コード例 #1
0
    def forward(self, features, num_voxels, coors):
        device = features.device

        dtype = features.dtype
        # Find distance of x, y, and z from cluster center
        points_mean = features[:, :, :3].sum(
            dim=1, keepdim=True) / num_voxels.type_as(features).view(-1, 1, 1)
        f_cluster = features[:, :, :3] - points_mean

        # Find distance of x, y, and z from pillar center
        f_center = torch.zeros_like(features[:, :, :2])
        f_center[:, :, 0] = features[:, :, 0] - (
            coors[:, 3].to(dtype).unsqueeze(1) * self.vx + self.x_offset)
        f_center[:, :, 1] = features[:, :, 1] - (
            coors[:, 2].to(dtype).unsqueeze(1) * self.vy + self.y_offset)

        # Combine together feature decorations
        features_ls = [features, f_cluster, f_center]
        if self._with_distance:
            points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True)
            features_ls.append(points_dist)
        features = torch.cat(features_ls, dim=-1)

        # The feature decorations were calculated without regard to whether pillar was empty. Need to ensure that
        # empty pillars remain set to zeros.
        voxel_count = features.shape[1]
        mask = get_paddings_indicator(num_voxels, voxel_count, axis=0)
        mask = torch.unsqueeze(mask, -1).type_as(features)
        features *= mask

        # Forward pass through PFNLayers
        for pfn in self.pfn_layers:
            features = pfn(features)

        return features.squeeze()
コード例 #2
0
ファイル: gcn.py プロジェクト: zarzarj/second.pytorch
    def forward(self, features, num_voxels, coors):
        # print(coors.shape, num_voxels.shape, features.shape)
        # print(torch.max(num_voxels), torch.min(num_voxels), torch.mean(num_voxels.float()), num_voxels.shape)
        # print(torch.sum(num_voxels>=8).float()/num_voxels.shape[0])
        device = features.device

        dtype = features.dtype
        # print(features.shape, num_voxels.shape, coors.shape)
        # print(coors[0])
        # print(num_voxels[0])
        # Find distance of x, y, and z from cluster center
        points_mean = features[:, :, :3].sum(
            dim=1, keepdim=True) / num_voxels.type_as(features).view(-1, 1, 1)
        f_cluster = features[:, :, :3] - points_mean

        # Find distance of x, y, and z from pillar center
        f_center = torch.zeros_like(features[:, :, :2])
        f_center[:, :, 0] = features[:, :, 0] - (
            coors[:, 3].to(dtype).unsqueeze(1) * self.vx + self.x_offset)
        f_center[:, :, 1] = features[:, :, 1] - (
            coors[:, 2].to(dtype).unsqueeze(1) * self.vy + self.y_offset)

        # Combine together feature decorations
        features_ls = [features, f_cluster, f_center]
        if self._with_distance:
            points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True)
            features_ls.append(points_dist)
        features_out = torch.cat(features_ls, dim=-1)

        # The feature decorations were calculated without regard to whether pillar was empty. Need to ensure that
        # empty pillars remain set to zeros.
        voxel_count = features_out.shape[1]
        mask = get_paddings_indicator(num_voxels, voxel_count, axis=0)
        mask = torch.unsqueeze(mask, -1).type_as(features_out)
        # print(torch.sum(features[:,:,:3] - (features*mask)[:,:,:3]))
        features_out = features_out * mask

        # Forward pass through PFNLayers
        for pfn in self.pfn_layers:
            # print(features.shape)
            # features = batch_process(features, pfn, num_batches=20)
            features_out = batch_process(features_out, pfn, num_batches=10)
            # features_out = pfn(features_out)
            # print(features.grad_fn)
            # print(mask)
            features_out = features_out * mask
            # print(mask.shape, features.shape)
            features_max = torch.max(features_out, dim=1, keepdim=True)[0]
            if pfn.last_vfe:
                features_out = features_max
            else:
                # features_max = torch.max(x, dim=1, keepdim=True)[0]
                features_repeat = features_max.repeat(1, features_out.shape[1],
                                                      1)
                features_out = torch.cat([features_out, features_repeat],
                                         dim=2)
            # print(features.shape)
        return features_out.squeeze()
コード例 #3
0
    def forward(self, features, num_voxels, coors, batch_size):  #coors坐标
        device = features.device

        dtype = features.dtype  #float32
        # Find distance of x, y, and z from cluster center 求x, y, z到聚类中心的距离
        points_mean = features[:, :, :3].sum(
            dim=1, keepdim=True) / num_voxels.type_as(features).view(-1, 1, 1)
        aa = features[:, :, :3].sum(dim=1, keepdim=True)  #每个柱子60个点相加,只加x,y,z
        bb = num_voxels.type_as(features).view(-1, 1, 1).shape
        f_cluster = features[:, :, :3] - points_mean

        # Find distance of x, y, and z from pillar center 求x, y, z到柱子中心的距离
        f_center = torch.zeros_like(features[:, :, :2])
        f_center[:, :, 0] = features[:, :, 0] - (
            coors[:, 3].to(dtype).unsqueeze(1) * self.vx + self.x_offset)
        f_center[:, :, 1] = features[:, :, 1] - (
            coors[:, 2].to(dtype).unsqueeze(1) * self.vy + self.y_offset)

        # Combine together feature decorations 组合特征装饰
        if features.shape[2] == 4:
            features_ls = [features, f_cluster,
                           f_center]  #加上到中心点距离和到底面中心点距离变成9维度
        if features.shape[2] == 6:
            features_ls = [features, f_cluster]
        if self._with_distance:  #false
            points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True)
            features_ls.append(points_dist)
        features = torch.cat(features_ls, dim=-1)  #feature shape
        a = features.shape  #torch.Size([50929, 60, 9])    #[3444,60,23]radar

        # The feature decorations were calculated without regard to whether pillar was empty. Need to ensure that
        # empty pillars remain set to zeros.特征装饰的计算不考虑柱子是否空。需要确保
        # 空柱子仍然设置为零
        voxel_count = features.shape[1]  #一个柱子60的点
        mask = get_paddings_indicator(num_voxels, voxel_count,
                                      axis=0)  #根据voxel的点数设置mask
        mask = torch.unsqueeze(mask, -1).type_as(features)
        features *= mask  #特征mask掩膜(60,9,41924)

        # Forward pass through PFNLayers
        for pfn in self.pfn_layers:
            features = pfn(features, batch_size)
            # print(features.shape)           #[38093,1,64]

        return features.squeeze()
コード例 #4
0
ファイル: tanet.py プロジェクト: zhangyifan713/TANet
    def forward(self, features, num_voxels, coors):

        # Find distance of x, y, and z from cluster center
        ## ref: https://github.com/traveller59/second.pytorch/issues/144
        num_voxels_set_0_to_1 = num_voxels.clone()
        num_voxels_set_0_to_1[num_voxels_set_0_to_1 == 0] = 1
        points_mean = features[:, :, :3].sum(
            dim=1,
            keepdim=True) / num_voxels_set_0_to_1.type_as(features).view(
                -1, 1, 1)
        #points_mean = features[:, :, :3].sum(dim=1, keepdim=True) / num_voxels.type_as(features).view(-1, 1, 1)

        f_cluster = features[:, :, :3] - points_mean

        # Find distance of x, y, and z from pillar center
        f_center = torch.zeros_like(features[:, :, :2])
        f_center[:, :, 0] = features[:, :, 0] - (
            coors[:, 3].float().unsqueeze(1) * self.vx + self.x_offset)
        f_center[:, :, 1] = features[:, :, 1] - (
            coors[:, 2].float().unsqueeze(1) * self.vy + self.y_offset)

        # Combine together feature decorations
        features_ls = [features, f_cluster, f_center]
        if self._with_distance:
            points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True)
            features_ls.append(points_dist)
        features = torch.cat(features_ls, dim=-1)

        # The feature decorations were calculated without regard to whether pillar was empty. Need to ensure that
        # empty pillars remain set to zeros.
        voxel_count = features.shape[1]
        mask = get_paddings_indicator(num_voxels, voxel_count, axis=0)
        mask = torch.unsqueeze(mask, -1).type_as(features)
        features *= mask  ## (N,60,9) ##(N,100,9)

        features = self.VoxelFeature_TA(points_mean, features)

        # Forward pass through PFNLayers
        for pfn in self.pfn_layers:
            features = pfn(features)

        return features.squeeze()