コード例 #1
0
    def _set_env_attr(self, env, player_id, attr_chain, value):
        """Allows us to set an arbitrary attribute of the environment, e.g. attr_chain can be unwrapped.foo.bar"""
        assert player_id == self.player_id

        attrs = attr_chain.split('.')
        curr_attr = env
        try:
            for attr_name in attrs[:-1]:
                curr_attr = getattr(curr_attr, attr_name)
        except AttributeError:
            log.error('Env does not have an attribute %s', attr_chain)

        attr_to_set = attrs[-1]
        setattr(curr_attr, attr_to_set, value)
コード例 #2
0
    def reset(self):
        self._ensure_initialized()

        if self.record_to is not None and not self.is_multiplayer:
            # does not work in multiplayer (uses different mechanism)
            if not os.path.exists(self.record_to):
                os.makedirs(self.record_to)

            demo_path = self.demo_path(self._num_episodes)
            log.warning('Recording episode demo to %s', demo_path)
            self.game.new_episode(demo_path)
        else:
            if self._num_episodes > 0:
                # no demo recording (default)
                self.game.new_episode()

        self.state = self.game.get_state()
        img = None
        try:
            img = self.state.screen_buffer
        except AttributeError:
            # sometimes Doom does not return screen buffer at all??? Rare bug
            pass

        if img is None:
            log.error(
                'Game returned None screen buffer! This is not supposed to happen!'
            )
            img = self._black_screen()

        # Swap current and previous histogram
        if self.current_histogram is not None and self.previous_histogram is not None:
            swap = self.current_histogram
            self.current_histogram = self.previous_histogram
            self.previous_histogram = swap
            self.current_histogram.fill(0)

        self._actions_flattened = None
        self._last_episode_info = copy.deepcopy(self._prev_info)
        self._prev_info = None

        self._num_episodes += 1

        return np.transpose(img, (1, 2, 0))
コード例 #3
0
    def _selected_weapon_rewards(self, selected_weapon, selected_weapon_ammo,
                                 deltas):
        # we must keep the weapon ready for a certain number of frames to get rewards
        unholstered = len(self.selected_weapon) > 4 and all(
            sw == selected_weapon for sw in self.selected_weapon)
        reward = 0.0

        if selected_weapon_ammo > 0 and unholstered:
            try:
                reward = self.reward_shaping_scheme['selected_weapon'][
                    f'SELECTED{weapon}']
            except KeyError:
                log.error('%r', self.reward_shaping_scheme)
                log.error('%r', selected_weapon)
            weapon_key = f'weapon{selected_weapon}'
            deltas.append((weapon_key, reward))
            self.reward_structure[weapon_key] = self.reward_structure.get(
                weapon_key, 0.0) + reward

        return reward
コード例 #4
0
def read_seeds_file(filename, has_keys):
    seeds = []

    with open(filename, 'r') as seed_file:
        lines = seed_file.readlines()
        for line in lines:
            try:
                if has_keys:
                    seed, cache_key = line.split(' ')
                else:
                    seed = line

                seed = int(seed)
                seeds.append(seed)
            except Exception:
                log.error(
                    'Could not read seed value from the file! File potentially corrupted'
                )
                log.exception('Exception when reading seeds file')

    return seeds
コード例 #5
0
    def sample(self, proc_idx):
        # workers should ignore Ctrl+C because the termination is handled in the event loop by a special msg
        signal.signal(signal.SIGINT, signal.SIG_IGN)

        timing = Timing()

        psutil.Process().nice(10)

        num_envs = len(DMLAB30_LEVELS_THAT_USE_LEVEL_CACHE)
        assert self.cfg.num_workers % num_envs == 0, f'should have an integer number of workers per env, e.g. {1 * num_envs}, {2 * num_envs}, etc...'
        assert self.cfg.num_envs_per_worker == 1, 'use populate_cache with 1 env per worker'

        with timing.timeit('env_init'):
            env_key = 'env'
            env_desired_num_levels = 0

            global_env_id = proc_idx * self.cfg.num_envs_per_worker
            env_config = AttrDict(worker_index=proc_idx,
                                  vector_index=0,
                                  env_id=global_env_id)
            env = create_env(self.cfg.env, cfg=self.cfg, env_config=env_config)
            env.seed(global_env_id)

            # this is to track the performance for individual DMLab levels
            if hasattr(env.unwrapped, 'level_name'):
                env_key = env.unwrapped.level_name
                env_level = env.unwrapped.level

                approx_num_episodes_per_1b_frames = DMLAB30_APPROX_NUM_EPISODES_PER_BILLION_FRAMES[
                    env_key]
                num_billions = DESIRED_TRAINING_LENGTH / int(1e9)
                num_workers_for_env = self.cfg.num_workers // num_envs
                env_desired_num_levels = int(
                    (approx_num_episodes_per_1b_frames * num_billions) /
                    num_workers_for_env)

                env_num_levels_generated = len(
                    dmlab_level_cache.DMLAB_GLOBAL_LEVEL_CACHE[0].
                    all_seeds[env_level]) // num_workers_for_env

                log.warning('Worker %d (env %s) generated %d/%d levels!',
                            proc_idx, env_key, env_num_levels_generated,
                            env_desired_num_levels)
                time.sleep(4)

            env.reset()
            env_uses_level_cache = env.unwrapped.env_uses_level_cache

            self.report_queue.put(dict(proc_idx=proc_idx, finished_reset=True))

        self.start_event.wait()

        try:
            with timing.timeit('work'):
                last_report = last_report_frames = total_env_frames = 0
                while not self.terminate.value and total_env_frames < self.cfg.sample_env_frames_per_worker:
                    action = env.action_space.sample()
                    with timing.add_time(f'{env_key}.step'):
                        env.step(action)

                    total_env_frames += 1

                    with timing.add_time(f'{env_key}.reset'):
                        env.reset()
                        env_num_levels_generated += 1
                        log.debug('Env %s done %d/%d resets', env_key,
                                  env_num_levels_generated,
                                  env_desired_num_levels)

                    if env_num_levels_generated >= env_desired_num_levels:
                        log.debug('%s finished %d/%d resets, sleeping...',
                                  env_key, env_num_levels_generated,
                                  env_desired_num_levels)
                        time.sleep(30)  # free up CPU time for other envs

                    # if env does not use level cache, there is no need to run it
                    # let other workers proceed
                    if not env_uses_level_cache:
                        log.debug('Env %s does not require cache, sleeping...',
                                  env_key)
                        time.sleep(200)

                    with timing.add_time('report'):
                        now = time.time()
                        if now - last_report > self.report_every_sec:
                            last_report = now
                            frames_since_last_report = total_env_frames - last_report_frames
                            last_report_frames = total_env_frames
                            self.report_queue.put(
                                dict(proc_idx=proc_idx,
                                     env_frames=frames_since_last_report))

                            if get_free_disk_space_mb() < 3 * 1024:
                                log.error('Not enough disk space! %d',
                                          get_free_disk_space_mb())
                                time.sleep(200)
        except:
            log.exception('Unknown exception')
            log.error('Unknown exception in worker %d, terminating...',
                      proc_idx)
            self.report_queue.put(dict(proc_idx=proc_idx, crash=True))

        time.sleep(proc_idx * 0.1 + 0.1)
        log.info('Process %d finished sampling. Timing: %s', proc_idx, timing)

        env.close()