # Init colors.
    if cols is None:
        col_cyc = putil.get_colors(mpl_colors=True)
        cols = [next(col_cyc) for i in range(n_sets)]

    # Raster plots.
    raster_axs = [fig.add_subplot(gsp_raster[i, 0]) for i in range(n_sets)]
    for i, (spk_trs, ax) in enumerate(zip(spk_list, raster_axs)):
        ylab = names[i] if (rs_ylab and names is not None) else None
        raster(spk_trs, prds=prds, c=cols[i], ylab=ylab, ax=ax)
        putil.hide_axes(ax)
    if len(raster_axs):
        putil.set_labels(raster_axs[0], title=title)  # add title to top raster

    # Rate plot.
    rate_ax = fig.add_subplot(gsp_rate[0, 0])
    rate(rate_list, names, prds, evts, cols, baseline, **rate_kws, ax=rate_ax)

    # Synchronize raster's x axis limits to rate plot's limits.
    xlim = rate_ax.get_xlim()
    [ax.set_xlim(xlim) for ax in raster_axs]

    # Save and return plot.
    putil.save_fig(ffig, fig)
    return fig, raster_axs, rate_ax
コード例 #7
0
ファイル: pauc.py プロジェクト: mnislamraju/seal
def plot_ROC_mean(d_faroc,
                  t1=None,
                  t2=None,
                  ylim=None,
                  colors=None,
                  ylab='AROC',
                  ffig=None):
    """Plot mean ROC curves over given period."""

    # Import results.
    d_aroc = {}
    for name, faroc in d_faroc.items():
        aroc = util.read_objects(faroc, 'aroc')
        d_aroc[name] = aroc.unstack().T

    # Format results.
    laroc = pd.DataFrame(pd.concat(d_aroc), columns=['aroc'])
    laroc['task'] = laroc.index.get_level_values(0)
    laroc['time'] = laroc.index.get_level_values(1)
    laroc['unit'] = laroc.index.get_level_values(2)
    laroc.index = np.arange(len(laroc.index))

    # Init figure.
    fig = putil.figure(figsize=(6, 6))
    ax = sns.tsplot(laroc,
                    time='time',
                    value='aroc',
                    unit='unit',
                    condition='task',
                    color=colors)

    # Highlight stimulus periods.
    putil.plot_periods(ax=ax)

    # Plot mean results.
    [ax.lines[i].set_linewidth(3) for i in range(len(ax.lines))]

    # Add chance level line.
    putil.add_chance_level(ax=ax, alpha=0.8, color='k')
    ax.lines[-1].set_linewidth(1.5)

    # Format plot.
    xlab = 'Time since S1 onset (ms)'
    putil.set_labels(ax, xlab, ylab)
    putil.set_limits(ax, [t1, t2], ylim)
    putil.set_spines(ax, bottom=True, left=True, top=False, right=False)
    putil.set_legend(ax, loc=0)

    # Save plot.
    putil.save_fig(ffig, fig, ytitle=1.05, w_pad=15)
コード例 #8
0
ファイル: pdecoding.py プロジェクト: mnislamraju/seal
def plot_scores(ax, Scores, Perm=None, Psdo=None, nvals=None, prds=None,
                col='b', perm_col='grey', psdo_col='g', xlim=None,
                ylim=ylim_scr, xlab=tlab, ylab=ylab_scr, title='',
                ytitle=1.04):
    """Plot decoding accuracy results."""

    lgn_patches = []

    # Plot permuted results (if exist).
    if not util.is_null(Perm) and not Perm.isnull().all().all():
        x, pval = Perm.columns, Perm.loc['pval']
        ymean, ystd = Perm.loc['mean'], Perm.loc['std']
        plot_mean_std_sdiff(x, ymean, ystd, pval, pth=0.01, lw=6,
                            color=perm_col, ax=ax)
        lgn_patches.append(putil.get_artist('permuted', perm_col))

    # Plot population shuffled results (if exist).
    if not util.is_null(Psdo) and not Psdo.isnull().all().all():
        x, pval = Psdo.columns, Psdo.loc['pval']
        ymean, ystd = Psdo.loc['mean'], Psdo.loc['std']
        plot_mean_std_sdiff(x, ymean, ystd, pval, pth=0.01, lw=3,
                            color=psdo_col, ax=ax)
        lgn_patches.append(putil.get_artist('pseudo-population', psdo_col))

    # Plot scores.
    plot_score_set(Scores, ax, color=col)
    lgn_patches.append(putil.get_artist('synchronous', col))

    # Add legend.
    lgn_patches = lgn_patches[::-1]
    putil.set_legend(ax, handles=lgn_patches)

    # Add chance level line.
    # This currently plots all nvals combined across stimulus period!
    if nvals is not None:
        chance_lvl = 1.0 / nvals
        putil.add_chance_level(ax=ax, ylevel=chance_lvl)

    # Add stimulus periods.
    if prds is not None:
        putil.plot_periods(prds, ax=ax)

    # Set axis limits.
    xlim = xlim if xlim is not None else tlim
    putil.set_limits(ax, xlim, ylim)

    # Format plot.
    putil.set_labels(ax, xlab, ylab, title, ytitle)
コード例 #9
0
def plot_slope_diffs_btw_groups(fit_res,
                                prd,
                                res_dir,
                                groups=None,
                                figsize=None):
    """Plot differences in slopes between group pairs."""

    # Test pair-wise difference from each other.
    if groups is None:
        groups = fit_res['group'].unique()
    empty_df = pd.DataFrame(np.nan, index=groups, columns=groups)
    pw_diff_v = empty_df.copy()
    pw_diff_p = empty_df.copy()
    pw_diff_a = empty_df.copy()
    for grp1, grp2 in combinations(groups, 2):
        # Get slopes in each task.
        slp_t1 = fit_res.slope[fit_res.group == grp1]
        slp_t2 = fit_res.slope[fit_res.group == grp2]
        # Mean difference value.
        diff = slp_t1.mean() - slp_t2.mean()
        pw_diff_v.loc[grp1, grp2] = diff
        # Do test for statistical difference.
        stat, pval = stats.mann_whithney_u_test(slp_t1, slp_t2)
        pw_diff_p.loc[grp1, grp2] = pval
        # Annotation DF plot.
        a1, a2 = [
            '{:.2f}{}'.format(v, util.star_pvalue(pval)) for v in (diff, -diff)
        ]
        pw_diff_a.loc[grp1, grp2] = a1
    # Plot and save figure of mean pair-wise difference.
    fig = putil.figure(figsize=figsize)
    sns.heatmap(pw_diff_v, annot=pw_diff_a, fmt='', linewidths=0.5, cbar=False)
    title = 'Mean difference in {} slopes (sp/s / s)'.format(prd)
    putil.set_labels(title=title)
    ffig = res_dir + '{}_anticipatory_slope_pairwise_diff.png'.format(prd)
    putil.save_fig(ffig, fig)

    return pw_diff_v
コード例 #10
0
ファイル: comparison.py プロジェクト: mnislamraju/seal
def plot_CE_time_distribution(ulists,
                              eff_t_res,
                              eff_pars,
                              aroc_res_dir,
                              bins=None):
    """Plot distribution of ROC comparison effect timing across groups."""

    # Init.
    putil.set_style('notebook', 'white')
    if bins is None:
        bins = np.arange(2000, 2600, 50)
    fig, _, axs = putil.get_gs_subplots(nrow=1,
                                        ncol=len(eff_pars),
                                        subw=5,
                                        subh=4,
                                        create_axes=True,
                                        as_array=False)

    # Plot CE timing distribution for each unit group.
    for (eff_dir, eff_lbl), ax in zip(eff_pars, axs):
        etd = eff_t_res.loc[eff_t_res.effect_dir == eff_dir, 'time']
        for nlist in ulists:
            tvals = etd.loc[nlist]
            lbl = '{} (n={})'.format(nlist, len(tvals))
            sns.distplot(tvals, bins, label=lbl, ax=ax)
        putil.set_labels(ax, 'effect timing (ms since S1 onset)', '', eff_lbl)

    # Format plots.
    sns.despine(ax=ax)
    [ax.legend() for ax in axs]
    [putil.hide_tick_labels(ax, show_x_tick_lbls=True) for ax in axs]
    putil.sync_axes(axs, sync_y=True)

    # Save plot.s
    ffig = aroc_res_dir + 'CE/CE_timing_distributions.png'
    putil.save_fig(ffig, fig)
コード例 #11
0
ファイル: pplot.py プロジェクト: mnislamraju/seal
def cat_mean(df,
             x,
             y,
             add_stats=True,
             fstats=None,
             bar_ylvl=None,
             ci=68,
             add_mean=True,
             mean_ylvl=None,
             ylbl=None,
             fig=None,
             ax=None,
             ffig=None):
    """Plot mean of two categorical dataset."""

    # Init.
    if fig is None and ax is None:
        fig = putil.figure(figsize=(3, 3))
    if ax is None:
        ax = putil.axes()
    if fstats is None:
        fstats = stats.mann_whithney_u_test

    # Plot means as bars.
    sns.barplot(x=x,
                y=y,
                data=df,
                ci=ci,
                ax=ax,
                palette=palette,
                errwidth=errwidth,
                **kwargs)

    # Get plotted vectors.
    ngrps = [t.get_text() for t in ax.get_xticklabels()]
    v1, v2 = [df.loc[df[x] == ngrp, y] for ngrp in ngrps]

    # Add significance bar.
    if add_stats:
        _, pval = fstats(v1, v2)
        pval_str = util.format_pvalue(pval)
        if bar_ylvl is None:
            bar_ylvl = 1.1 * max(v1.mean() + stats.sem(v1),
                                 v2.mean() + stats.sem(v2))
        lines([0.1, 0.9], [bar_ylvl, bar_ylvl], color='grey', ax=ax)
        ax.text(0.5,
                1.01 * bar_ylvl,
                pval_str,
                fontsize='medium',
                fontstyle='italic',
                va='bottom',
                ha='center')

    # Add mean values.
    for vec, xpos in [(v1, 0.2), (v2, 1.2)]:
        mstr = '{:.2f}'.format(vec.mean())
        ypos = 1.005 * vec.mean()
        ax.text(xpos,
                ypos,
                mstr,
                fontstyle='italic',
                fontsize='smaller',
                va='bottom',
                ha='center')

    # Format plot.
    sns.despine()
    putil.hide_legend_title(ax)
    putil.set_labels(ax, '', ylbl)
    putil.sparsify_tick_labels(fig, ax, 'y', freq=2)
    # Save plot.
    putil.save_fig(ffig, fig)

    return ax
コード例 #12
0
ファイル: prepare.py プロジェクト: mnislamraju/seal
def plot_trial_type_distribution(UA, RecInfo, utids=None, tr_par=('S1', 'Dir'),
                                 save_plot=False, fname=None):
    """Plot distribution of trial types."""

    # Init.
    par_str = util.format_to_fname(str(tr_par))
    if utids is None:
        utids = UA.utids(as_series=True)
    recs = util.get_subj_date_pairs(utids)
    tasks = RecInfo.index.get_level_values('task').unique()
    tasks = [task for task in UA.tasks() if task in tasks]  # reorder tasks

    # Init plotting.
    putil.set_style('notebook', 'darkgrid')
    fig, gsp, axs = putil.get_gs_subplots(nrow=len(recs), ncol=len(tasks),
                                          subw=4, subh=3, create_axes=True)

    for ir, rec in enumerate(recs):
        for it, task in enumerate(tasks):

            ax = axs[ir, it]
            rt = rec + (task,)
            if rt not in RecInfo.index:
                ax.set_axis_off()
                continue

            # Get includecd trials and their parameters.
            inc_trs = RecInfo.loc[rt, 'trials']
            utid = utids.xs(rt, level=('subj', 'date', 'task'))[0]
            TrData = UA.get_unit(utid[:-1], utid[-1]).TrData.loc[inc_trs]

            # Create DF to plot.
            anw_df = TrData[[tr_par, 'correct']].copy()
            anw_df['answer'] = 'error'
            anw_df.loc[anw_df.correct, 'answer'] = 'correct'
            all_df = anw_df.copy()
            all_df.answer = 'all'
            comb_df = pd.concat([anw_df, all_df])

            if not TrData.size:
                ax.set_axis_off()
                continue

            # Plot as countplot.
            sns.countplot(x=tr_par, hue='answer', data=comb_df,
                          hue_order=['all', 'correct', 'error'], ax=ax)
            sns.despine(ax=ax)
            putil.hide_tick_marks(ax)
            putil.set_max_n_ticks(ax, 6, 'y')
            ax.legend(loc=[0.95, 0.7])

            # Add title.
            title = '{} {}'.format(rec, task)
            nce = anw_df.answer.value_counts()
            nc, ne = [nce[c] if c in nce else 0 for c in ('correct', 'error')]
            pnc, pne = 100*nc/nce.sum(), 100*ne/nce.sum()
            title += '\n\n# correct: {} ({:.0f}%)'.format(nc, pnc)
            title += '      # error: {} ({:.0f}%)'.format(ne, pne)
            putil.set_labels(ax, title=title, xlab=par_str)

            # Format legend.
            if (ir != 0) or (it != 0):
                ax.legend_.remove()

    # Save plot.
    if save_plot:
        title = 'Trial type distribution'
        if fname is None:
            fname = util.join(['results', 'decoding', 'prepare',
                               par_str + '_trial_type_distr.pdf'])

        putil.save_fig(fname, fig, title, w_pad=3, h_pad=3)
コード例 #13
0
ファイル: prepare.py プロジェクト: mnislamraju/seal
def select_units_trials(UA, utids=None, fres=None, ffig=None,
                        min_n_units=5, min_n_trs_per_unit=5):
    """
    Select optimal set of units and trials for population decoding.

    min_n_units: minimum number of units to keep (0: off)
    min_n_trs_per_unit: minimum number of trials per unit to keep (0: off)
    """

    print('Selecting optimal set of units and trials for decoding...')

    # Init.
    if utids is None:
        utids = UA.utids(as_series=True)
    u_rt_grpby = utids.groupby(level=['subj', 'date', 'task'])

    # Unit info frame.
    UInc = pd.Series(False, index=utids.index)

    # Included trials by unit.
    IncTrs = pd.Series([(UA.get_unit(utid[:-1], utid[-1]).inc_trials())
                        for utid in utids], index=utids.index)

    # Result DF.
    rec_task = pd.MultiIndex.from_tuples([rt for rt, _ in u_rt_grpby],
                                         names=['subj', 'date', 'task'])
    cols = ['elec', 'units', 'nunits', 'nallunits', '% remaining units',
            'trials', 'ntrials', 'nalltrials', '% remaining trials']
    RecInfo = pd.DataFrame(index=rec_task, columns=cols)
    rt_utids = [utids.xs((s, d, t), level=('subj', 'date', 'task'))
                for s, d, t in rec_task]
    RecInfo.nallunits = [len(utids) for utids in rt_utids]
    rt_ulist = [UA.get_unit(utids[0][:-1], utids[0][-1]) for utids in rt_utids]
    RecInfo.nalltrials = [int(u.QualityMetrics['NTrialsTotal'])
                          for u in rt_ulist]

    # Function to plot matrix (DF) included/excluded trials.
    def plot_inc_exc_trials(IncTrsMat, ax, title=None, ytitle=None,
                            xlab='Trial #', ylab=None,):
        # Plot on heatmap.
        sns.heatmap(IncTrsMat, cmap='RdYlGn', center=0.5, cbar=False, ax=ax)
        # Set tick labels.
        putil.hide_tick_marks(ax)
        tr_ticks = [1] + list(np.arange(25, IncTrsMat.shape[1]+1, 25))
        ax.xaxis.set_ticks(tr_ticks)
        ax.set_xticklabels(tr_ticks)
        putil.rot_xtick_labels(ax, 0)
        putil.rot_ytick_labels(ax, 0, va='center')
        putil.set_labels(ax, xlab, ylab, title, ytitle)

    # Init plotting.
    ytitle = 1.40
    putil.set_style('notebook', 'whitegrid')
    fig, gsp, axs = putil.get_gs_subplots(nrow=len(rec_task), ncol=3,
                                          subw=6, subh=4, create_axes=True)

    for i_rt, ((subj, date, task), rt_utids) in enumerate(u_rt_grpby):
        print('{} / {}: {} - {} {}'.format(i_rt+1, len(u_rt_grpby), subj,
                                           date, task))

        # Init electrode.
        elecs = rt_utids.index.get_level_values('elec').unique()
        if len(elecs) != 1:
            warnings.warn('More than one electrode?')
        elec = elecs[0]
        RecInfo.loc[(subj, date, task), 'elec'] = elec

        # Create matrix of included trials of recording & task of units.
        ch_idxs = rt_utids.index.droplevel(-1).droplevel(2).droplevel(1).droplevel(0)
        n_alltrs = RecInfo.nalltrials[(subj, date, task)]
        IncTrsMat = pd.DataFrame(np.zeros((len(ch_idxs), n_alltrs), dtype=int),
                                 index=ch_idxs, columns=np.arange(n_alltrs)+1)
        for ch_idx, utid in zip(ch_idxs, rt_utids):
            IncTrsMat.loc[ch_idx].iloc[IncTrs[utid]] = 1

        # Plot included/excluded trials after preprocessing.
        ax = axs[i_rt, 0]
        ylab = '{} {} {}'.format(subj, date, task)
        title = ('Included (green) and excluded (red) trials'
                 if i_rt == 0 else None)
        plot_inc_exc_trials(IncTrsMat, ax, title, ytitle, ylab=ylab)

        # Calculate and plot overlap of trials across units.
        # How many trials will remain if we iteratively excluding units
        # with the least overlap with the rest of the units?
        def n_cov_trs(df):  # return number of trials covered in df
            return sum(df.all())

        def calc_heuristic(df):
            return df.shape[0] * n_cov_trs(df)

        n_trs = IncTrsMat.sum(1)
        n_units = IncTrsMat.shape[0]

        # Init results DF.
        columns = ('uid', 'ntrs_cov', 'n_rem_u', 'trial x units')
        tr_covs = pd.DataFrame(columns=columns, index=range(n_units+1))
        tr_covs.loc[0] = ('none', n_cov_trs(IncTrsMat), n_units,
                          calc_heuristic(IncTrsMat))

        # Subset of included units (to be updated in each iteration).
        uinc = IncTrsMat.index.to_series()
        for iu in range(1, len(uinc)):

            # Number of covered trials after removing each unit.
            sntrscov = pd.Series([n_cov_trs(IncTrsMat.loc[uinc.drop(uid)])
                                  for uid in uinc], index=uinc.index)

            #########################################
            # Select and remove unit that           #
            # (a) yields maximum trial coverage,    #
            # (b) has minimum number of trials      #
            #########################################
            maxtrscov = sntrscov.max()
            worst_us = sntrscov[sntrscov == maxtrscov].index  # (a)
            utrs = n_trs.loc[worst_us]
            uid_remove = utrs[(utrs == min(utrs))].index[0]   # (b)

            # Update current subset of units and their trial DF.
            uinc.drop(uid_remove, inplace=True)
            tr_covs.loc[iu] = (uid_remove, maxtrscov, len(uinc),
                               calc_heuristic(IncTrsMat.loc[uinc]))

        # Add last unit.
        tr_covs.iloc[-1] = (uinc[0], 0, 0, 0)

        # Plot covered trials against each units removed.
        ax_trc = axs[i_rt, 1]
        sns.tsplot(tr_covs['ntrs_cov'], marker='o', ms=4, color='b',
                   ax=ax_trc)
        title = ('Trial coverage during iterative unit removal'
                 if i_rt == 0 else None)
        xlab, ylab = 'current unit removed', '# trials covered'
        putil.set_labels(ax_trc, xlab, ylab, title, ytitle)
        ax_trc.xaxis.set_ticks(tr_covs.index)
        x_ticklabs = ['none'] + ['{} - {}'.format(ch, ui)
                                 for ch, ui in tr_covs.uid.loc[1:]]
        ax_trc.set_xticklabels(x_ticklabs)
        putil.rot_xtick_labels(ax_trc, 45)
        ax_trc.grid(True)

        # Add # of remaining units to top.
        ax_remu = ax_trc.twiny()
        ax_remu.xaxis.set_ticks(tr_covs.index)
        ax_remu.set_xticklabels(list(range(len(x_ticklabs)))[::-1])
        ax_remu.set_xlabel('# units remaining')
        ax_remu.grid(None)

        # Add heuristic index.
        ax_heur = ax_trc.twinx()
        sns.tsplot(tr_covs['trial x units'], linestyle='--', marker='o',
                   ms=4, color='m',  ax=ax_heur)
        putil.set_labels(ax_heur, ylab='remaining units x covered trials')
        [tl.set_color('m') for tl in ax_heur.get_yticklabels()]
        [tl.set_color('b') for tl in ax_trc.get_yticklabels()]
        ax_heur.grid(None)

        # Decide on which units to exclude.
        min_n_trials = min_n_trs_per_unit * tr_covs['n_rem_u']
        sub_tr_covs = tr_covs[(tr_covs['n_rem_u'] >= min_n_units) &
                              (tr_covs['ntrs_cov'] >= min_n_trials)]

        # If any subset of units passed above criteria.
        rem_uids, exc_uids = pd.Series(), tr_covs.uid[1:]
        n_tr_rem, n_tr_exc = 0, IncTrsMat.shape[1]
        if len(sub_tr_covs.index):
            hmax_idx = sub_tr_covs['trial x units'].argmax()
            rem_uids = tr_covs.uid[(hmax_idx+1):]
            exc_uids = tr_covs.uid[1:hmax_idx+1]
            n_tr_rem = tr_covs.ntrs_cov[hmax_idx]
            n_tr_exc = IncTrsMat.shape[1] - n_tr_rem

            # Add to UnitInfo dataframe
            rt_utids = [(subj, date, elec, ch, ui, task)
                        for ch, ui in rem_uids]
            UInc[rt_utids] = True

        # Highlight selected point in middle plot.
        sel_seg = [('selection', exc_uids.shape[0]-0.4,
                    exc_uids.shape[0]+0.4)]
        putil.plot_periods(sel_seg, ax=ax_trc, alpha=0.3)
        [ax.set_xlim([-0.5, n_units+0.5]) for ax in (ax_trc, ax_remu)]

        # Generate remaining trials dataframe.
        RemTrsMat = IncTrsMat.copy().astype(float)
        for exc_uid in exc_uids:   # Remove all trials from excluded units.
            RemTrsMat.loc[exc_uid] = 0.5
        # Remove uncovered trials in remaining units.
        exc_trs = np.where(~RemTrsMat.loc[list(rem_uids)].all())[0]
        if exc_trs.size:
            RemTrsMat.iloc[:, exc_trs] = 0.5
        # Overwrite by trials excluded during preprocessing.
        RemTrsMat[IncTrsMat == False] = 0.0

        # Plot remaining trials.
        ax = axs[i_rt, 2]
        n_u_rem, n_u_exc = len(rem_uids), len(exc_uids)
        title = ('# units remaining: {}, excluded: {}'.format(n_u_rem,
                                                              n_u_exc) +
                 '\n# trials remaining: {}, excluded: {}'.format(n_tr_rem,
                                                                 n_tr_exc))
        plot_inc_exc_trials(RemTrsMat, ax, title=title, ylab='')

        # Add remaining units and trials to RecInfo.
        rt = (subj, date, task)
        RecInfo.loc[rt, ('units', 'nunits')] = list(rem_uids), len(rem_uids)
        cov_trs = RemTrsMat.loc[list(rem_uids)].all()
        inc_trs = pd.Int64Index(np.where(cov_trs)[0])
        RecInfo.loc[rt, ('trials', 'ntrials')] = inc_trs, sum(cov_trs)

    RecInfo['% remaining units'] = 100 * RecInfo.nunits / RecInfo.nallunits
    RecInfo['% remaining trials'] = 100 * RecInfo.ntrials / RecInfo.nalltrials

    # Save results.
    if fres is not None:
        results = {'RecInfo': RecInfo, 'UInc': UInc}
        util.write_objects(results, fres)

    # Save plot.
    title = 'Trial & unit selection prior decoding'
    putil.save_fig(ffig, fig, title, w_pad=3, h_pad=3)

    return RecInfo, UInc
コード例 #14
0
ファイル: pquality.py プロジェクト: mnislamraju/seal
def plot_qm(u,
            bs_stats,
            stab_prd_res,
            prd_inc,
            tr_inc,
            spk_inc,
            add_lbls=False,
            ftempl=None,
            fig=None,
            sps=None):
    """Plot quality metrics related figures."""

    # Init values.
    waveforms = np.array(u.Waveforms)
    wavetime = u.Waveforms.columns * us
    spk_times = np.array(u.SpikeParams['time'], dtype=float)
    base_rate = u.QualityMetrics['baseline']

    # Minimum and maximum gain.
    gmin = u.SessParams['minV']
    gmax = u.SessParams['maxV']

    # %% Init plots.

    # Disable inline plotting to prevent memory leak.
    putil.inline_off()

    # Init figure and gridspec.
    fig = putil.figure(fig)
    if sps is None:
        sps = putil.gridspec(1, 1)[0]
    ogsp = putil.embed_gsp(sps, 2, 1, height_ratios=[0.02, 1])

    info_sps, qm_sps = ogsp[0], ogsp[1]

    # Info header.
    info_ax = fig.add_subplot(info_sps)
    putil.hide_axes(info_ax)
    title = putil.get_unit_info_title(u)
    putil.set_labels(ax=info_ax, title=title, ytitle=0.80)

    # Create axes.
    gsp = putil.embed_gsp(qm_sps, 3, 2, wspace=0.3, hspace=0.4)
    ax_wf_inc, ax_wf_exc = [fig.add_subplot(gsp[0, i]) for i in (0, 1)]
    ax_wf_amp, ax_wf_dur = [fig.add_subplot(gsp[1, i]) for i in (0, 1)]
    ax_amp_dur, ax_rate = [fig.add_subplot(gsp[2, i]) for i in (0, 1)]

    # Trial markers.
    trial_starts, trial_stops = u.TrData.TrialStart, u.TrData.TrialStop
    tr_markers = pd.DataFrame({'time': trial_starts[9::10]})
    tr_markers['label'] = [
        str(itr + 1) if i % 2 else '' for i, itr in enumerate(tr_markers.index)
    ]

    # Common variables, limits and labels.
    WF_T_START = test_sorting.WF_T_START
    spk_t = u.SessParams.sampl_prd * (np.arange(waveforms.shape[1]) -
                                      WF_T_START)
    ses_t_lim = test_sorting.get_start_stop_times(spk_times, trial_starts,
                                                  trial_stops)
    ss, sa = 1.0, 0.8  # marker size and alpha on scatter plot

    # Color spikes by their occurance over session time.
    my_cmap = putil.get_cmap('jet')
    spk_cols = np.tile(np.array([.25, .25, .25, .25]), (len(spk_times), 1))
    if np.any(spk_inc):  # check if there is any spike included
        spk_t_inc = np.array(spk_times[spk_inc])
        tmin, tmax = float(spk_times.min()), float(spk_times.max())
        spk_cols[spk_inc, :] = my_cmap((spk_t_inc - tmin) / (tmax - tmin))
    # Put excluded trials to the front, and randomise order of included trials
    # so later spikes don't systematically cover earlier ones.
    spk_order = np.hstack((np.where(np.invert(spk_inc))[0],
                           np.random.permutation(np.where(spk_inc)[0])))

    # Common labels for plots
    ses_t_lab = 'Recording time (s)'

    # %% Waveform shape analysis.

    # Plot included and excluded waveforms on different axes.
    # Color included by occurance in session time to help detect drifts.
    s_waveforms, s_spk_cols = waveforms[spk_order, :], spk_cols[spk_order]
    wf_t_lim, glim = [min(spk_t), max(spk_t)], [gmin, gmax]
    wf_t_lab, volt_lab = 'WF time ($\mu$s)', 'Voltage'
    for st in ('Included', 'Excluded'):
        ax = ax_wf_inc if st == 'Included' else ax_wf_exc
        spk_idx = spk_inc if st == 'Included' else np.invert(spk_inc)
        tr_idx = tr_inc if st == 'Included' else np.invert(tr_inc)

        nspsk, ntrs = sum(spk_idx), sum(tr_idx)
        title = '{} WFs, {} spikes, {} trials'.format(st, nspsk, ntrs)

        # Select waveforms and colors.
        rand_spk_idx = spk_idx[spk_order]
        wfs = s_waveforms[rand_spk_idx, :]
        cols = s_spk_cols[rand_spk_idx]

        # Plot waveforms.
        xlab, ylab = (wf_t_lab, volt_lab) if add_lbls else (None, None)
        pwaveform.plot_wfs(wfs,
                           spk_t,
                           cols=cols,
                           lw=0.1,
                           alpha=0.05,
                           xlim=wf_t_lim,
                           ylim=glim,
                           title=title,
                           xlab=xlab,
                           ylab=ylab,
                           ax=ax)

    # %% Waveform summary metrics.

    # Init data.
    wf_amp_all = u.SpikeParams['amplitude']
    wf_amp_inc = wf_amp_all[spk_inc]
    wf_dur_all = u.SpikeParams['duration']
    wf_dur_inc = wf_dur_all[spk_inc]

    # Set common limits and labels.
    dur_lim = [0, wavetime[-2] - wavetime[WF_T_START]]  # same across units
    glim = max(wf_amp_all.max(), gmax - gmin)
    amp_lim = [0, glim]

    amp_lab = 'Amplitude'
    dur_lab = 'Duration ($\mu$s)'

    # Waveform amplitude across session time.
    m_amp, sd_amp = wf_amp_inc.mean(), wf_amp_inc.std()
    title = 'WF amplitude: {:.1f} $\pm$ {:.1f}'.format(m_amp, sd_amp)
    xlab, ylab = (ses_t_lab, amp_lab) if add_lbls else (None, None)
    pplot.scatter(spk_times,
                  wf_amp_all,
                  spk_inc,
                  c='m',
                  bc='grey',
                  s=ss,
                  xlab=xlab,
                  ylab=ylab,
                  xlim=ses_t_lim,
                  ylim=amp_lim,
                  edgecolors='',
                  alpha=sa,
                  id_line=False,
                  title=title,
                  ax=ax_wf_amp)

    # Waveform duration across session time.
    mdur, sdur = wf_dur_inc.mean(), wf_dur_inc.std()
    title = 'WF duration: {:.1f} $\pm$ {:.1f} $\mu$s'.format(mdur, sdur)
    xlab, ylab = (ses_t_lab, dur_lab) if add_lbls else (None, None)
    pplot.scatter(spk_times,
                  wf_dur_all,
                  spk_inc,
                  c='c',
                  bc='grey',
                  s=ss,
                  xlab=xlab,
                  ylab=ylab,
                  xlim=ses_t_lim,
                  ylim=dur_lim,
                  edgecolors='',
                  alpha=sa,
                  id_line=False,
                  title=title,
                  ax=ax_wf_dur)

    # Waveform duration against amplitude.
    title = 'WF duration - amplitude'
    xlab, ylab = (dur_lab, amp_lab) if add_lbls else (None, None)
    pplot.scatter(wf_dur_all[spk_order],
                  wf_amp_all[spk_order],
                  c=spk_cols[spk_order],
                  s=ss,
                  xlab=xlab,
                  ylab=ylab,
                  xlim=dur_lim,
                  ylim=amp_lim,
                  edgecolors='',
                  alpha=sa,
                  id_line=False,
                  title=title,
                  ax=ax_amp_dur)

    # %% Firing rate.

    tmean = np.array(bs_stats['tmean'])
    rmean = util.remove_dim_from_series(bs_stats['rate'])
    prd_tstart, prd_tstop = stab_prd_res['tstart'], stab_prd_res['tstop']

    # Color segments depending on whether they are included / excluded.
    def plot_periods(v, color, ax):
        # Plot line segments.
        for i in range(len(prd_inc[:-1])):
            col = color if prd_inc[i] and prd_inc[i + 1] else 'grey'
            x, y = [(tmean[i], tmean[i + 1]), (v[i], v[i + 1])]
            ax.plot(x, y, color=col)
        # Plot line points.
        for i in range(len(prd_inc)):
            col = color if prd_inc[i] else 'grey'
            x, y = [tmean[i], v[i]]
            ax.plot(x,
                    y,
                    color=col,
                    marker='o',
                    markersize=3,
                    markeredgecolor=col)

    # Firing rate over session time.
    title = 'Baseline rate: {:.1f} spike/s'.format(float(base_rate))
    xlab, ylab = (ses_t_lab, putil.FR_lbl) if add_lbls else (None, None)
    ylim = [0, 1.25 * np.max(rmean)]
    plot_periods(rmean, 'b', ax_rate)
    pplot.lines([], [],
                c='b',
                xlim=ses_t_lim,
                ylim=ylim,
                title=title,
                xlab=xlab,
                ylab=ylab,
                ax=ax_rate)

    # Trial markers.
    putil.plot_events(tr_markers,
                      lw=0.5,
                      ls='--',
                      alpha=0.35,
                      y_lbl=0.92,
                      ax=ax_rate)

    # Excluded periods.
    excl_prds = []
    tstart, tstop = ses_t_lim
    if tstart != prd_tstart:
        excl_prds.append(('beg', tstart, prd_tstart))
    if tstop != prd_tstop:
        excl_prds.append(('end', prd_tstop, tstop))
    putil.plot_periods(excl_prds, ymax=0.92, ax=ax_rate)

    # %% Post-formatting.

    # Maximize number of ticks on recording time axes to prevent covering.
    for ax in (ax_wf_amp, ax_wf_dur, ax_rate):
        putil.set_max_n_ticks(ax, 6, 'x')

    # %% Save figure.
    if ftempl is not None:
        fname = ftempl.format(u.name_to_fname())
        putil.save_fig(fname, fig, title, rect_height=0.92)
        putil.inline_on()

    return [ax_wf_inc, ax_wf_exc], ax_wf_amp, ax_wf_dur, ax_amp_dur, ax_rate
コード例 #15
0
def rec_stability_test(UA, fname=None, periods=None):
    """Check stability of recording session across tasks."""

    # Init.
    if periods is None:
        periods = ['whole trial', 'fixation']

    # Init figure.
    fig, gsp, axs = putil.get_gs_subplots(nrow=len(periods), ncol=1,
                                          subw=10, subh=2.5, create_axes=True,
                                          as_array=False)

    for prd, ax in zip(periods, axs):

        # Calculate and plot firing rate during given period in each trial
        # across session for all units.
        colors = putil.get_colors()
        task_stats = pd.DataFrame(columns=['t_start', 't_stops', 'label'])
        for task, color in zip(UA.tasks(), colors):

            # Get activity of all units in task.
            tr_rates = []
            for u in UA.iter_thru([task]):
                rates = u.get_prd_rates(prd, tr_time_idx=True)
                tr_rates.append(util.remove_dim_from_series(rates))
            tr_rates = pd.DataFrame(tr_rates)

            # Not (non-empty and included) unit during task.
            if not len(tr_rates.index):
                continue

            # Plot each rate in task.
            tr_times = tr_rates.columns
            pplot.lines(tr_times, tr_rates.T, zorder=1, alpha=0.5,
                        color=color, ax=ax)

            # Plot mean +- sem rate.
            tr_time = tr_rates.columns
            mean_rate, sem_rate = tr_rates.mean(), tr_rates.std()
            lower, upper = mean_rate-sem_rate, mean_rate+sem_rate
            lower[lower < 0] = 0  # remove negative values
            ax.fill_between(tr_time, lower, upper, zorder=2, alpha=.5,
                            facecolor='grey', edgecolor='grey')
            pplot.lines(tr_time, mean_rate, lw=2, color='k', ax=ax)

            # Add task stats.
            task_lbl = '{}, {} units'.format(task, len(tr_rates.index))

            # Add grand mean FR.
            task_lbl += '\nFR: {:.1f} sp/s'.format(tr_rates.mean().mean())

            # Calculate linear trend to test gradual drift.
            slope, _, _, p_value, _ = sp.stats.linregress(tr_times, mean_rate)
            slope = 3600*slope  # convert to change in spike per hour
            pval = util.format_pvalue(p_value, max_digit=3)
            task_lbl += '\n$\delta$FR: {:.1f} sp/s/h'.format(slope)
            task_lbl += '\n{}'.format(pval)

            task_stats.loc[task] = (tr_times.min(), tr_times.max(), task_lbl)

        # Set axes limits.
        tmin, tmax = task_stats.t_start.min(), task_stats.t_stops.max()
        putil.set_limits(ax, xlim=(tmin, tmax))

        # Add task labels after all tasks have been plotted.
        putil.plot_events(task_stats[['t_start', 'label']], y_lbl=0.75,
                          lbl_ha='left', lbl_rotation=0, ax=ax)

        # Format plot.
        xlab = 'Recording time (s)' if prd == periods[-1] else None
        putil.set_labels(ax, xlab=xlab, ylab=prd)
        putil.set_spines(ax, left=False)

    # Save figure.
    title = 'Recording stability of ' + UA.Name
    putil.save_fig(fname, fig, title)
コード例 #16
0
ファイル: pplot.py プロジェクト: mnislamraju/seal
def plot_group_violin(res,
                      x,
                      y,
                      groups=None,
                      npval=None,
                      pth=0.01,
                      color='grey',
                      ylim=None,
                      ylab=None,
                      ffig=None):
    """Plot group-wise results on violin plots."""

    if groups is None:
        groups = res['group'].unique()

    # Test difference from zero in each groups.
    ttest_res = {
        group: sp.stats.ttest_1samp(gres[y], 0)
        for group, gres in res.groupby(x)
    }
    ttest_res = pd.DataFrame.from_dict(ttest_res, 'index')

    # Binarize significance test.
    res['is_sign'] = res[npval] < pth if npval is not None else True
    res['direction'] = np.sign(res[y])

    # Set up figure and plot data.
    fig = putil.figure()
    ax = putil.axes()
    putil.add_baseline(ax=ax)
    sns.violinplot(x=x, y=y, data=res, inner=None, order=groups, ax=ax)
    sns.swarmplot(x=x,
                  y=y,
                  hue='is_sign',
                  data=res,
                  color=color,
                  order=groups,
                  hue_order=[True, False],
                  ax=ax)
    putil.set_labels(ax, xlab='', ylab=ylab)
    putil.set_limits(ax, ylim=ylim)
    putil.hide_legend(ax)

    # Add annotations.
    ymin, ymax = ax.get_ylim()
    ylvl = ymax
    for i, group in enumerate(groups):
        gres = res.loc[res.group == group]
        # Mean.
        mean_str = 'Mean:\n' if i == 0 else '\n'
        mean_str += '{:.2f}'.format(gres[y].mean())
        # Non-zero test of distribution.
        str_pval = util.format_pvalue(ttest_res.loc[group, 'pvalue'])
        mean_str += '\n({})'.format(str_pval)
        # Stats on difference from baseline.
        nnonsign, ntot = (~gres.is_sign).sum(), len(gres)
        npos, nneg = [
            sum(gres.is_sign & (gres.direction == d)) for d in (1, -1)
        ]
        sign_to_report = [('+', npos), ('=', nnonsign), ('-', nneg)]
        nsign_str = ''
        for symb, n in sign_to_report:
            prc = str(int(round(100 * n / ntot)))
            nsign_str += '{} {:>3} / {} ({:>2}%)\n'.format(
                symb, int(n), ntot, prc)
        lbl = '{}\n\n{}'.format(mean_str, nsign_str)
        ax.text(i, ylvl, lbl, fontsize='smaller', va='bottom', ha='center')

    # Save plot.
    putil.save_fig(ffig, fig)

    return fig, ax
コード例 #17
0
ファイル: pdecoding.py プロジェクト: mnislamraju/seal
def plot_combined_rec_mean(recs, stims, res_dir, par_kws,
                           list_n_most_DS, list_min_nunits,
                           n_boot=1e4, ci=95,
                           tasks=None, task_labels=None, add_title=True,
                           fig=None):
    """Test and plot results combined across sessions."""

    # Init.
    # putil.set_style('notebook', 'ticks')
    vkey = 'all'

    # This should be made more explicit!
    prds = [[stim] + list(constants.fixed_tr_prds.loc[stim])
            for stim in stims]

    # Load all results to plot.
    dict_rt_res = decutil.load_res(res_dir, list_n_most_DS, **par_kws)

    # Create figures.
    fig_scr, _, axs_scr = putil.get_gs_subplots(nrow=len(dict_rt_res),
                                                ncol=len(list_min_nunits),
                                                subw=8, subh=6, fig=fig,
                                                create_axes=True)

    # Query data.
    allScores = {}
    allnunits = {}
    for n_most_DS, rt_res in dict_rt_res.items():
        # Get accuracy scores.
        dScores = {(rec, task): res[vkey]['Scores'].mean()
                   for (rec, task), res in rt_res.items()
                   if (vkey in res) and (res[vkey] is not None)}
        allScores[n_most_DS] = pd.concat(dScores, axis=1).T
        # Get number of units.
        allnunits[n_most_DS] = {(rec, task): res[vkey]['nunits'].iloc[0]
                                for (rec, task), res in rt_res.items()
                                if (vkey in res) and (res[vkey] is not None)}
        # Get # values (for baseline plotting.)
        all_nvals = pd.Series({(rec, task): res[vkey]['nclasses'].iloc[0]
                               for (rec, task), res in rt_res.items()
                               if (vkey in res) and (res[vkey] is not None)})
        un_nvals = all_nvals.unique()
        if len(un_nvals) > 1 and verbose:
            print('Found multiple # of classes to decode: {}'.format(un_nvals))
        nvals = un_nvals[0]

    allnunits = pd.DataFrame(allnunits)

    # Plot mean performance across recordings and
    # test significance by bootstrapping.
    for inmost, n_most_DS in enumerate(list_n_most_DS):
        Scores = allScores[n_most_DS]
        nunits = allnunits[n_most_DS]

        for iminu, min_nunits in enumerate(list_min_nunits):

            ax_scr = axs_scr[inmost, iminu]

            # Select only recordings with minimum number of units.
            sel_rt = nunits.index[nunits >= min_nunits]
            nScores = Scores.loc[sel_rt].copy()

            # Nothing to plot.
            if nScores.empty:
                ax_scr.axis('off')
                continue

            # Prepare data.
            if tasks is None:
                tasks = nScores.index.get_level_values(1).unique()  # in data
            if task_labels is None:
                task_labels = {task: task for task in tasks}
            dScores = {task: pd.DataFrame(nScores.xs(task, level=1).unstack(),
                                          columns=['accuracy'])
                       for task in tasks}
            lScores = pd.concat(dScores, axis=0)
            lScores['time'] = lScores.index.get_level_values(1)
            lScores['task'] = lScores.index.get_level_values(0)
            lScores['rec'] = lScores.index.get_level_values(2)
            lScores.index = np.arange(len(lScores.index))
            lScores.task.replace(task_labels, inplace=True)

            # Add altered task names for legend plotting.
            nrecs = {task_labels[task]: len(nScores.xs(task, level=1))
                     for task in tasks}
            my_format = lambda x: '{} (n={})'.format(x, nrecs[x])
            lScores['task_nrecs'] = lScores['task'].apply(my_format)

            # Plot as time series.
            sns.tsplot(lScores, time='time', value='accuracy', unit='rec',
                       condition='task_nrecs', ci=ci, n_boot=n_boot, ax=ax_scr)

            # Add chance level line.
            chance_lvl = 1.0 / nvals
            putil.add_chance_level(ax=ax_scr, ylevel=chance_lvl)

            # Add stimulus periods.
            putil.plot_periods(prds, ax=ax_scr)

            # Set axis limits.
            putil.set_limits(ax_scr, tlim)

            # Format plot.
            title = ('{} most DS units'.format(n_most_DS)
                     if n_most_DS != 0 else 'all units')
            title += (', recordings with at least {} units'.format(min_nunits)
                      if (min_nunits > 1 and len(list_min_nunits) > 1) else '')
            ytitle = 1.0
            putil.set_labels(ax_scr, tlab, ylab_scr, title, ytitle)
            putil.hide_legend_title(ax_scr)

    # Match axes across decoding plots.
    [putil.sync_axes(axs_scr[inmost, :], sync_y=True)
     for inmost in range(axs_scr.shape[0])]

    # Save plots.
    list_n_most_DS_str = [str(i) if i != 0 else 'all' for i in list_n_most_DS]
    par_kws['n_most_DS'] = ', '.join(list_n_most_DS_str)
    title = ''
    if add_title:
        title = decutil.fig_title(res_dir, **par_kws)
        title += '\n{}% CE with {} bootstrapped subsamples'.format(ci,
                                                                   int(n_boot))
    fs_title = 'large'
    w_pad, h_pad = 3, 3

    par_kws['n_most_DS'] = '_'.join(list_n_most_DS_str)
    ffig = decutil.fig_fname(res_dir, 'combined_score', fformat, **par_kws)
    putil.save_fig(ffig, fig_scr, title, fs_title, w_pad=w_pad, h_pad=h_pad)

    return fig_scr, axs_scr, ffig
コード例 #18
0
ファイル: pdecoding.py プロジェクト: mnislamraju/seal
def plot_scores_across_nunits(recs, stims, res_dir, list_n_most_DS, par_kws):
    """
    Plot prediction score results across different number of units included.
    """

    # Init.
    putil.set_style('notebook', 'ticks')
    tasks = par_kws['tasks']

    # Remove Passive if plotting Saccade or Correct.
    if par_kws['feat'] in ['saccade', 'correct']:
        tasks = tasks[~tasks.str.contains('Pas')]

    # Load all results to plot.
    dict_rt_res = decutil.load_res(res_dir, list_n_most_DS, **par_kws)

    # Create figures.
    fig_scr, _, axs_scr = putil.get_gs_subplots(nrow=len(recs),
                                                ncol=len(tasks),
                                                subw=8, subh=6,
                                                create_axes=True)
    # Do plotting per recording and task.
    for irec, rec in enumerate(recs):
        if verbose:
            print('\n' + rec)
        for itask, task in enumerate(tasks):
            if verbose:
                print('    ' + task)

            ax_scr = axs_scr[irec, itask]

            # Init data.
            dict_lScores = {}
            cols = sns.color_palette('hls', len(dict_rt_res.keys()))
            lncls = []
            for (n_most_DS, rt_res), col in zip(dict_rt_res.items(), cols):

                # Check if results exist for rec-task combination.
                if (((rec, task) not in rt_res.keys()) or
                    (not len(rt_res[(rec, task)].keys()))):
                    continue

                res = rt_res[(rec, task)]
                for v, col in zip(res.keys(), cols):
                    vres = res[v]
                    Scores = vres['Scores']
                    lncls.append(vres['nclasses'])

                    # Unstack dataframe with results.
                    lScores = pd.DataFrame(Scores.unstack(), columns=['score'])
                    lScores['time'] = lScores.index.get_level_values(0)
                    lScores['fold'] = lScores.index.get_level_values(1)
                    lScores.index = np.arange(len(lScores.index))

                    # Get number of units tested.
                    nunits = vres['nunits']
                    uni_nunits = nunits.unique()
                    if len(uni_nunits) > 1 and verbose:
                        print('Different number of units found.')
                    nunits = uni_nunits[0]

                    # Collect results.
                    dict_lScores[(nunits, v)] = lScores

            # Skip rest if no data is available.
            # Check if any result exists for rec-task combination.
            if not len(dict_lScores):
                ax_scr.axis('off')
                continue

            # Concatenate accuracy scores from every recording.
            all_lScores = pd.concat(dict_lScores)
            all_lScores['n_most_DS'] = all_lScores.index.get_level_values(0)
            all_lScores.index = np.arange(len(all_lScores.index))

            # Plot decoding results.
            nnunits = len(all_lScores['n_most_DS'].unique())
            title = '{} {}, {} sets of units'.format(' '.join(rec), task,
                                                     nnunits)
            ytitle = 1.0
            prds = [[stim] + list(constants.fixed_tr_prds.loc[stim])
                    for stim in stims]

            # Plot time series.
            palette = sns.color_palette('muted')
            sns.tsplot(all_lScores, time='time', value='score', unit='fold',
                       condition='n_most_DS', color=palette, ax=ax_scr)

            # Add chance level line.
            # This currently plots a chance level line for every nvals,
            # combined across stimulus period!
            uni_ncls = np.unique(np.array(lncls).flatten())
            if len(uni_ncls) > 1 and verbose:
                print('Different number of classes found.')
            for nvals in uni_ncls:
                chance_lvl = 1.0 / nvals
                putil.add_chance_level(ax=ax_scr, ylevel=chance_lvl)

            # Add stimulus periods.
            if prds is not None:
                putil.plot_periods(prds, ax=ax_scr)

            # Set axis limits.
            putil.set_limits(ax_scr, tlim, ylim_scr)

            # Format plot.
            putil.set_labels(ax_scr, tlab, ylab_scr, title, ytitle)

    # Match axes across decoding plots.
    # [putil.sync_axes(axs_scr[:, itask], sync_y=True)
    #  for itask in range(axs_scr.shape[1])]

    # Save plots.
    list_n_most_DS_str = [str(i) if i != 0 else 'all' for i in list_n_most_DS]
    par_kws['n_most_DS'] = ', '.join(list_n_most_DS_str)
    title = decutil.fig_title(res_dir, **par_kws)
    fs_title = 'large'
    w_pad, h_pad = 3, 3

    par_kws['n_most_DS'] = '_'.join(list_n_most_DS_str)
    ffig = decutil.fig_fname(res_dir, 'score_nunits', fformat, **par_kws)
    putil.save_fig(ffig, fig_scr, title, fs_title, w_pad=w_pad, h_pad=h_pad)
コード例 #19
0
ファイル: pdecoding.py プロジェクト: mnislamraju/seal
def plot_score_multi_rec(recs, stims, res_dir, par_kws):
    """Plot prediction scores for multiple recordings."""

    # Init.
    putil.set_style('notebook', 'ticks')
    n_most_DS = par_kws['n_most_DS']
    tasks = par_kws['tasks']

    # Remove Passive if plotting Saccade or Correct.
    if par_kws['feat'] in ['saccade', 'correct']:
        tasks = tasks[~tasks.str.contains('Pas')]

    # Load results.
    rt_res = decutil.load_res(res_dir, **par_kws)[n_most_DS]

    # Create figure.
    ret = putil.get_gs_subplots(nrow=1, ncol=len(tasks),
                                subw=8, subh=6, create_axes=True)
    fig_scr, _, axs_scr = ret

    print('\nPlotting multi-recording results...')
    for itask, task in enumerate(tasks):
        if verbose:
            print('    ' + task)
        ax_scr = axs_scr[0, itask]

        dict_lScores = {}
        for irec, rec in enumerate(recs):

            # Check if results exist for rec-task combination.
            if (((rec, task) not in rt_res.keys()) or
               (not len(rt_res[(rec, task)].keys()))):
                continue

            # Init data.
            res = rt_res[(rec, task)]
            cols = sns.color_palette('hls', len(res.keys()))
            lncls = []
            for v, col in zip(res.keys(), cols):
                vres = res[v]
                if vres is None:
                    continue

                Scores = vres['Scores']
                lncls.append(vres['nclasses'])

                # Unstack dataframe with results.
                lScores = pd.DataFrame(Scores.unstack(), columns=['score'])
                lScores['time'] = lScores.index.get_level_values(0)
                lScores['fold'] = lScores.index.get_level_values(1)
                lScores.index = np.arange(len(lScores.index))

                dict_lScores[(rec, v)] = lScores

        if not len(dict_lScores):
            ax_scr.axis('off')
            continue

        # Concatenate accuracy scores from every recording.
        all_lScores = pd.concat(dict_lScores)
        all_lScores['rec'] = all_lScores.index.get_level_values(0)
        all_lScores['rec'] = all_lScores['rec'].str.join(' ')  # format label
        all_lScores.index = np.arange(len(all_lScores.index))

        # Plot decoding results.
        nrec = len(all_lScores['rec'].unique())
        title = '{}, {} recordings'.format(task, nrec)
        ytitle = 1.0
        prds = [[stim] + list(constants.fixed_tr_prds.loc[stim])
                for stim in stims]

        # Plot time series.
        palette = sns.color_palette('muted')
        sns.tsplot(all_lScores, time='time', value='score', unit='fold',
                   condition='rec', color=palette, ax=ax_scr)

        # Add chance level line.
        # This currently plots a chance level line for every nvals,
        # combined across stimulus period!
        uni_ncls = np.unique(np.array(lncls).flatten())
        if len(uni_ncls) > 1 and verbose:
            print('Different number of classes found.')
        for nvals in uni_ncls:
            chance_lvl = 1.0 / nvals
            putil.add_chance_level(ax=ax_scr, ylevel=chance_lvl)

        # Add stimulus periods.
        if prds is not None:
            putil.plot_periods(prds, ax=ax_scr)

        # Set axis limits.
        putil.set_limits(ax_scr, tlim, ylim_scr)

        # Format plot.
        putil.set_labels(ax_scr, tlab, ylab_scr, title, ytitle)

    # Save figure.
    title = decutil.fig_title(res_dir, **par_kws)
    fs_title = 'large'
    w_pad, h_pad = 3, 3
    ffig = decutil.fig_fname(res_dir, 'all_scores', fformat, **par_kws)
    putil.save_fig(ffig, fig_scr, title, fs_title, w_pad=w_pad, h_pad=h_pad)
コード例 #20
0
ファイル: pdecoding.py プロジェクト: mnislamraju/seal
def plot_scores_weights(recs, stims, res_dir, par_kws):
    """
    Plot prediction scores and model weights for given recording and analysis.
    """

    # Init.
    putil.set_style('notebook', 'ticks')
    n_most_DS = par_kws['n_most_DS']
    tasks = par_kws['tasks']

    # Remove Passive if plotting Saccade or Correct.
    if par_kws['feat'] in ['saccade', 'correct']:
        tasks = tasks[~tasks.str.contains('Pas')]

    # Load results.
    rt_res = decutil.load_res(res_dir, **par_kws)[n_most_DS]

    # Create figures.
    # For prediction scores.
    fig_scr, _, axs_scr = putil.get_gs_subplots(nrow=len(recs),
                                                ncol=len(tasks),
                                                subw=8, subh=6,
                                                create_axes=True)

    # For unit weights (coefficients).
    fig_wgt, _, axs_wgt = putil.get_gs_subplots(nrow=len(recs),
                                                ncol=len(tasks),
                                                subw=8, subh=6,
                                                create_axes=True)

    for irec, rec in enumerate(recs):
        if verbose:
            print('\n' + rec)
        for itask, task in enumerate(tasks):
            if verbose:
                print('    ' + task)

            # Init figures.
            ax_scr = axs_scr[irec, itask]
            ax_wgt = axs_wgt[irec, itask]

            # Check if any result exists for rec-task combination.
            if (((rec, task) not in rt_res.keys()) or
               (not len(rt_res[(rec, task)].keys()))):
                ax_scr.axis('off')
                ax_wgt.axis('off')
                continue

            # Init data.
            res = rt_res[(rec, task)]
            vals = [v for v in res.keys() if not util.is_null(res[v])]
            cols = sns.color_palette('hls', len(vals))
            lnunits, lntrs, lncls,  = [], [], []
            for v, col in zip(vals, cols):
                # Basic results.
                vres = res[v]
                Scores = vres['Scores']
                Coefs = vres['Coefs']
                Perm = vres['Perm']
                Psdo = vres['Psdo']
                # Decoding params.
                lnunits.append(vres['nunits'])
                lntrs.append(vres['ntrials'])
                lncls.append(vres['nclasses'])
                # Plot decoding accuracy.
                plot_scores(ax_scr, Scores, Perm, Psdo, col=col)

            # Add labels.
            uni_lnunits = np.unique(np.array(lnunits).flatten())
            if len(uni_lnunits) > 1 and verbose:
                print('Different number of units found.')
            nunits = uni_lnunits[0]
            title = '{} {}, {} units'.format(' '.join(rec), task, nunits)
            putil.set_labels(ax_scr, tlab, ylab_scr, title, ytitle=1.04)

            # Add chance level line.
            uni_ncls = np.unique(np.array(lncls).flatten())
            if len(uni_ncls) > 1 and verbose:
                print('Different number of classes found.')
            for nvals in uni_ncls:
                chance_lvl = 1.0 / nvals
                putil.add_chance_level(ax=ax_scr, ylevel=chance_lvl)

            # Plot stimulus periods.
            prds = [[stim] + list(constants.fixed_tr_prds.loc[stim])
                    for stim in stims]
            putil.plot_periods(prds, ax=ax_scr)

            # Plot unit weights over time.
            plot_weights(ax_wgt, Coefs, prds, tlim, tlab, title=title)

    # Match axes across decoding plots.
    # [putil.sync_axes(axs_scr[:, itask], sync_y=True)
    #  for itask in range(axs_scr.shape[1])]

    # Save plots.
    title = decutil.fig_title(res_dir, **par_kws)
    fs_title = 'large'
    w_pad, h_pad = 3, 3

    # Performance.
    ffig = decutil.fig_fname(res_dir, 'score', 'pdf', **par_kws)
    putil.save_fig(ffig, fig_scr, title, fs_title, w_pad=w_pad, h_pad=h_pad)

    # Weights.
    ffig = decutil.fig_fname(res_dir, 'weight', 'pdf', **par_kws)
    putil.save_fig(ffig, fig_wgt, title, fs_title, w_pad=w_pad, h_pad=h_pad)