コード例 #1
0
ファイル: RunSearch.py プロジェクト: see-insight/see-segment
def continuous_search(input_file, 
                      input_mask, 
                      startfile=None,
                      checkpoint='checkpoint.txt',
                      best_mask_file="temp_mask.png", 
                      pop_size=10):
    """Run genetic search continuously.
    
    input_file: the original image
    input_mask: the ground truth mask for the image
    pop_size: the size of the population
    Runs indefinitely unless a perfect value (0.0) is reached.
    """
    mydata = base_classes.pipedata()
    mydata.img = imageio.imread(input_file)
    mydata.gmask = imageio.imread(input_mask)

    outfile=f"{input_file}.txt"
    
    #TODO: Read this file in and set population first
    workflow.addalgos([colorspace, segmentor, segment_fitness])
    wf = workflow()
    
    #Run the search
    my_evolver = GeneticSearch.Evolver(workflow, mydata, pop_size=pop_size)

    best_fitness=2.0
    iteration = 0
 
    while(best_fitness > 0.0):
        print(f"running {iteration} iteration")
        if(startfile):
            population = my_evolver.run(ngen=1, startfile=startfile)
        else:
            population = my_evolver.run(ngen=1)
            
        #Get the best algorithm so far
        params = my_evolver.hof[0]

        #Generate mask of best so far.
        seg = workflow(paramlist=params)
        mydata = seg.pipe(mydata)
        
        fitness = mydata.fitness
        if (fitness < best_fitness):
            best_fitness = fitness
            print(f"\n\n\n\nIteration {iteration} Finess Improved to {fitness}")
            my_evolver.writepop(population, filename="checkpoint.pop")
            imageio.imwrite(best_mask_file,mydata.mask);
            GeneticSearch.write_algo_vector(fpop_file, f"[{iteration}, {fitness}, {params}]\n") 
            ###TODO Output [fitness, seg]
        iteration += 1
コード例 #2
0
def test_mutate():
    """Unit test for mutate function. Checks output type and checks test individual
     to see if mutation took place successfully."""
    copy_child = ['FB', 0, 0, 984, 0.09, 92, 0, 0, 0, 0, 0, 0, 0, 0, 0,\
     (1, 2), 0, "checkerboard", "checkerboard", 0, 0, 0, 0, 0, 0]
    all_vals = []
    params = Segmentors.parameters()
    for key in params.pkeys:
        all_vals.append(eval(params.ranges[key]))
    assert isinstance(GeneticSearch.mutate(copy_child, all_vals, 0.5, True), list)
    assert GeneticSearch.mutate(copy_child, all_vals, 0.5, True) ==\
     ['FB', 1390, 0.173, 984, 0.09, 9927, 587, 0, 0.55, 0, 0, 0, 0, 1000, 0,\
      (1, 2), 0, 'disk', 'checkerboard', 9, 2907, -47, (0.0, 0.0, 0.0), 0, 0]
コード例 #3
0
ファイル: RunSearch.py プロジェクト: colbrydi/see-segment
def continuous_search(input_file, 
                      input_mask, 
                      startfile=None,
                      checkpoint='checkpoint.txt',
                      best_mask_file="temp_mask.png",
                      pop_size=10):
    """Run genetic search continuously.
    
    input_file: the original image
    input_mask: the ground truth mask for the image
    pop_size: the size of the population
    Runs indefinitely unless a perfect value (0.0) is reached.
    """
    mydata = base_classes.pipedata()
    mydata.img = imageio.imread(input_file)
    mydata.gmask = imageio.imread(input_mask)

    pname = Path(input_file)
    outfile=pname.parent.joinpath(f"_{pname.stem}.txt")
    mask_file = pname.parent.joinpath(f"{pname.stem}_bestsofar.png")
    
    #TODO: Read this file in and set population first
    workflow.addalgos([colorspace, segmentor, segment_fitness])
    wf = workflow()
    
    my_evolver = GeneticSearch.Evolver(workflow, mydata, pop_size=pop_size)
    population = my_evolver.newpopulation()
    best_fitness=2.0
    if outfile.exists():
        inlist, fitness=read_pop(outfile)
        for fit in fitness:
            if fit < best_fitness:
                best_fitness = fit
        previous_pop = my_evolver.copy_pop_list(inlist)
        if len(previous_pop) > len(population):
            population = previous_pop[:-len(population)]
        else:
            for index, ind in enumerate(previous_pop):
                population[index] = ind
        print(f"######### Done importing previous list {best_fitness}")

    iteration = 0

    while best_fitness > 0.0:
        print(f"running {iteration} iteration")
        population = my_evolver.run(ngen=1,population=population)
            
        #Get the best algorithm so far
        best_so_far = my_evolver.hof[0]
        fitness = best_so_far.fitness.values[0]
        if (fitness < best_fitness):
            best_fitness = fitness
            print(f"\n\n\n\nIteration {iteration} Finess Improved to {fitness}")

            #Generate mask of best so far.
            seg = workflow(paramlist=best_so_far)
            mydata = seg.pipe(mydata)
            imageio.imwrite(mask_file,mydata.mask);
            write_vector(f"{outfile}", f"[{iteration}, {fitness}, {best_so_far}]") 
        iteration += 1
コード例 #4
0
    def monitor(self):
        html_path = os.path.join(os.getcwd(), "web_pages", "monitor.html")
        
        if self.best_fit != -1:
            # If there is a segmentor then display the images segmentation
            img = imageio.imread(self.rgb_filename)
            gmask = imageio.imread(self.label_filename)

            print(self.best_ind["params"])
            self.best_ind["params"]
            seg = Segmentors.algoFromParams(self.best_ind["params"])
            mask = seg.evaluate(img)

            static_dir = os.path.join(os.getcwd(), "public")
            imageio.imwrite(os.path.join(static_dir, "mask.jpg"), mask)

            code = GeneticSearch.print_best_algorithm_code(self.best_ind["params"])

            # Calculate progress bar precentage
            percentage = (1 - self.best_ind["fitness"]) * 100
            
            rounded_fitness = float("{0:.2f}".format(self.best_ind["fitness"]))

            data = ["", code, self.best_ind["params"], rounded_fitness, percentage]
        else:
            data = ['style="display:none;"', "", "", "",""]

        return fill_html_template(html_path, data)
コード例 #5
0
def test_newpopulation():
    """Unit test for newpopulation function. Checks the type and length of
     the new population."""
    img = np.zeros((20, 20, 3))
    img[4:10, 4:10, :] = 1
    mask = img[:, :, 0]
    evolv = GeneticSearch.Evolver(img, mask)
    assert isinstance(evolv.tool.population(), list)
    assert len(evolv.tool.population()) == 10
コード例 #6
0
def test_mutate():
    """Unit test for mutate function. Checks type and length of the
     new population after mutation."""
    img = np.zeros((20, 20, 3))
    img[4:10, 4:10, :] = 1
    mask = img[:, :, 0]
    evolv = GeneticSearch.Evolver(img, mask)
    tpop = evolv.mutate(evolv.tool.population())
    assert isinstance(tpop, list)
    assert len(tpop) == 10
コード例 #7
0
 def runsearch(self):
     img = imageio.imread(
         "Image_data/Coco_2017_unlabeled//rgbd_plant/rgb_00_000_00.png")
     gmask = imageio.imread(
         "Image_data/Coco_2017_unlabeled/rgbd_new_label/label_00_000_000.png"
     )
     if len(gmask.shape) > 2:
         gmask = color.rgb2gray(gmask)
     ee = GeneticSearch.Evolver(img, gmask)
     ee.run(self.GENERATIONS)
コード例 #8
0
def test_run():
    """Unit test for run function. Checks the type and length of the final population,
     and checks that the population evolved."""
    img = np.zeros((20, 20, 3))
    img[4:10, 4:10, :] = 1
    mask = img[:, :, 0]
    evolv = GeneticSearch.Evolver(img, mask)
    start_pop = evolv.tool.population()
    final_pop = evolv.run()
    assert isinstance(final_pop, list)
    assert len(final_pop) == 10
    assert final_pop != start_pop
コード例 #9
0
def test_nextgen():
    """Unit test for nextgen function. Checks the type and length of the new population,
     and checks that the population is evolving."""
    img = np.zeros((20, 20, 3))
    img[4:10, 4:10, :] = 1
    mask = img[:, :, 0]
    evolv = GeneticSearch.Evolver(img, mask)
    pop = evolv.tool.population()
    tpop = evolv.mutate(pop)
    assert isinstance(tpop, list)
    assert len(tpop) == 10
    assert tpop != pop
コード例 #10
0
def test_popfitness():
    """Unit test for popfitness function. Checks the type and length of the fitness
     values and population."""
    img = np.zeros((20, 20, 3))
    img[4:10, 4:10, :] = 1
    mask = img[:, :, 0]
    evolv = GeneticSearch.Evolver(img, mask)
    fits, tpop = evolv.popfitness(evolv.tool.population())
    assert isinstance(fits, list)
    assert len(fits) == 10
    assert isinstance(tpop, list)
    assert len(tpop) == 10
コード例 #11
0
def test_skimageCrossRandom():
    """Unit test for skimageCrossRandom function. Checks test individuals to see if crossover
     took place successfully."""
    np1 = ['FB', 0, 0, 984, 0.09, 92, 0, 0, 0, 0, 0, 0, 0, 0, 0,\
     (1, 2), 0, "checkerboard", "checkerboard", 0, 0, 0, 0, 0, 0]
    np2 = ['CT', 0, 0, 0, 0, 0, 0, 0, 8, 10, 12, 0, 0, 0, 0,\
     (1, 2), 0, "checkerboard", "checkerboard", 0, 0, 0, 0, 0, 0]
    new_np1, new_np2 = GeneticSearch.skimageCrossRandom(np1, np2)
    assert new_np1 == ['FB', 0, 0, 984, 0.09, 92, 0, 0, 8, 0, 0, 0, 0, 0, 0,\
     (1, 2), 0, 'checkerboard', 'checkerboard', 0, 0, 0, 0, 0, 0]
    assert new_np2 == ['CT', 0, 0, 0, 0, 0, 0, 0, 0, 10, 12, 0, 0, 0, 0,\
     (1, 2), 0, 'checkerboard', 'checkerboard', 0, 0, 0, 0, 0, 0]
コード例 #12
0
def test_twoPointCopy():
    """Unit test for twoPointCopy function. Checks test individuals to see
     if copy took place successfully."""
    np1 = ['FB', 0, 0, 984, 0.09, 92, 0, 0, 0, 0, 0, 0, 0, 0, 0,\
     (1, 2), 0, "checkerboard", "checkerboard", 0, 0, 0, 0, 0, 0]
    np2 = ['CT', 0, 0, 0, 0, 0, 0, 0, 8, 10, 12, 0, 0, 0, 0,\
     (1, 2), 0, "checkerboard", "checkerboard", 0, 0, 0, 0, 0, 0]
    new_np1, new_np2 = GeneticSearch.twoPointCopy(np1, np2, True)
    assert new_np1 == ['FB', 0, 0, 984, 0.09, 92, 0, 0, 0, 0, 0, 0, 0, 0, 0,\
     (1, 2), 0, 'checkerboard', 'checkerboard', 0, 0, 0, 0, 0, 0]
    assert new_np2 == ['CT', 0, 0, 0, 0, 0, 0, 0, 8, 10, 12, 0, 0, 0, 0,\
     (1, 2), 0, 'checkerboard', 'checkerboard', 0, 0, 0, 0, 0, 0]
コード例 #13
0
 def runsearch(self):
     img = imageio.imread(
         'Image_data/Coco_2017_unlabeled//rgbd_plant/rgb_00_000_00.png')
     gmask = imageio.imread(
         'Image_data/Coco_2017_unlabeled/rgbd_new_label/label_00_000_000.png'
     )
     if len(gmask.shape) > 2:
         gmask = color.rgb2gray(gmask)
     ee = GeneticSearch.Evolver(img, gmask)
     #ee.run(self.GENERATIONS)
     population = ee.run(self.GENERATIONS,
                         startfile="0_checkpoint.json",
                         checkpoint="2_checkpoint.json")
コード例 #14
0
def test_newpopulation():
    """Unit test for newpopulation function. Checks the type and length of
     the new population."""
    img = np.zeros((20, 20, 3))
    img[4:10, 4:10, :] = 1
    mask = img[:, :, 0]

    data = base_classes.pipedata()
    data.img = img
    data.gmask = mask
    data.fitness = 2
    evolv = GeneticSearch.Evolver(Segmentors.segmentor, data, pop_size=10)
    assert isinstance(evolv.tool.population(), list)
    assert len(evolv.tool.population()) == 10
コード例 #15
0
def test_mutate():
    """Unit test for mutate function. Checks type and length of the
     new population after mutation."""
    img = np.zeros((20, 20, 3))
    img[4:10, 4:10, :] = 1
    mask = img[:, :, 0]

    data = base_classes.pipedata()
    data.img = img
    data.gmask = mask
    evolv = GeneticSearch.Evolver(Segmentors.segmentor, data, pop_size=10)
    tpop = evolv.mutate(evolv.tool.population())
    assert isinstance(tpop, list)
    assert len(tpop) == 10
コード例 #16
0
def test_nextgen():
    """Unit test for nextgen function. Checks the type and length of the new population,
     and checks that the population is evolving."""
    img = np.zeros((20, 20, 3))
    img[4:10, 4:10, :] = 1
    mask = img[:, :, 0]

    data = base_classes.pipedata()
    data.img = img
    data.gmask = mask
    evolv = GeneticSearch.Evolver(Segmentors.segmentor, data, pop_size=10)
    pop = evolv.tool.population()
    tpop = evolv.mutate(pop)
    assert isinstance(tpop, list)
    assert len(tpop) == 10
    assert tpop != pop
コード例 #17
0
def test_print_best_algorithm_code():
    """Unit test for print_best_algorithm_code function.
     Checks function output matches method contents it's printing."""
    individual = ['FB', 0, 0, 984, 0.09, 92, 0, 0, 0, 0, 0, 0, 0, 0, 0,\
     (1, 2), 0, "checkerboard", "checkerboard", 0, 0, 0, 0, 0, 0]
    print_statement = "multichannel = False\n\
if len(img.shape) > 2:\n\
    multichannel = True\n\
output = skimage.segmentation.felzenszwalb(\n\
    img,\n\
    984,\n\
    0.09,\n\
    92,\n\
    multichannel=multichannel,\n\
)\n"
    assert GeneticSearch.print_best_algorithm_code(individual) == print_statement
コード例 #18
0
def continuous_search(input_file,
                      input_mask,
                      startfile='',
                      checkpoint='checkpoint.txt',
                      best_mask_file="temp_mask.png",
                      pop_size=10):

    img = imageio.imread(input_file)
    gmask = imageio.imread(input_mask)

    fid_out = open(f"{input_file}.txt", "w+")

    #TODO: Read this file in and set population first

    #Run the search
    my_evolver = GeneticSearch.Evolver(img, gmask, pop_size=pop_size)

    best_fitness = 2.0
    iteration = 0

    while (best_fitness > 0.0):
        print(f"running {iteration} iteration")
        if (startfile):
            population = my_evolver.run(ngen=1, startfile=None)
            startfile = None
        else:
            population = my_evolver.run(ngen=1)

        #Get the best algorithm so far
        params = my_evolver.hof[0]

        #Generate mask of best so far.
        seg = Segmentors.algoFromParams(params)
        mask = seg.evaluate(img)

        fitness = Segmentors.FitnessFunction(mask, gmask)[0]
        if (fitness < best_fitness):
            best_fitness = fitness
            print(
                f"\n\n\n\nIteration {iteration} Finess Improved to {fitness}")
            my_evolver.writepop(population, filename="checkpoint.pop")
            #imageio.imwrite(best_mask_file,mask);
            fid_out.write(f"[{iteration}, {fitness}, {params}]\n")
            fid_out.flush()
            ###TODO Output [fitness, seg]
        iteration += 1
コード例 #19
0
def test_run():
    """Unit test for run function. Checks the type and length of the final population,
     and checks that the population evolved."""
    img = np.zeros((20, 20, 3))
    img[4:10, 4:10, :] = 1
    mask = img[:, :, 0]

    data = base_classes.pipedata()
    data.img = img
    data.gmask = mask
    data.fitness = 2
    evolv = GeneticSearch.Evolver(Segmentors.segmentor, data, pop_size=10)
    start_pop = evolv.tool.population()
    final_pop = evolv.run()
    assert isinstance(final_pop, list)
    assert len(final_pop) == 10
    assert final_pop != start_pop
コード例 #20
0
def conduct_genetic_search(img, gmask, num_gen, pop_size):
    """
    Note: this task could be sped up by
    rewriting it to send the evaluation and fitness function
    calls to other workers as tasks.
    """

    # Only needed on some images
    # Convert the RGB 3-channel image into a 1-channel image
    # gmask = (np.sum(gmask, axis=2) > 0)

    download_and_store_image(img)
    download_and_store_image(gmask)

    img = imageio.imread(get_path(img))
    gmask = imageio.imread(get_path(gmask))

    my_evolver = GeneticSearch.Evolver(img, gmask, pop_size=pop_size)

    # Conduct the genetic search
    population = None

    for _ in range(num_gen):

        # if population is uninitialized
        if population is None:
            population = my_evolver.run(ngen=1)
        else:
            # Simulate a generation and store population in population variable
            population = my_evolver.run(ngen=1, population=population)

        # Take the best segmentor from the hof and use it to segment the rgb image
        seg = Segmentors.algoFromParams(my_evolver.hof[0])
        mask = seg.evaluate(img)

        # Calculate and print the fitness value of the segmentor
        fitness = Segmentors.FitnessFunction(mask, gmask)[0]
        params = my_evolver.hof[0]

    # Combine data into a single object
    data = {}
    data["fitness"] = fitness
    data["params"] = params

    return data
コード例 #21
0
args = parser.parse_args()
print(args)

random.seed(args.seed)

logging.basicConfig(stream=sys.stdout, level=logging.ERROR)
#logging.basicConfig(stream=sys.stdout, level=logging.INFO)

img = imageio.imread(args.image)
gmask = imageio.imread(args.mask)

if len(gmask.shape) > 2:
    gmask = color.rgb2gray(gmask)

ee = GeneticSearch.Evolver(img, gmask, pop_size=args.pop)
ee.run(args.generations, checkpoint=args.checkpointfile)

seg = Segmentors.algoFromParams(ee.hof[0])
mask = seg.evaluate(img)

imageio.imwrite(args.outputfolder+"file.jpg", mask)

fitness,_ = Segmentors.FitnessFunction(mask,gmask)
print(f"{fitness} {ee.hof[0]}")





コード例 #22
0
NUM_GENERATIONS = args.num_gen
NUM_TRIALS = args.num_trials
POP_SIZE = args.pop_size

print("Running {} Dataset".format(ds_name))
print("GA running for {} generations with population size of {}".format(
    NUM_GENERATIONS, POP_SIZE))
print("Size of dataset: {}".format(len(X)))
print("Size of training set: {}".format(len(pipeline_dataset.training_set.y)))
print("Size of testing set: {}".format(len(pipeline_dataset.testing_set.y)))
print("\n")

# Initialize Algorithm Space and Workflow
Classifier.use_tutorial_space()

# Check algorithm space
algorithm_space = Classifier.algorithmspace
print("Algorithm Space: ")
print(list(algorithm_space.keys()))
print("\n")

workflow.addalgos([Classifier, ClassifierFitness])
wf = workflow()

for i in range(NUM_TRIALS):
    print("Running trial number {}".format(i))
    my_evolver = GeneticSearch.Evolver(workflow,
                                       pipeline_dataset,
                                       pop_size=POP_SIZE)
    my_evolver.run(ngen=NUM_GENERATIONS, print_raw_data=True)
コード例 #23
0
def test_make_toolbox():
    """Unit test for makeToolbox function. Checks that a toolbox of the
     correct size was made."""
    assert GeneticSearch.makeToolbox(
        10, Segmentors.segmentor).population.keywords['n'] == 10
コード例 #24
0
    while download_status != 0:
        print("Download failed retrying in", download_delay, "second(s)")
        time.sleep(download_delay)
        download_status = os.system(get_rgb)
        download_status = download_status + os.system(get_label)

    # Load the images
    img = imageio.imread(rgb_filename)
    gmask = imageio.imread(label_filename)

    # Only needed on some images
    # Convert the RGB 3-channel image into a 1-channel image
    # gmask = (np.sum(gmask, axis=2) > 0)

    # Create an evolver
    my_evolver = GeneticSearch.Evolver(img, gmask, pop_size=pop_size)

    # Conduct the genetic search
    population = None

    for i in range(num_gen):

        # if population is uninitialized
        if population is None:
            population = my_evolver.run(ngen=1)
        else:
            # Simulate a generation and store population in population variable
            population = my_evolver.run(ngen=1, population=population)

        # Take the best segmentor from the hof and use it to segment the rgb image
        seg = Segmentors.algoFromParams(my_evolver.hof[0])
コード例 #25
0
    # datasets[i] = helpers.generate_train_test_set(
    #    temp.training_set.X, temp.training_set.y
    # )
    datasets[i] = helpers.generate_train_test_set(ds.X, ds.y)
    datasets[i].name = ds.name
    temp = helpers.generate_train_test_set(ds.X, ds.y, random_state=31)
    validation_sets.append(temp)


NUM_GENERATIONS = args.num_gen
POP_SIZE = args.pop_size
hof_per_dataset = []

for ds in datasets:
    print("Running {} Dataset".format(ds.name))
    my_evolver = GeneticSearch.Evolver(workflow, ds, pop_size=POP_SIZE)
    my_evolver.run(
        ngen=NUM_GENERATIONS,
        # print_fitness_to_file=True,
        print_fitness_to_file=True,
        print_fitness_filename="{}_fitness_{}.csv".format(
            ds.name, args.filename_tail),
    )
    # Store the best solution found for each dataset
    hof_per_dataset.append(my_evolver.hof)

top_n = 5
for i, hof in enumerate(hof_per_dataset):
    top_inds = hof[:top_n]
    print('----------------\n')
    for ind in top_inds:
コード例 #26
0
def update_code_display(n_intevals, currently_displayed_code):
    if has_results():
        return GeneticSearch.print_best_algorithm_code(best_ind["params"])
    else:
        return currently_displayed_code