def test(): with open('dataset_new.json', 'r') as f: dataset = json.load(f) form = InputForm() if form.validate_on_submit(): intent = action_predict(str(form.input_data.data)) log(intent) if intent != "none": k = dsl(intent) reply = k.generate() log(reply) input_text = form.input_data.data #print(input_text) dat = {"question": input_text, "answer": reply} form.input_data.data = "" return render_template('index.html', reply=reply["text"], form=form, input_text=input_text) else: reply = reply_predict(str(form.input_data.data)) input_text = form.input_data.data dat = {"question": input_text, "answer": reply} dataset.append(dat) with open("dataset_new.json", "w") as w: json.dump(dataset, w) form.input_data.data = "" return render_template('index.html', reply=reply, form=form, input_text=input_text) return render_template('index.html', form=form)
def test(): form = InputForm() if form.validate_on_submit(): intent = action_predict(str(form.input_data.data)) log(intent) if intent != "none": k = dsl(intent) reply = k.generate() log(reply) input_text = form.input_data.data #print(input_text) form.input_data.data = "" return render_template('index.html', reply=reply["text"], form=form, input_text=input_text) else: reply = reply_predict(str(form.input_data.data)) input_text = form.input_data.data form.input_data.data = "" return render_template('index.html', reply=reply, form=form, input_text=input_text) return render_template('index.html', form=form)
def process_msg(message_text): intent = action_predict(str(message_text)) #predicting action if intent != "none": #if the message is a command k = dsl(intent) reply = k.generate() return reply else: #if the message is just chitchat reply = reply_predict(message_text) return reply
from torch.autograd import Variable import torch training_data = [] with open('action_dataset.json') as data_file: data = json.load(data_file) for line in data: #fetching training data training_data.append(line) action_train(20000, training_data) #training the model #testing with a new input #print("say wahts tinkerhub") print("intent:" + action_predict("how is it")) """ accuracy= 0 % input= tell me more about RIT actual= website guess= website accuracy= 0 % input= give me more information actual= website guess= website accuracy= 1 % input= who is the principal actual= website guess= website accuracy= 0 % input= give me the phone number actual= contact guess= contact accuracy= 31 % input= open college website actual= website guess= website accuracy= 43 % input= open college website actual= website guess= website accuracy= 0 % input= navigate me to RIT actual= location guess= location accuracy= 30 % input= give me more information actual= website guess= website accuracy= 28 % input= good bye actual= goodbye guess= goodbye accuracy= 69 % input= have a nice day actual= goodbye guess= goodbye accuracy= 0 % input= navigate me to RIT actual= location guess= location accuracy= 76 % input= open college website actual= website guess= website accuracy= 67 % input= i have to go actual= goodbye guess= goodbye accuracy= 80 % input= open college website actual= website guess= website
from torch.autograd import Variable import torch training_data = [] with open('app/datasets/action_dataset.json') as data_file: data = json.load(data_file) for line in data: #fetching training data training_data.append(line) action_train(20000, training_data) #training the model #testing with a new input #print("say wahts tinkerhub") print("intent:" + action_predict("hello")) """ accuracy= 0 % input= tell me more about RIT actual= website guess= website accuracy= 0 % input= give me more information actual= website guess= website accuracy= 1 % input= who is the principal actual= website guess= website accuracy= 0 % input= give me the phone number actual= contact guess= contact accuracy= 31 % input= open college website actual= website guess= website accuracy= 43 % input= open college website actual= website guess= website accuracy= 0 % input= navigate me to RIT actual= location guess= location accuracy= 30 % input= give me more information actual= website guess= website accuracy= 28 % input= good bye actual= goodbye guess= goodbye accuracy= 69 % input= have a nice day actual= goodbye guess= goodbye accuracy= 0 % input= navigate me to RIT actual= location guess= location accuracy= 76 % input= open college website actual= website guess= website accuracy= 67 % input= i have to go actual= goodbye guess= goodbye accuracy= 80 % input= open college website actual= website guess= website
from torch.autograd import Variable import torch training_data = [] with open('action_dataset.json') as data_file: data = json.load(data_file) for line in data: #fetching training data training_data.append(line) action_train(10000, training_data) #training the model #testing with a new input print("how can i reach RIT") print("intent:" + action_predict("how can i reach RIT")) """ accuracy= 0 % input= tell me more about RIT actual= website guess= website accuracy= 0 % input= give me more information actual= website guess= website accuracy= 1 % input= who is the principal actual= website guess= website accuracy= 0 % input= give me the phone number actual= contact guess= contact accuracy= 31 % input= open college website actual= website guess= website accuracy= 43 % input= open college website actual= website guess= website accuracy= 0 % input= navigate me to RIT actual= location guess= location accuracy= 30 % input= give me more information actual= website guess= website accuracy= 28 % input= good bye actual= goodbye guess= goodbye accuracy= 69 % input= have a nice day actual= goodbye guess= goodbye accuracy= 0 % input= navigate me to RIT actual= location guess= location accuracy= 76 % input= open college website actual= website guess= website accuracy= 67 % input= i have to go actual= goodbye guess= goodbye accuracy= 80 % input= open college website actual= website guess= website