class vec_plain_multiply(object): """Multiply componentwise cipher and plain along cipher's last dimension cipher.shape[-1]= plain.shape """ def __init__(self, context): self.evaluator = Evaluator(context) def __call__(self, cipher, plain): """In order to not affect cipher for other calculations, make copy""" cipher = dc(cipher) if cipher.shape[-1] != plain.shape[0]: raise ValueError("The cipher shape and plain shape don't match.") for indices in np.ndindex(cipher.shape[:-1]): for i in range(plain.shape[0]): self.evaluator.multiply_plain(cipher[indices][i], plain[i]) return cipher
def dot_product(): print("Example: Weighted Average") # In this example we demonstrate the FractionalEncoder, and use it to compute # a weighted average of 10 encrypted rational numbers. In this computation we # perform homomorphic multiplications of ciphertexts by plaintexts, which is # much faster than regular multiplications of ciphertexts by ciphertexts. # Moreover, such `plain multiplications' never increase the ciphertext size, # which is why we have no need for evaluation keys in this example. # We start by creating encryption parameters, setting up the SEALContext, keys, # and other relevant objects. Since our computation has multiplicative depth of # only two, it suffices to use a small poly_modulus. parms = EncryptionParameters() parms.set_poly_modulus("1x^2048 + 1") parms.set_coeff_modulus(seal.coeff_modulus_128(2048)) parms.set_plain_modulus(1 << 8) context = SEALContext(parms) print_parameters(context) keygen = KeyGenerator(context) keygen2 = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() secret_key2 = keygen.secret_key() # We also set up an Encryptor, Evaluator, and Decryptor here. encryptor = Encryptor(context, public_key) evaluator = Evaluator(context) decryptor = Decryptor(context, secret_key2) # Create a vector of 10 rational numbers (as doubles). # rational_numbers = [3.1, 4.159, 2.65, 3.5897, 9.3, 2.3, 8.46, 2.64, 3.383, 2.795] rational_numbers = np.random.rand(10) # Create a vector of weights. # coefficients = [0.1, 0.05, 0.05, 0.2, 0.05, 0.3, 0.1, 0.025, 0.075, 0.05] coefficients = np.random.rand(10) my_result = np.dot(rational_numbers, coefficients) # We need a FractionalEncoder to encode the rational numbers into plaintext # polynomials. In this case we decide to reserve 64 coefficients of the # polynomial for the integral part (low-degree terms) and expand the fractional # part to 32 digits of precision (in base 3) (high-degree terms). These numbers # can be changed according to the precision that is needed; note that these # choices leave a lot of unused space in the 2048-coefficient polynomials. encoder = FractionalEncoder(context.plain_modulus(), context.poly_modulus(), 64, 32, 3) # We create a vector of ciphertexts for encrypting the rational numbers. encrypted_rationals = [] rational_numbers_string = "Encoding and encrypting: " for i in range(10): # We create our Ciphertext objects into the vector by passing the # encryption parameters as an argument to the constructor. This ensures # that enough memory is allocated for a size 2 ciphertext. In this example # our ciphertexts never grow in size (plain multiplication does not cause # ciphertext growth), so we can expect the ciphertexts to remain in the same # location in memory throughout the computation. In more complicated examples # one might want to call a constructor that reserves enough memory for the # ciphertext to grow to a specified size to avoid costly memory moves when # multiplications and relinearizations are performed. encrypted_rationals.append(Ciphertext(parms)) encryptor.encrypt(encoder.encode(rational_numbers[i]), encrypted_rationals[i]) rational_numbers_string += (str)(rational_numbers[i])[:6] if i < 9: rational_numbers_string += ", " print(rational_numbers_string) # Next we encode the coefficients. There is no reason to encrypt these since they # are not private data. encoded_coefficients = [] encoded_coefficients_string = "Encoding plaintext coefficients: " encrypted_coefficients =[] for i in range(10): encoded_coefficients.append(encoder.encode(coefficients[i])) encrypted_coefficients.append(Ciphertext(parms)) encryptor.encrypt(encoded_coefficients[i], encrypted_coefficients[i]) encoded_coefficients_string += (str)(coefficients[i])[:6] if i < 9: encoded_coefficients_string += ", " print(encoded_coefficients_string) # We also need to encode 0.1. Multiplication by this plaintext will have the # effect of dividing by 10. Note that in SEAL it is impossible to divide # ciphertext by another ciphertext, but in this way division by a plaintext is # possible. div_by_ten = encoder.encode(0.1) # Now compute each multiplication. prod_result = [Ciphertext() for i in range(10)] prod_result2 = [Ciphertext() for i in range(10)] print("Computing products: ") for i in range(10): # Note how we use plain multiplication instead of usual multiplication. The # result overwrites the first argument in the function call. evaluator.multiply_plain(encrypted_rationals[i], encoded_coefficients[i], prod_result[i]) evaluator.multiply(encrypted_rationals[i], encrypted_coefficients[i], prod_result2[i]) print("Done") # To obtain the linear sum we need to still compute the sum of the ciphertexts # in encrypted_rationals. There is an easy way to add together a vector of # Ciphertexts. encrypted_result = Ciphertext() encrypted_result2 = Ciphertext() print("Adding up all 10 ciphertexts: ") evaluator.add_many(prod_result, encrypted_result) evaluator.add_many(prod_result2, encrypted_result2) print("Done") # Perform division by 10 by plain multiplication with div_by_ten. # print("Dividing by 10: ") # evaluator.multiply_plain(encrypted_result, div_by_ten) # print("Done") # How much noise budget do we have left? print("Noise budget in result: " + (str)(decryptor.invariant_noise_budget(encrypted_result)) + " bits") # Decrypt, decode, and print result. plain_result = Plaintext() plain_result2 = Plaintext() print("Decrypting result: ") decryptor.decrypt(encrypted_result, plain_result) decryptor.decrypt(encrypted_result2, plain_result2) print("Done") result = encoder.decode(plain_result) print("Weighted average: " + (str)(result)[:8]) result2 = encoder.decode(plain_result2) print("Weighted average: " + (str)(result2)[:8]) print('\n\n', my_result)
def example_ckks_basics(): print("Example: CKKS Basics"); #In this example we demonstrate evaluating a polynomial function # # PI*x^3 + 0.4*x + 1 # #on encrypted floating-point input data x for a set of 4096 equidistant points #in the interval [0, 1]. This example demonstrates many of the main features #of the CKKS scheme, but also the challenges in using it. # # We start by setting up the CKKS scheme. parms = EncryptionParameters(scheme_type.CKKS) #We saw in `2_encoders.cpp' that multiplication in CKKS causes scales #in ciphertexts to grow. The scale of any ciphertext must not get too close #to the total size of coeff_modulus, or else the ciphertext simply runs out of #room to store the scaled-up plaintext. The CKKS scheme provides a `rescale' #functionality that can reduce the scale, and stabilize the scale expansion. # #Rescaling is a kind of modulus switch operation (recall `3_levels.cpp'). #As modulus switching, it removes the last of the primes from coeff_modulus, #but as a side-effect it scales down the ciphertext by the removed prime. #Usually we want to have perfect control over how the scales are changed, #which is why for the CKKS scheme it is more common to use carefully selected #primes for the coeff_modulus. # #More precisely, suppose that the scale in a CKKS ciphertext is S, and the #last prime in the current coeff_modulus (for the ciphertext) is P. Rescaling #to the next level changes the scale to S/P, and removes the prime P from the #coeff_modulus, as usual in modulus switching. The number of primes limits #how many rescalings can be done, and thus limits the multiplicative depth of #the computation. # #It is possible to choose the initial scale freely. One good strategy can be #to is to set the initial scale S and primes P_i in the coeff_modulus to be #very close to each other. If ciphertexts have scale S before multiplication, #they have scale S^2 after multiplication, and S^2/P_i after rescaling. If all #P_i are close to S, then S^2/P_i is close to S again. This way we stabilize the #scales to be close to S throughout the computation. Generally, for a circuit #of depth D, we need to rescale D times, i.e., we need to be able to remove D #primes from the coefficient modulus. Once we have only one prime left in the #coeff_modulus, the remaining prime must be larger than S by a few bits to #preserve the pre-decimal-point value of the plaintext. # #Therefore, a generally good strategy is to choose parameters for the CKKS #scheme as follows: # # (1) Choose a 60-bit prime as the first prime in coeff_modulus. This will # give the highest precision when decrypting; # (2) Choose another 60-bit prime as the last element of coeff_modulus, as # this will be used as the special prime and should be as large as the # largest of the other primes; # (3) Choose the intermediate primes to be close to each other. # #We use CoeffModulus::Create to generate primes of the appropriate size. Note #that our coeff_modulus is 200 bits total, which is below the bound for our #poly_modulus_degree: CoeffModulus::MaxBitCount(8192) returns 218. poly_modulus_degree = 8192 parms.set_poly_modulus_degree(poly_modulus_degree) parms.set_coeff_modulus(CoeffModulus.Create( poly_modulus_degree, IntVector([60, 40, 40, 60]))) #We choose the initial scale to be 2^40. At the last level, this leaves us #60-40=20 bits of precision before the decimal point, and enough (roughly #10-20 bits) of precision after the decimal point. Since our intermediate #primes are 40 bits (in fact, they are very close to 2^40), we can achieve #scale stabilization as described above. scale = 2.0**40 context = SEALContext.Create(parms) print_parameters(context) keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() relin_keys = keygen.relin_keys() encryptor = Encryptor(context, public_key) evaluator = Evaluator(context) decryptor = Decryptor(context, secret_key) encoder = CKKSEncoder(context) slot_count = encoder.slot_count() print("Number of slots: {}".format(slot_count)) step_size = 1.0 / (slot_count - 1) input = DoubleVector(list(map(lambda x: x*step_size, range(0, slot_count)))) print("Input vector: ") print_vector(input) print("Evaluating polynomial PI*x^3 + 0.4x + 1 ...") #We create plaintexts for PI, 0.4, and 1 using an overload of CKKSEncoder::encode #that encodes the given floating-point value to every slot in the vector. plain_coeff3 = Plaintext() plain_coeff1 = Plaintext() plain_coeff0 = Plaintext() encoder.encode(3.14159265, scale, plain_coeff3) encoder.encode(0.4, scale, plain_coeff1) encoder.encode(1.0, scale, plain_coeff0) x_plain = Plaintext() print("Encode input vectors.") encoder.encode(input, scale, x_plain) x1_encrypted = Ciphertext() encryptor.encrypt(x_plain, x1_encrypted) #To compute x^3 we first compute x^2 and relinearize. However, the scale has #now grown to 2^80. x3_encrypted = Ciphertext() print("Compute x^2 and relinearize:") evaluator.square(x1_encrypted, x3_encrypted) evaluator.relinearize_inplace(x3_encrypted, relin_keys) print(" + Scale of x^2 before rescale: {} bits".format(log2(x3_encrypted.scale()))) #Now rescale; in addition to a modulus switch, the scale is reduced down by #a factor equal to the prime that was switched away (40-bit prime). Hence, the #new scale should be close to 2^40. Note, however, that the scale is not equal #to 2^40: this is because the 40-bit prime is only close to 2^40. print("Rescale x^2.") evaluator.rescale_to_next_inplace(x3_encrypted) print(" + Scale of x^2 after rescale: {} bits".format(log2(x3_encrypted.scale()))) #Now x3_encrypted is at a different level than x1_encrypted, which prevents us #from multiplying them to compute x^3. We could simply switch x1_encrypted to #the next parameters in the modulus switching chain. However, since we still #need to multiply the x^3 term with PI (plain_coeff3), we instead compute PI*x #first and multiply that with x^2 to obtain PI*x^3. To this end, we compute #PI*x and rescale it back from scale 2^80 to something close to 2^40. print("Compute and rescale PI*x.") x1_encrypted_coeff3 = Ciphertext() evaluator.multiply_plain(x1_encrypted, plain_coeff3, x1_encrypted_coeff3) print(" + Scale of PI*x before rescale: {} bits".format(log2(x1_encrypted_coeff3.scale()))) evaluator.rescale_to_next_inplace(x1_encrypted_coeff3) print(" + Scale of PI*x after rescale: {} bits".format(log2(x1_encrypted_coeff3.scale()))) #Since x3_encrypted and x1_encrypted_coeff3 have the same exact scale and use #the same encryption parameters, we can multiply them together. We write the #result to x3_encrypted, relinearize, and rescale. Note that again the scale #is something close to 2^40, but not exactly 2^40 due to yet another scaling #by a prime. We are down to the last level in the modulus switching chain. print("Compute, relinearize, and rescale (PI*x)*x^2.") evaluator.multiply_inplace(x3_encrypted, x1_encrypted_coeff3) evaluator.relinearize_inplace(x3_encrypted, relin_keys) print(" + Scale of PI*x^3 before rescale: {} bits".format(log2(x3_encrypted.scale()))) evaluator.rescale_to_next_inplace(x3_encrypted) print(" + Scale of PI*x^3 after rescale: {} bits".format(log2(x3_encrypted.scale()))) #Next we compute the degree one term. All this requires is one multiply_plain #with plain_coeff1. We overwrite x1_encrypted with the result. print("Compute and rescale 0.4*x.") evaluator.multiply_plain_inplace(x1_encrypted, plain_coeff1) print(" + Scale of 0.4*x before rescale: {} bits".format(log2(x1_encrypted.scale()))) evaluator.rescale_to_next_inplace(x1_encrypted) print(" + Scale of 0.4*x after rescale: {} bits".format(log2(x1_encrypted.scale()))) #Now we would hope to compute the sum of all three terms. However, there is #a serious problem: the encryption parameters used by all three terms are #different due to modulus switching from rescaling. # #Encrypted addition and subtraction require that the scales of the inputs are #the same, and also that the encryption parameters (parms_id) match. If there #is a mismatch, Evaluator will throw an exception. print("Parameters used by all three terms are different.") print(" + Modulus chain index for x3_encrypted: {}".format( context.get_context_data(x3_encrypted.parms_id()).chain_index())) print(" + Modulus chain index for x1_encrypted: {}".format( context.get_context_data(x1_encrypted.parms_id()).chain_index())) print(" + Modulus chain index for plain_coeff0: {}".format( context.get_context_data(plain_coeff0.parms_id()).chain_index())) #Let us carefully consider what the scales are at this point. We denote the #primes in coeff_modulus as P_0, P_1, P_2, P_3, in this order. P_3 is used as #the special modulus and is not involved in rescalings. After the computations #above the scales in ciphertexts are: # # - Product x^2 has scale 2^80 and is at level 2; # - Product PI*x has scale 2^80 and is at level 2; # - We rescaled both down to scale 2^80/P_2 and level 1; # - Product PI*x^3 has scale (2^80/P_2)^2; # - We rescaled it down to scale (2^80/P_2)^2/P_1 and level 0; # - Product 0.4*x has scale 2^80; # - We rescaled it down to scale 2^80/P_2 and level 1; # - The contant term 1 has scale 2^40 and is at level 2. # #Although the scales of all three terms are approximately 2^40, their exact #values are different, hence they cannot be added together. print("The exact scales of all three terms are different:") print(" + Exact scale in PI*x^3: {0:0.10f}".format(x3_encrypted.scale())) print(" + Exact scale in 0.4*x: {0:0.10f}".format(x1_encrypted.scale())) print(" + Exact scale in 1: {0:0.10f}".format(plain_coeff0.scale())) #There are many ways to fix this problem. Since P_2 and P_1 are really close #to 2^40, we can simply "lie" to Microsoft SEAL and set the scales to be the #same. For example, changing the scale of PI*x^3 to 2^40 simply means that we #scale the value of PI*x^3 by 2^120/(P_2^2*P_1), which is very close to 1. #This should not result in any noticeable error. # #Another option would be to encode 1 with scale 2^80/P_2, do a multiply_plain #with 0.4*x, and finally rescale. In this case we would need to additionally #make sure to encode 1 with appropriate encryption parameters (parms_id). # #In this example we will use the first (simplest) approach and simply change #the scale of PI*x^3 and 0.4*x to 2^40. print("Normalize scales to 2^40.") x3_encrypted.set_scale(2.0**40) x1_encrypted.set_scale(2.0**40) #We still have a problem with mismatching encryption parameters. This is easy #to fix by using traditional modulus switching (no rescaling). CKKS supports #modulus switching just like the BFV scheme, allowing us to switch away parts #of the coefficient modulus when it is simply not needed. print("Normalize encryption parameters to the lowest level.") last_parms_id = x3_encrypted.parms_id() evaluator.mod_switch_to_inplace(x1_encrypted, last_parms_id) evaluator.mod_switch_to_inplace(plain_coeff0, last_parms_id) #All three ciphertexts are now compatible and can be added. print("Compute PI*x^3 + 0.4*x + 1.") encrypted_result = Ciphertext() evaluator.add(x3_encrypted, x1_encrypted, encrypted_result) evaluator.add_plain_inplace(encrypted_result, plain_coeff0) #First print the true result. plain_result = Plaintext() print("Decrypt and decode PI*x^3 + 0.4x + 1.") print(" + Expected result:") true_result = DoubleVector(list(map(lambda x: (3.14159265 * x * x + 0.4)* x + 1, input))) print_vector(true_result) #Decrypt, decode, and print the result. decryptor.decrypt(encrypted_result, plain_result) result = DoubleVector() encoder.decode(plain_result, result) print(" + Computed result ...... Correct.") print_vector(result)
class CipherMatrix: """ """ def __init__(self, matrix=None): """ :param matrix: numpy.ndarray to be encrypted. """ self.parms = EncryptionParameters() self.parms.set_poly_modulus("1x^2048 + 1") self.parms.set_coeff_modulus(seal.coeff_modulus_128(2048)) self.parms.set_plain_modulus(1 << 8) self.context = SEALContext(self.parms) # self.encoder = IntegerEncoder(self.context.plain_modulus()) self.encoder = FractionalEncoder(self.context.plain_modulus(), self.context.poly_modulus(), 64, 32, 3) self.keygen = KeyGenerator(self.context) self.public_key = self.keygen.public_key() self.secret_key = self.keygen.secret_key() self.encryptor = Encryptor(self.context, self.public_key) self.decryptor = Decryptor(self.context, self.secret_key) self.evaluator = Evaluator(self.context) self._saved = False self._encrypted = False self._id = '{0:04d}'.format(np.random.randint(1000)) if matrix is not None: assert len( matrix.shape) == 2, "Only 2D numpy matrices accepted currently" self.matrix = np.copy(matrix) self.encrypted_matrix = np.empty(self.matrix.shape, dtype=object) for i in range(self.matrix.shape[0]): for j in range(self.matrix.shape[1]): self.encrypted_matrix[i, j] = Ciphertext() else: self.matrix = None self.encrypted_matrix = None print(self._id, "Created") def __repr__(self): """ :return: """ print("Encrypted:", self._encrypted) if not self._encrypted: print(self.matrix) return "" else: return '[]' def __str__(self): """ :return: """ print("| Encryption parameters:") print("| poly_modulus: " + self.context.poly_modulus().to_string()) # Print the size of the true (product) coefficient modulus print("| coeff_modulus_size: " + ( str)(self.context.total_coeff_modulus().significant_bit_count()) + " bits") print("| plain_modulus: " + (str)(self.context.plain_modulus().value())) print("| noise_standard_deviation: " + (str)(self.context.noise_standard_deviation())) if self.matrix is not None: print(self.matrix.shape) return str(type(self)) def __add__(self, other): """ :param other: :return: """ assert isinstance( other, CipherMatrix), "Can only be added with a CipherMatrix" A_enc = self._encrypted B_enc = other._encrypted if A_enc: A = self.encrypted_matrix else: A = self.matrix if B_enc: B = other.encrypted_matrix else: B = other.matrix assert A.shape == B.shape, "Dimension mismatch, Matrices must be of same shape. Got {} and {}".format( A.shape, B.shape) shape = A.shape result = CipherMatrix(np.zeros(shape, dtype=np.int32)) result._update_cryptors(self.get_keygen()) if A_enc: if B_enc: res_mat = result.encrypted_matrix for i in range(shape[0]): for j in range(shape[1]): self.evaluator.add(A[i, j], B[i, j], res_mat[i, j]) result._encrypted = True else: res_mat = result.encrypted_matrix for i in range(shape[0]): for j in range(shape[1]): self.evaluator.add_plain(A[i, j], self.encoder.encode(B[i, j]), res_mat[i, j]) result._encrypted = True else: if B_enc: res_mat = result.encrypted_matrix for i in range(shape[0]): for j in range(shape[1]): self.evaluator.add_plain(B[i, j], self.encoder.encode(A[i, j]), res_mat[i, j]) result._encrypted = True else: result.matrix = A + B result._encrypted = False return result def __sub__(self, other): """ :param other: :return: """ assert isinstance(other, CipherMatrix) if other._encrypted: shape = other.encrypted_matrix.shape for i in range(shape[0]): for j in range(shape[1]): self.evaluator.negate(other.encrypted_matrix[i, j]) else: other.matrix = -1 * other.matrix return self + other def __mul__(self, other): """ :param other: :return: """ assert isinstance( other, CipherMatrix), "Can only be multiplied with a CipherMatrix" # print("LHS", self._id, "RHS", other._id) A_enc = self._encrypted B_enc = other._encrypted if A_enc: A = self.encrypted_matrix else: A = self.matrix if B_enc: B = other.encrypted_matrix else: B = other.matrix Ashape = A.shape Bshape = B.shape assert Ashape[1] == Bshape[0], "Dimensionality mismatch" result_shape = [Ashape[0], Bshape[1]] result = CipherMatrix(np.zeros(shape=result_shape)) if A_enc: if B_enc: for i in range(Ashape[0]): for j in range(Bshape[1]): result_array = [] for k in range(Ashape[1]): res = Ciphertext() self.evaluator.multiply(A[i, k], B[k, j], res) result_array.append(res) self.evaluator.add_many(result_array, result.encrypted_matrix[i, j]) result._encrypted = True else: for i in range(Ashape[0]): for j in range(Bshape[1]): result_array = [] for k in range(Ashape[1]): res = Ciphertext() self.evaluator.multiply_plain( A[i, k], self.encoder.encode(B[k, j]), res) result_array.append(res) self.evaluator.add_many(result_array, result.encrypted_matrix[i, j]) result._encrypted = True else: if B_enc: for i in range(Ashape[0]): for j in range(Bshape[1]): result_array = [] for k in range(Ashape[1]): res = Ciphertext() self.evaluator.multiply_plain( B[i, k], self.encoder.encode(A[k, j]), res) result_array.append(res) self.evaluator.add_many(result_array, result.encrypted_matrix[i, j]) result._encrypted = True else: result.matrix = np.matmul(A, B) result._encrypted = False return result def save(self, path): """ :param path: :return: """ save_dir = os.path.join(path, self._id) if self._saved: print("CipherMatrix already saved") else: assert not os.path.isdir(save_dir), "Directory already exists" os.mkdir(save_dir) if not self._encrypted: self.encrypt() shape = self.encrypted_matrix.shape for i in range(shape[0]): for j in range(shape[1]): element_name = str(i) + '-' + str(j) + '.ahem' self.encrypted_matrix[i, j].save( os.path.join(save_dir, element_name)) self.secret_key.save("/keys/" + "." + self._id + '.wheskey') self._saved = True return save_dir def load(self, path, load_secret_key=False): """ :param path: :param load_secret_key: :return: """ self._id = path.split('/')[-1] print("Loading Matrix:", self._id) file_list = os.listdir(path) index_list = [[file.split('.')[0].split('-'), file] for file in file_list] M = int(max([int(ind[0][0]) for ind in index_list])) + 1 N = int(max([int(ind[0][1]) for ind in index_list])) + 1 del self.encrypted_matrix self.encrypted_matrix = np.empty([M, N], dtype=object) for index in index_list: i = int(index[0][0]) j = int(index[0][1]) self.encrypted_matrix[i, j] = Ciphertext() self.encrypted_matrix[i, j].load(os.path.join(path, index[1])) if load_secret_key: self.secret_key.load("/keys/" + "." + self._id + '.wheskey') self.matrix = np.empty(self.encrypted_matrix.shape) self._encrypted = True def encrypt(self, matrix=None, keygen=None): """ :param matrix: :return: """ assert not self._encrypted, "Matrix already encrypted" if matrix is not None: assert self.matrix is None, "matrix already exists" self.matrix = np.copy(matrix) shape = self.matrix.shape self.encrypted_matrix = np.empty(shape, dtype=object) if keygen is not None: self._update_cryptors(keygen) for i in range(shape[0]): for j in range(shape[1]): val = self.encoder.encode(self.matrix[i, j]) self.encrypted_matrix[i, j] = Ciphertext() self.encryptor.encrypt(val, self.encrypted_matrix[i, j]) self._encrypted = True def decrypt(self, encrypted_matrix=None, keygen=None): """ :return: """ if encrypted_matrix is not None: self.encrypted_matrix = encrypted_matrix assert self._encrypted, "No encrypted matrix" del self.matrix shape = self.encrypted_matrix.shape self.matrix = np.empty(shape) if keygen is not None: self._update_cryptors(keygen) for i in range(shape[0]): for j in range(shape[1]): plain_text = Plaintext() self.decryptor.decrypt(self.encrypted_matrix[i, j], plain_text) self.matrix[i, j] = self.encoder.decode(plain_text) self._encrypted = False return np.copy(self.matrix) def get_keygen(self): """ :return: """ return self.keygen def _update_cryptors(self, keygen): """ :param keygen: :return: """ self.keygen = keygen self.public_key = keygen.public_key() self.secret_key = keygen.secret_key() self.encryptor = Encryptor(self.context, self.public_key) self.decryptor = Decryptor(self.context, self.secret_key) return
trace_vector.append(trace(matrixPower_vector[i])) # Vector c is defined as coefficint vector for the charactersitic equation of the matrix c = [Ciphertext(trace_vector[0])] evaluator.negate(c[0]) # The following is the implementation of Newton-identities to calculate the value of coeffecients for i in range(1, n): c_new = Ciphertext(trace_vector[i]) for j in range(i): tc = Ciphertext() evaluator.multiply(trace_vector[i - 1 - j], c[j], tc) evaluator.add(c_new, tc) evaluator.negate(c_new) frac = encoderF.encode(1 / (i + 1)) evaluator.multiply_plain(c_new, frac) c.append(c_new) matrixPower_vector = [iden_matrix(n)] + matrixPower_vector c0 = Ciphertext() encryptor.encrypt(encoderF.encode(1), c0) c = [c0] + c # Adding the matrices multiplie by their coefficients for i in range(len(matrixPower_vector) - 1): for j in range(len(c)): if (i + j == n - 1): mult(c[j], matrixPower_vector[i]) for t in range(n): for s in range(n): evaluator.add(A_inv[t][s], matrixPower_vector[i][t][s])
class SealOps: @classmethod def with_env(cls): parms = EncryptionParameters(scheme_type.CKKS) parms.set_poly_modulus_degree(POLY_MODULUS_DEGREE) parms.set_coeff_modulus( CoeffModulus.Create(POLY_MODULUS_DEGREE, PRIME_SIZE_LIST)) context = SEALContext.Create(parms) keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() relin_keys = keygen.relin_keys() galois_keys = keygen.galois_keys() return cls(context=context, public_key=public_key, secret_key=secret_key, relin_keys=relin_keys, galois_keys=galois_keys, poly_modulus_degree=POLY_MODULUS_DEGREE, scale=SCALE) def __init__(self, context: SEALContext, scale: float, poly_modulus_degree: int, public_key: PublicKey = None, secret_key: SecretKey = None, relin_keys: RelinKeys = None, galois_keys: GaloisKeys = None): self.scale = scale self.context = context self.encoder = CKKSEncoder(context) self.evaluator = Evaluator(context) self.encryptor = Encryptor(context, public_key) self.decryptor = Decryptor(context, secret_key) self.relin_keys = relin_keys self.galois_keys = galois_keys self.poly_modulus_degree_log = np.log2(poly_modulus_degree) def encrypt(self, matrix: np.array): matrix = Matrix.from_numpy_array(array=matrix) cipher_matrix = CipherMatrix(rows=matrix.rows, cols=matrix.cols) for i in range(matrix.rows): encoded_row = Plaintext() self.encoder.encode(matrix[i], self.scale, encoded_row) self.encryptor.encrypt(encoded_row, cipher_matrix[i]) return cipher_matrix def decrypt(self, cipher_matrix: CipherMatrix) -> Matrix: matrix = Matrix(rows=cipher_matrix.rows, cols=cipher_matrix.cols) for i in range(matrix.rows): row = Vector() encoded_row = Plaintext() self.decryptor.decrypt(cipher_matrix[i], encoded_row) self.encoder.decode(encoded_row, row) matrix[i] = row return matrix def add(self, matrix_a: CipherMatrix, matrix_b: CipherMatrix) -> CipherMatrix: self.validate_same_dimension(matrix_a, matrix_b) result_matrix = CipherMatrix(rows=matrix_a.rows, cols=matrix_a.cols) for i in range(matrix_a.rows): a_tag, b_tag = self.get_matched_scale_vectors( matrix_a[i], matrix_b[i]) self.evaluator.add(a_tag, b_tag, result_matrix[i]) return result_matrix def add_plain(self, matrix_a: CipherMatrix, matrix_b: np.array) -> CipherMatrix: matrix_b = Matrix.from_numpy_array(matrix_b) self.validate_same_dimension(matrix_a, matrix_b) result_matrix = CipherMatrix(rows=matrix_a.rows, cols=matrix_a.cols) for i in range(matrix_a.rows): row = matrix_b[i] encoded_row = Plaintext() self.encoder.encode(row, self.scale, encoded_row) self.evaluator.mod_switch_to_inplace(encoded_row, matrix_a[i].parms_id()) self.evaluator.add_plain(matrix_a[i], encoded_row, result_matrix[i]) return result_matrix def multiply_plain(self, matrix_a: CipherMatrix, matrix_b: np.array) -> CipherMatrix: matrix_b = Matrix.from_numpy_array(matrix_b) self.validate_same_dimension(matrix_a, matrix_b) result_matrix = CipherMatrix(rows=matrix_a.rows, cols=matrix_a.cols) for i in range(matrix_a.rows): row = matrix_b[i] encoded_row = Plaintext() self.encoder.encode(row, self.scale, encoded_row) self.evaluator.mod_switch_to_inplace(encoded_row, matrix_a[i].parms_id()) self.evaluator.multiply_plain(matrix_a[i], encoded_row, result_matrix[i]) return result_matrix def dot_vector(self, a: Ciphertext, b: Ciphertext) -> Ciphertext: result = Ciphertext() self.evaluator.multiply(a, b, result) self.evaluator.relinearize_inplace(result, self.relin_keys) self.vector_sum_inplace(result) self.get_vector_first_element(result) self.evaluator.rescale_to_next_inplace(result) return result def dot_vector_with_plain(self, a: Ciphertext, b: DoubleVector) -> Ciphertext: result = Ciphertext() b_plain = Plaintext() self.encoder.encode(b, self.scale, b_plain) self.evaluator.multiply_plain(a, b_plain, result) self.vector_sum_inplace(result) self.get_vector_first_element(result) self.evaluator.rescale_to_next_inplace(result) return result def get_vector_range(self, vector_a: Ciphertext, i: int, j: int) -> Ciphertext: cipher_range = Ciphertext() one_and_zeros = DoubleVector([0.0 if x < i else 1.0 for x in range(j)]) plain = Plaintext() self.encoder.encode(one_and_zeros, self.scale, plain) self.evaluator.mod_switch_to_inplace(plain, vector_a.parms_id()) self.evaluator.multiply_plain(vector_a, plain, cipher_range) return cipher_range def dot_matrix_with_matrix_transpose(self, matrix_a: CipherMatrix, matrix_b: CipherMatrix): result_matrix = CipherMatrix(rows=matrix_a.rows, cols=matrix_a.cols) rows_a = matrix_a.rows cols_b = matrix_b.rows for i in range(rows_a): vector_dot_products = [] zeros = Plaintext() for j in range(cols_b): vector_dot_products += [ self.dot_vector(matrix_a[i], matrix_b[j]) ] if j == 0: zero = DoubleVector() self.encoder.encode(zero, vector_dot_products[j].scale(), zeros) self.evaluator.mod_switch_to_inplace( zeros, vector_dot_products[j].parms_id()) self.evaluator.add_plain(vector_dot_products[j], zeros, result_matrix[i]) else: self.evaluator.rotate_vector_inplace( vector_dot_products[j], -j, self.galois_keys) self.evaluator.add_inplace(result_matrix[i], vector_dot_products[j]) for vec in result_matrix: self.evaluator.relinearize_inplace(vec, self.relin_keys) self.evaluator.rescale_to_next_inplace(vec) return result_matrix def dot_matrix_with_plain_matrix_transpose(self, matrix_a: CipherMatrix, matrix_b: np.array): matrix_b = Matrix.from_numpy_array(matrix_b) result_matrix = CipherMatrix(rows=matrix_a.rows, cols=matrix_a.cols) rows_a = matrix_a.rows cols_b = matrix_b.rows for i in range(rows_a): vector_dot_products = [] zeros = Plaintext() for j in range(cols_b): vector_dot_products += [ self.dot_vector_with_plain(matrix_a[i], matrix_b[j]) ] if j == 0: zero = DoubleVector() self.encoder.encode(zero, vector_dot_products[j].scale(), zeros) self.evaluator.mod_switch_to_inplace( zeros, vector_dot_products[j].parms_id()) self.evaluator.add_plain(vector_dot_products[j], zeros, result_matrix[i]) else: self.evaluator.rotate_vector_inplace( vector_dot_products[j], -j, self.galois_keys) self.evaluator.add_inplace(result_matrix[i], vector_dot_products[j]) for vec in result_matrix: self.evaluator.relinearize_inplace(vec, self.relin_keys) self.evaluator.rescale_to_next_inplace(vec) return result_matrix @staticmethod def validate_same_dimension(matrix_a, matrix_b): if matrix_a.rows != matrix_b.rows or matrix_a.cols != matrix_b.cols: raise ArithmeticError("Matrices aren't of the same dimension") def vector_sum_inplace(self, cipher: Ciphertext): rotated = Ciphertext() for i in range(int(self.poly_modulus_degree_log - 1)): self.evaluator.rotate_vector(cipher, pow(2, i), self.galois_keys, rotated) self.evaluator.add_inplace(cipher, rotated) def get_vector_first_element(self, cipher: Ciphertext): one_and_zeros = DoubleVector([1.0]) plain = Plaintext() self.encoder.encode(one_and_zeros, self.scale, plain) self.evaluator.multiply_plain_inplace(cipher, plain) def get_matched_scale_vectors(self, a: Ciphertext, b: Ciphertext) -> (Ciphertext, Ciphertext): a_tag = Ciphertext(a) b_tag = Ciphertext(b) a_index = self.context.get_context_data(a.parms_id()).chain_index() b_index = self.context.get_context_data(b.parms_id()).chain_index() # Changing the mod if required, else just setting the scale if a_index < b_index: self.evaluator.mod_switch_to_inplace(b_tag, a.parms_id()) elif a_index > b_index: self.evaluator.mod_switch_to_inplace(a_tag, b.parms_id()) a_tag.set_scale(self.scale) b_tag.set_scale(self.scale) return a_tag, b_tag
class FHECryptoEngine(CryptoEngine): def __init__(self): CryptoEngine.__init__(self, defs.ENC_MODE_FHE) self.log_id = 'FHECryptoEngine' self.encrypt_params = None self.context = None self.encryptor = None self.evaluator = None self.decryptor = None return def load_keys(self): self.private_key = SecretKey() self.private_key.load(defs.FN_FHE_PRIVATE_KEY) self.public_key = PublicKey() self.public_key.load(defs.FN_FHE_PUBLIC_KEY) return True def generate_keys(self): if self.encrypt_params == None or \ self.context == None: self.init_encrypt_params() keygen = KeyGenerator(self.context) # Generate the private key self.private_key = keygen.secret_key() self.private_key.save(defs.FN_FHE_PRIVATE_KEY) # Generate the public key self.public_key = keygen.public_key() self.public_key.save(defs.FN_FHE_PUBLIC_KEY) return True def init_encrypt_params(self): self.encrypt_params = EncryptionParameters() self.encrypt_params.set_poly_modulus("1x^2048 + 1") self.encrypt_params.set_coeff_modulus(seal.coeff_modulus_128(2048)) self.encrypt_params.set_plain_modulus(1 << 8) self.context = SEALContext(self.encrypt_params) return def initialize(self, use_old_keys=False): # Initialize encryption params self.init_encrypt_params() # Check if the public & private key files exist if os.path.isfile(defs.FN_FHE_PUBLIC_KEY) and \ os.path.isfile(defs.FN_FHE_PRIVATE_KEY) and \ use_old_keys == True: self.log("Keys already exist. Reusing them instead.") if not self.load_keys(): self.log("Failed to load keys") return False else: # If not, then attempt to generate new ones if not self.generate_keys(): self.log("Failed to generate keys") return False # Setup the rest of the crypto engine self.encryptor = Encryptor(self.context, self.public_key) self.evaluator = Evaluator(self.context) self.decryptor = Decryptor(self.context, self.private_key) # Set the initialized flag self.initialized = True return True def encrypt(self, data): if not self.initialized: self.log("Not initialized") return False # Setup the encoder encoder = FractionalEncoder(self.context.plain_modulus(), self.context.poly_modulus(), 64, 32, 3) # Create the array of encrypted data objects encrypted_data = [] for raw_data in data: encrypted_data.append(Ciphertext(self.encrypt_params)) self.encryptor.encrypt( encoder.encode(raw_data), encrypted_data[-1] ) # Pickle each Ciphertext, base64 encode it, and store it in the array for i in range(0, len(encrypted_data)): encrypted_data[i].save("fhe_enc.bin") encrypted_data[i] = base64.b64encode( pickle.dumps(encrypted_data[i]) ) return encrypted_data def evaluate(self, encrypted_data, lower_idx=0, higher_idx=-1): result = Ciphertext() # Setup the encoder encoder = FractionalEncoder(self.context.plain_modulus(), self.context.poly_modulus(), 64, 32, 3) # Unpack the data first unpacked_data = [] for d in encrypted_data[lower_idx:higher_idx]: unpacked_data.append(pickle.loads(base64.b64decode(d))) # Perform operations self.evaluator.add_many(unpacked_data, result) div = encoder.encode(1/len(unpacked_data)) self.evaluator.multiply_plain(result, div) # Pack the result result = base64.b64encode( pickle.dumps(result) ) return result def decrypt(self, raw_data): if not self.initialized: self.log("Not initialized") return False # Setup the encoder encoder = FractionalEncoder(self.context.plain_modulus(), self.context.poly_modulus(), 64, 32, 3) # Unpickle, base64 decode, and decrypt each ciphertext result decrypted_data = [] for d in raw_data: encrypted_data = pickle.loads( base64.b64decode(d) ) plain_data = Plaintext() self.decryptor.decrypt(encrypted_data, plain_data) decrypted_data.append( str(encoder.decode(plain_data)) ) return decrypted_data