def seal_obj(): # params obj params = EncryptionParameters() # set params params.set_poly_modulus("1x^4096 + 1") params.set_coeff_modulus(seal.coeff_modulus_128(4096)) params.set_plain_modulus(1 << 16) # get context context = SEALContext(params) # get evaluator evaluator = Evaluator(context) # gen keys keygen = KeyGenerator(context) public_key = keygen.public_key() private_key = keygen.secret_key() # evaluator keys ev_keys = EvaluationKeys() keygen.generate_evaluation_keys(30, ev_keys) # get encryptor and decryptor encryptor = Encryptor(context, public_key) decryptor = Decryptor(context, private_key) # float number encoder encoder = FractionalEncoder(context.plain_modulus(), context.poly_modulus(), 64, 32, 3) return evaluator, encoder.encode, encoder.decode, encryptor.encrypt, decryptor.decrypt, ev_keys
def initialize_fractional( poly_modulus_degree=4096, security_level_bits=128, plain_modulus_power_of_two=10, plain_modulus=None, encoder_integral_coefficients=1024, encoder_fractional_coefficients=3072, encoder_base=2 ): parameters = EncryptionParameters() poly_modulus = "1x^" + str(poly_modulus_degree) + " + 1" parameters.set_poly_modulus(poly_modulus) if security_level_bits == 128: parameters.set_coeff_modulus(seal.coeff_modulus_128(poly_modulus_degree)) elif security_level_bits == 192: parameters.set_coeff_modulus(seal.coeff_modulus_192(poly_modulus_degree)) else: parameters.set_coeff_modulus(seal.coeff_modulus_128(poly_modulus_degree)) print("Info: security_level_bits unknown - using default security_level_bits = 128") if plain_modulus is None: plain_modulus = 1 << plain_modulus_power_of_two parameters.set_plain_modulus(plain_modulus) context = SEALContext(parameters) print_parameters(context) global encoder encoder = FractionalEncoder( context.plain_modulus(), context.poly_modulus(), encoder_integral_coefficients, encoder_fractional_coefficients, encoder_base ) keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() global encryptor encryptor = Encryptor(context, public_key) global evaluator evaluator = Evaluator(context) global decryptor decryptor = Decryptor(context, secret_key) global evaluation_keys evaluation_keys = EvaluationKeys() keygen.generate_evaluation_keys(16, evaluation_keys)
def print_parameters(self, context: SEALContext): """ Parameters description :param context: SEALContext object """ print("/ Encryption parameters:") print("| poly_modulus: " + context.poly_modulus().to_string()) # Print the size of the true (product) coefficient modulus print("| coeff_modulus_size: " + (str)(context.total_coeff_modulus().significant_bit_count()) + " bits") print("| plain_modulus: " + (str)(context.plain_modulus().value())) print("| noise_standard_deviation: " + (str)(context.noise_standard_deviation()))
def do_per_amount(amount, subtract_from=15): """ Called on every message in the stream """ print("Transaction amount ", amount) parms = EncryptionParameters() parms.set_poly_modulus("1x^2048 + 1") parms.set_coeff_modulus(seal.coeff_modulus_128(2048)) parms.set_plain_modulus(1 << 8) context = SEALContext(parms) # Encode encoder = FractionalEncoder(context.plain_modulus(), context.poly_modulus(), 64, 32, 3) # To create a fresh pair of keys one can call KeyGenerator::generate() at any time. keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() encryptor = Encryptor(context, public_key) plain1 = encoder.encode(amount) encoded2 = encoder.encode(subtract_from) # Encrypt encrypted1 = Ciphertext(parms) encryptor.encrypt(plain1, encrypted1) # Evaluate evaluator = Evaluator(context) evaluated = evaluate_subtraction_from_plain(evaluator, encrypted1, encoded2) # Decrypt and decode decryptor = Decryptor(context, secret_key) plain_result = Plaintext() decryptor.decrypt(evaluated, plain_result) result = encoder.decode(plain_result) str_result = "Amount left = " + str(result) print(str_result) return str_result
def __init__(self, poly_modulus = 2048 ,bit_strength = 128 ,plain_modulus = 1<<8, integral_coeffs = 64, fractional_coeffs = 32, fractional_base = 3): parms = EncryptionParameters() parms.set_poly_modulus("1x^{} + 1".format(poly_modulus)) if (bit_strength == 128): parms.set_coeff_modulus(seal.coeff_modulus_128(poly_modulus)) else: parms.set_coeff_modulus(seal.coeff_modulus_192(poly_modulus)) parms.set_plain_modulus(plain_modulus) self.parms = parms context = SEALContext(parms) keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() self.encryptor = Encryptor(context, public_key) self.evaluator = Evaluator(context) self.decryptor = Decryptor(context, secret_key) self.encoder = FractionalEncoder(context.plain_modulus(), context.poly_modulus(), integral_coeffs, fractional_coeffs, fractional_base)
def dot_product(): print("Example: Weighted Average") # In this example we demonstrate the FractionalEncoder, and use it to compute # a weighted average of 10 encrypted rational numbers. In this computation we # perform homomorphic multiplications of ciphertexts by plaintexts, which is # much faster than regular multiplications of ciphertexts by ciphertexts. # Moreover, such `plain multiplications' never increase the ciphertext size, # which is why we have no need for evaluation keys in this example. # We start by creating encryption parameters, setting up the SEALContext, keys, # and other relevant objects. Since our computation has multiplicative depth of # only two, it suffices to use a small poly_modulus. parms = EncryptionParameters() parms.set_poly_modulus("1x^2048 + 1") parms.set_coeff_modulus(seal.coeff_modulus_128(2048)) parms.set_plain_modulus(1 << 8) context = SEALContext(parms) print_parameters(context) keygen = KeyGenerator(context) keygen2 = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() secret_key2 = keygen.secret_key() # We also set up an Encryptor, Evaluator, and Decryptor here. encryptor = Encryptor(context, public_key) evaluator = Evaluator(context) decryptor = Decryptor(context, secret_key2) # Create a vector of 10 rational numbers (as doubles). # rational_numbers = [3.1, 4.159, 2.65, 3.5897, 9.3, 2.3, 8.46, 2.64, 3.383, 2.795] rational_numbers = np.random.rand(10) # Create a vector of weights. # coefficients = [0.1, 0.05, 0.05, 0.2, 0.05, 0.3, 0.1, 0.025, 0.075, 0.05] coefficients = np.random.rand(10) my_result = np.dot(rational_numbers, coefficients) # We need a FractionalEncoder to encode the rational numbers into plaintext # polynomials. In this case we decide to reserve 64 coefficients of the # polynomial for the integral part (low-degree terms) and expand the fractional # part to 32 digits of precision (in base 3) (high-degree terms). These numbers # can be changed according to the precision that is needed; note that these # choices leave a lot of unused space in the 2048-coefficient polynomials. encoder = FractionalEncoder(context.plain_modulus(), context.poly_modulus(), 64, 32, 3) # We create a vector of ciphertexts for encrypting the rational numbers. encrypted_rationals = [] rational_numbers_string = "Encoding and encrypting: " for i in range(10): # We create our Ciphertext objects into the vector by passing the # encryption parameters as an argument to the constructor. This ensures # that enough memory is allocated for a size 2 ciphertext. In this example # our ciphertexts never grow in size (plain multiplication does not cause # ciphertext growth), so we can expect the ciphertexts to remain in the same # location in memory throughout the computation. In more complicated examples # one might want to call a constructor that reserves enough memory for the # ciphertext to grow to a specified size to avoid costly memory moves when # multiplications and relinearizations are performed. encrypted_rationals.append(Ciphertext(parms)) encryptor.encrypt(encoder.encode(rational_numbers[i]), encrypted_rationals[i]) rational_numbers_string += (str)(rational_numbers[i])[:6] if i < 9: rational_numbers_string += ", " print(rational_numbers_string) # Next we encode the coefficients. There is no reason to encrypt these since they # are not private data. encoded_coefficients = [] encoded_coefficients_string = "Encoding plaintext coefficients: " encrypted_coefficients =[] for i in range(10): encoded_coefficients.append(encoder.encode(coefficients[i])) encrypted_coefficients.append(Ciphertext(parms)) encryptor.encrypt(encoded_coefficients[i], encrypted_coefficients[i]) encoded_coefficients_string += (str)(coefficients[i])[:6] if i < 9: encoded_coefficients_string += ", " print(encoded_coefficients_string) # We also need to encode 0.1. Multiplication by this plaintext will have the # effect of dividing by 10. Note that in SEAL it is impossible to divide # ciphertext by another ciphertext, but in this way division by a plaintext is # possible. div_by_ten = encoder.encode(0.1) # Now compute each multiplication. prod_result = [Ciphertext() for i in range(10)] prod_result2 = [Ciphertext() for i in range(10)] print("Computing products: ") for i in range(10): # Note how we use plain multiplication instead of usual multiplication. The # result overwrites the first argument in the function call. evaluator.multiply_plain(encrypted_rationals[i], encoded_coefficients[i], prod_result[i]) evaluator.multiply(encrypted_rationals[i], encrypted_coefficients[i], prod_result2[i]) print("Done") # To obtain the linear sum we need to still compute the sum of the ciphertexts # in encrypted_rationals. There is an easy way to add together a vector of # Ciphertexts. encrypted_result = Ciphertext() encrypted_result2 = Ciphertext() print("Adding up all 10 ciphertexts: ") evaluator.add_many(prod_result, encrypted_result) evaluator.add_many(prod_result2, encrypted_result2) print("Done") # Perform division by 10 by plain multiplication with div_by_ten. # print("Dividing by 10: ") # evaluator.multiply_plain(encrypted_result, div_by_ten) # print("Done") # How much noise budget do we have left? print("Noise budget in result: " + (str)(decryptor.invariant_noise_budget(encrypted_result)) + " bits") # Decrypt, decode, and print result. plain_result = Plaintext() plain_result2 = Plaintext() print("Decrypting result: ") decryptor.decrypt(encrypted_result, plain_result) decryptor.decrypt(encrypted_result2, plain_result2) print("Done") result = encoder.decode(plain_result) print("Weighted average: " + (str)(result)[:8]) result2 = encoder.decode(plain_result2) print("Weighted average: " + (str)(result2)[:8]) print('\n\n', my_result)
encryptor.encrypt(plain_matrix, cm) # cm = [[0] * len(m[0]) for i in range(len(m))] # for i in range(len(m)): # for j in range(len(m[0])): # cm[i][j] = Ciphertext(parms) # encryptor.encrypt(encoder.encode(m[i][j]), cm[i][j]) print(cm) np.reshape(cm, (r, c)) return cm # v1 = [3.1, 4.159, 2.65, 3.5897, 9.3, 2.3, 8.46, 2.64, 3.383, 2.795] # v2 = [0.1, 0.05, 0.05, 0.2, 0.05, 0.3, 0.1, 0.025, 0.075, 0.05] encryptor = Encryptor(context, public_key) encoder = FractionalEncoder(context.plain_modulus(), context.poly_modulus(), 64, 32, 3) def decryptMatrix(cm): r, c = len(cm), len(cm[0]) m = [[0] * c for i in range(r)] decryptor = Decryptor(context, secret_key) plain_result = Plaintext() for i in range(r): for j in range(c): decryptor.decrypt(cm[i][j], plain_result) m[i][j] = encoder.decode(plain_result) return m
if __name__ == '__main__': multiprocessing.freeze_support() ########################## paramaters required ################################# parms = EncryptionParameters() parms.set_poly_modulus("1x^16384 + 1") parms.set_coeff_modulus(seal.coeff_modulus_128(8192)) parms.set_plain_modulus(1 << 25) context = SEALContext(parms) encoderF = FractionalEncoder(context.plain_modulus(), context.poly_modulus(), 34, 30, 3) keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() encryptor = Encryptor(context, public_key) evaluator = Evaluator(context) decryptor = Decryptor(context, secret_key) num_cores = multiprocessing.cpu_count() -1 N=4 b = numpy.random.random_integers(1,10,size=(N,N)) X = (b + b.T)/2 print("\nX:") print(X)
class CipherMatrix: """ """ def __init__(self, matrix=None): """ :param matrix: numpy.ndarray to be encrypted. """ self.parms = EncryptionParameters() self.parms.set_poly_modulus("1x^2048 + 1") self.parms.set_coeff_modulus(seal.coeff_modulus_128(2048)) self.parms.set_plain_modulus(1 << 8) self.context = SEALContext(self.parms) # self.encoder = IntegerEncoder(self.context.plain_modulus()) self.encoder = FractionalEncoder(self.context.plain_modulus(), self.context.poly_modulus(), 64, 32, 3) self.keygen = KeyGenerator(self.context) self.public_key = self.keygen.public_key() self.secret_key = self.keygen.secret_key() self.encryptor = Encryptor(self.context, self.public_key) self.decryptor = Decryptor(self.context, self.secret_key) self.evaluator = Evaluator(self.context) self._saved = False self._encrypted = False self._id = '{0:04d}'.format(np.random.randint(1000)) if matrix is not None: assert len( matrix.shape) == 2, "Only 2D numpy matrices accepted currently" self.matrix = np.copy(matrix) self.encrypted_matrix = np.empty(self.matrix.shape, dtype=object) for i in range(self.matrix.shape[0]): for j in range(self.matrix.shape[1]): self.encrypted_matrix[i, j] = Ciphertext() else: self.matrix = None self.encrypted_matrix = None print(self._id, "Created") def __repr__(self): """ :return: """ print("Encrypted:", self._encrypted) if not self._encrypted: print(self.matrix) return "" else: return '[]' def __str__(self): """ :return: """ print("| Encryption parameters:") print("| poly_modulus: " + self.context.poly_modulus().to_string()) # Print the size of the true (product) coefficient modulus print("| coeff_modulus_size: " + ( str)(self.context.total_coeff_modulus().significant_bit_count()) + " bits") print("| plain_modulus: " + (str)(self.context.plain_modulus().value())) print("| noise_standard_deviation: " + (str)(self.context.noise_standard_deviation())) if self.matrix is not None: print(self.matrix.shape) return str(type(self)) def __add__(self, other): """ :param other: :return: """ assert isinstance( other, CipherMatrix), "Can only be added with a CipherMatrix" A_enc = self._encrypted B_enc = other._encrypted if A_enc: A = self.encrypted_matrix else: A = self.matrix if B_enc: B = other.encrypted_matrix else: B = other.matrix assert A.shape == B.shape, "Dimension mismatch, Matrices must be of same shape. Got {} and {}".format( A.shape, B.shape) shape = A.shape result = CipherMatrix(np.zeros(shape, dtype=np.int32)) result._update_cryptors(self.get_keygen()) if A_enc: if B_enc: res_mat = result.encrypted_matrix for i in range(shape[0]): for j in range(shape[1]): self.evaluator.add(A[i, j], B[i, j], res_mat[i, j]) result._encrypted = True else: res_mat = result.encrypted_matrix for i in range(shape[0]): for j in range(shape[1]): self.evaluator.add_plain(A[i, j], self.encoder.encode(B[i, j]), res_mat[i, j]) result._encrypted = True else: if B_enc: res_mat = result.encrypted_matrix for i in range(shape[0]): for j in range(shape[1]): self.evaluator.add_plain(B[i, j], self.encoder.encode(A[i, j]), res_mat[i, j]) result._encrypted = True else: result.matrix = A + B result._encrypted = False return result def __sub__(self, other): """ :param other: :return: """ assert isinstance(other, CipherMatrix) if other._encrypted: shape = other.encrypted_matrix.shape for i in range(shape[0]): for j in range(shape[1]): self.evaluator.negate(other.encrypted_matrix[i, j]) else: other.matrix = -1 * other.matrix return self + other def __mul__(self, other): """ :param other: :return: """ assert isinstance( other, CipherMatrix), "Can only be multiplied with a CipherMatrix" # print("LHS", self._id, "RHS", other._id) A_enc = self._encrypted B_enc = other._encrypted if A_enc: A = self.encrypted_matrix else: A = self.matrix if B_enc: B = other.encrypted_matrix else: B = other.matrix Ashape = A.shape Bshape = B.shape assert Ashape[1] == Bshape[0], "Dimensionality mismatch" result_shape = [Ashape[0], Bshape[1]] result = CipherMatrix(np.zeros(shape=result_shape)) if A_enc: if B_enc: for i in range(Ashape[0]): for j in range(Bshape[1]): result_array = [] for k in range(Ashape[1]): res = Ciphertext() self.evaluator.multiply(A[i, k], B[k, j], res) result_array.append(res) self.evaluator.add_many(result_array, result.encrypted_matrix[i, j]) result._encrypted = True else: for i in range(Ashape[0]): for j in range(Bshape[1]): result_array = [] for k in range(Ashape[1]): res = Ciphertext() self.evaluator.multiply_plain( A[i, k], self.encoder.encode(B[k, j]), res) result_array.append(res) self.evaluator.add_many(result_array, result.encrypted_matrix[i, j]) result._encrypted = True else: if B_enc: for i in range(Ashape[0]): for j in range(Bshape[1]): result_array = [] for k in range(Ashape[1]): res = Ciphertext() self.evaluator.multiply_plain( B[i, k], self.encoder.encode(A[k, j]), res) result_array.append(res) self.evaluator.add_many(result_array, result.encrypted_matrix[i, j]) result._encrypted = True else: result.matrix = np.matmul(A, B) result._encrypted = False return result def save(self, path): """ :param path: :return: """ save_dir = os.path.join(path, self._id) if self._saved: print("CipherMatrix already saved") else: assert not os.path.isdir(save_dir), "Directory already exists" os.mkdir(save_dir) if not self._encrypted: self.encrypt() shape = self.encrypted_matrix.shape for i in range(shape[0]): for j in range(shape[1]): element_name = str(i) + '-' + str(j) + '.ahem' self.encrypted_matrix[i, j].save( os.path.join(save_dir, element_name)) self.secret_key.save("/keys/" + "." + self._id + '.wheskey') self._saved = True return save_dir def load(self, path, load_secret_key=False): """ :param path: :param load_secret_key: :return: """ self._id = path.split('/')[-1] print("Loading Matrix:", self._id) file_list = os.listdir(path) index_list = [[file.split('.')[0].split('-'), file] for file in file_list] M = int(max([int(ind[0][0]) for ind in index_list])) + 1 N = int(max([int(ind[0][1]) for ind in index_list])) + 1 del self.encrypted_matrix self.encrypted_matrix = np.empty([M, N], dtype=object) for index in index_list: i = int(index[0][0]) j = int(index[0][1]) self.encrypted_matrix[i, j] = Ciphertext() self.encrypted_matrix[i, j].load(os.path.join(path, index[1])) if load_secret_key: self.secret_key.load("/keys/" + "." + self._id + '.wheskey') self.matrix = np.empty(self.encrypted_matrix.shape) self._encrypted = True def encrypt(self, matrix=None, keygen=None): """ :param matrix: :return: """ assert not self._encrypted, "Matrix already encrypted" if matrix is not None: assert self.matrix is None, "matrix already exists" self.matrix = np.copy(matrix) shape = self.matrix.shape self.encrypted_matrix = np.empty(shape, dtype=object) if keygen is not None: self._update_cryptors(keygen) for i in range(shape[0]): for j in range(shape[1]): val = self.encoder.encode(self.matrix[i, j]) self.encrypted_matrix[i, j] = Ciphertext() self.encryptor.encrypt(val, self.encrypted_matrix[i, j]) self._encrypted = True def decrypt(self, encrypted_matrix=None, keygen=None): """ :return: """ if encrypted_matrix is not None: self.encrypted_matrix = encrypted_matrix assert self._encrypted, "No encrypted matrix" del self.matrix shape = self.encrypted_matrix.shape self.matrix = np.empty(shape) if keygen is not None: self._update_cryptors(keygen) for i in range(shape[0]): for j in range(shape[1]): plain_text = Plaintext() self.decryptor.decrypt(self.encrypted_matrix[i, j], plain_text) self.matrix[i, j] = self.encoder.decode(plain_text) self._encrypted = False return np.copy(self.matrix) def get_keygen(self): """ :return: """ return self.keygen def _update_cryptors(self, keygen): """ :param keygen: :return: """ self.keygen = keygen self.public_key = keygen.public_key() self.secret_key = keygen.secret_key() self.encryptor = Encryptor(self.context, self.public_key) self.decryptor = Decryptor(self.context, self.secret_key) return
def unit_test(): parms = EncryptionParameters() parms.set_poly_modulus("1x^8192 + 1") parms.set_coeff_modulus(seal.coeff_modulus_128(8192)) parms.set_plain_modulus(1 << 10) context = SEALContext(parms) # Print the parameters that we have chosen print_parameters(context) encoder = FractionalEncoder(context.plain_modulus(), context.poly_modulus(), 64, 32, 3) keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() encryptor = Encryptor(context, public_key) # Computations on the ciphertexts are performed with the Evaluator class. evaluator = Evaluator(context) # We will of course want to decrypt our results to verify that everything worked, # so we need to also construct an instance of Decryptor. Note that the Decryptor # requires the secret key. decryptor = Decryptor(context, secret_key) learningRate = 0.1 learningRate_data = encoder.encode(learningRate) learningRate_e = Ciphertext() encryptor.encrypt(learningRate_data, learningRate_e) updatedVals = [] updatedVals.append(50) updatedVals.append(50) updatedVals_unenc = [] updatedVals_unenc.append(updatedVals[0]) updatedVals_unenc.append(updatedVals[1]) for i in range(15): x = 1 y = 1 updatedVals = learn(x, y, evaluator, updatedVals[0], updatedVals[1], encoder, encryptor, learningRate_e, decryptor) ypred = updatedVals_unenc[0] * x + updatedVals_unenc[1] error = ypred - y updatedVals_unenc[0] = updatedVals_unenc[0] - x * error * learningRate updatedVals_unenc[1] = updatedVals_unenc[1] - error * learningRate print((str)(updatedVals[1]) + ":" + (str)(updatedVals[0]) + ":" + (str)(updatedVals_unenc[1]) + ":" + (str)(updatedVals_unenc[0])) x = 2 y = 3 updatedVals = learn(x, y, evaluator, updatedVals[0], updatedVals[1], encoder, encryptor, learningRate_e, decryptor) ypred = updatedVals_unenc[0] * x + updatedVals_unenc[1] error = ypred - y updatedVals_unenc[0] = updatedVals_unenc[0] - x * error * learningRate updatedVals_unenc[1] = updatedVals_unenc[1] - error * learningRate print((str)(updatedVals[1]) + ":" + (str)(updatedVals[0]) + ":" + (str)(updatedVals_unenc[1]) + ":" + (str)(updatedVals_unenc[0])) x = 4 y = 3 updatedVals = learn(x, y, evaluator, updatedVals[0], updatedVals[1], encoder, encryptor, learningRate_e, decryptor) ypred = updatedVals_unenc[0] * x + updatedVals_unenc[1] error = ypred - y updatedVals_unenc[0] = updatedVals_unenc[0] - x * error * learningRate updatedVals_unenc[1] = updatedVals_unenc[1] - error * learningRate print((str)(updatedVals[1]) + ":" + (str)(updatedVals[0]) + ":" + (str)(updatedVals_unenc[1]) + ":" + (str)(updatedVals_unenc[0])) x = 3 y = 2 updatedVals = learn(x, y, evaluator, updatedVals[0], updatedVals[1], encoder, encryptor, learningRate_e, decryptor) ypred = updatedVals_unenc[0] * x + updatedVals_unenc[1] error = ypred - y updatedVals_unenc[0] = updatedVals_unenc[0] - x * error * learningRate updatedVals_unenc[1] = updatedVals_unenc[1] - error * learningRate print((str)(updatedVals[1]) + ":" + (str)(updatedVals[0]) + ":" + (str)(updatedVals_unenc[1]) + ":" + (str)(updatedVals_unenc[0])) x = 5 y = 5 updatedVals = learn(x, y, evaluator, updatedVals[0], updatedVals[1], encoder, encryptor, learningRate_e, decryptor) ypred = updatedVals_unenc[0] * x + updatedVals_unenc[1] error = ypred - y updatedVals_unenc[0] = updatedVals_unenc[0] - x * error * learningRate updatedVals_unenc[1] = updatedVals_unenc[1] - error * learningRate print((str)(updatedVals[1]) + ":" + (str)(updatedVals[0]) + ":" + (str)(updatedVals_unenc[1]) + ":" + (str)(updatedVals_unenc[0]))
if __name__ == '__main__': multiprocessing.freeze_support() ########################## paramaters required ################################# parms = EncryptionParameters() parms.set_poly_modulus("1x^8192 + 1") parms.set_coeff_modulus(seal.coeff_modulus_128(8192)) parms.set_plain_modulus(1 << 21) context = SEALContext(parms) encoderF = FractionalEncoder(context.plain_modulus(), context.poly_modulus(), 30, 34, 3) keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() encryptor = Encryptor(context, public_key) evaluator = Evaluator(context) decryptor = Decryptor(context, secret_key) num_cores = multiprocessing.cpu_count() - 1 print(num_cores) ########################## encoding main matrix ################################ dir_path = os.path.dirname(os.path.realpath(__file__))
class FHECryptoEngine(CryptoEngine): def __init__(self): CryptoEngine.__init__(self, defs.ENC_MODE_FHE) self.log_id = 'FHECryptoEngine' self.encrypt_params = None self.context = None self.encryptor = None self.evaluator = None self.decryptor = None return def load_keys(self): self.private_key = SecretKey() self.private_key.load(defs.FN_FHE_PRIVATE_KEY) self.public_key = PublicKey() self.public_key.load(defs.FN_FHE_PUBLIC_KEY) return True def generate_keys(self): if self.encrypt_params == None or \ self.context == None: self.init_encrypt_params() keygen = KeyGenerator(self.context) # Generate the private key self.private_key = keygen.secret_key() self.private_key.save(defs.FN_FHE_PRIVATE_KEY) # Generate the public key self.public_key = keygen.public_key() self.public_key.save(defs.FN_FHE_PUBLIC_KEY) return True def init_encrypt_params(self): self.encrypt_params = EncryptionParameters() self.encrypt_params.set_poly_modulus("1x^2048 + 1") self.encrypt_params.set_coeff_modulus(seal.coeff_modulus_128(2048)) self.encrypt_params.set_plain_modulus(1 << 8) self.context = SEALContext(self.encrypt_params) return def initialize(self, use_old_keys=False): # Initialize encryption params self.init_encrypt_params() # Check if the public & private key files exist if os.path.isfile(defs.FN_FHE_PUBLIC_KEY) and \ os.path.isfile(defs.FN_FHE_PRIVATE_KEY) and \ use_old_keys == True: self.log("Keys already exist. Reusing them instead.") if not self.load_keys(): self.log("Failed to load keys") return False else: # If not, then attempt to generate new ones if not self.generate_keys(): self.log("Failed to generate keys") return False # Setup the rest of the crypto engine self.encryptor = Encryptor(self.context, self.public_key) self.evaluator = Evaluator(self.context) self.decryptor = Decryptor(self.context, self.private_key) # Set the initialized flag self.initialized = True return True def encrypt(self, data): if not self.initialized: self.log("Not initialized") return False # Setup the encoder encoder = FractionalEncoder(self.context.plain_modulus(), self.context.poly_modulus(), 64, 32, 3) # Create the array of encrypted data objects encrypted_data = [] for raw_data in data: encrypted_data.append(Ciphertext(self.encrypt_params)) self.encryptor.encrypt( encoder.encode(raw_data), encrypted_data[-1] ) # Pickle each Ciphertext, base64 encode it, and store it in the array for i in range(0, len(encrypted_data)): encrypted_data[i].save("fhe_enc.bin") encrypted_data[i] = base64.b64encode( pickle.dumps(encrypted_data[i]) ) return encrypted_data def evaluate(self, encrypted_data, lower_idx=0, higher_idx=-1): result = Ciphertext() # Setup the encoder encoder = FractionalEncoder(self.context.plain_modulus(), self.context.poly_modulus(), 64, 32, 3) # Unpack the data first unpacked_data = [] for d in encrypted_data[lower_idx:higher_idx]: unpacked_data.append(pickle.loads(base64.b64decode(d))) # Perform operations self.evaluator.add_many(unpacked_data, result) div = encoder.encode(1/len(unpacked_data)) self.evaluator.multiply_plain(result, div) # Pack the result result = base64.b64encode( pickle.dumps(result) ) return result def decrypt(self, raw_data): if not self.initialized: self.log("Not initialized") return False # Setup the encoder encoder = FractionalEncoder(self.context.plain_modulus(), self.context.poly_modulus(), 64, 32, 3) # Unpickle, base64 decode, and decrypt each ciphertext result decrypted_data = [] for d in raw_data: encrypted_data = pickle.loads( base64.b64decode(d) ) plain_data = Plaintext() self.decryptor.decrypt(encrypted_data, plain_data) decrypted_data.append( str(encoder.decode(plain_data)) ) return decrypted_data