コード例 #1
0
    def find_path(self, environment: GridEnvironment, start: Tuple[int, int],
                  end: Tuple[int, int]) -> Union[List[Tuple[int, int]], None]:
        # Use heapq;the thread safety provided by ProrityQueue is not needed, as we only exec on a single thread
        open = []
        heappush(open, (0, start))
        closed = {start: None}
        costs = np.full(environment.grid.shape, np.inf)
        costs[start[0], start[1]] = 0

        while open:
            node = heappop(open)[1]
            if node == end:
                import matplotlib.pyplot as mpl
                mpl.matshow(costs)
                mpl.show()
                return self._reconstruct_path(end, closed, environment.grid)

            current_cost = costs[node[0], node[1]]
            for neighbour in environment.get_neighbours(node):
                x, y = neighbour[1], neighbour[0]
                cost = current_cost + environment.f_cost(node, neighbour)
                if costs[y, x] > cost:
                    costs[y, x] = cost
                    heappush(
                        open,
                        (cost + self.heuristic(neighbour, end), neighbour))
                    closed[neighbour] = node
        return None
コード例 #2
0
    def find_path(self, environment: GridEnvironment, start: Tuple[int, int],
                  end: Tuple[int, int]) -> Union[List[Tuple[int, int]], None]:
        if not environment.diagonals:
            raise ValueError('JPS relies on a grid environment with diagonals')

        self.environment = environment
        self._max_y, self._max_x = self.environment.grid.shape[
            0] - 1, self.environment.grid.shape[1] - 1
        self.goal = end

        # Use heapq;the thread safety provided by ProrityQueue is not needed, as we only exec on a single thread
        open = []
        heappush(open, (0, start))
        closed = {start: None}
        costs = np.full(environment.grid.shape, np.inf)
        costs[start[0], start[1]] = 0
        # if __debug__:
        #     debug_heuristic_cost = np.full(environment.grid.shape, np.inf)

        while open:
            node = heappop(open)[1]
            if node == end:
                # if __debug__:
                #     import matplotlib.pyplot as mpl
                #     mpl.matshow(costs)
                #     mpl.matshow(debug_heuristic_cost)
                #     mpl.show()
                return self._reconstruct_path(end, closed, environment.grid)

            cy, cx = node[0], node[1]
            current_cost = costs[cy, cx]
            successors = []
            for neighbour in environment.get_neighbours(node):
                dx, dy = neighbour[1] - cx, neighbour[0] - cy
                jumpPoint = self._jump(cy, cx, dy, dx)
                if jumpPoint:
                    successors.append(jumpPoint)

            for successor in successors:
                x, y = successor[1], successor[0]
                cost = current_cost + environment.f_cost(node, successor)
                if costs[y, x] > cost:
                    costs[y, x] = cost
                    h = self.heuristic(successor, end)
                    heappush(open, (cost + h, successor))
                    closed[successor] = node
                    # if __debug__:
                    #     debug_heuristic_cost[y, x] = h
        return None
コード例 #3
0
    def find_path(self, environment: GridEnvironment, start: Node, end: Node) -> Union[
        List[Node], None]:
        if not environment.diagonals:
            raise ValueError('JPS relies on a grid environment with diagonals')
        if self.heuristic_env_hash != hash(environment):
            raise ValueError("Risk based heuristic and algorithm should have the same environment")

        global max_y, max_x

        grid = environment.grid
        max_y, max_x = grid.shape[0] - 1, grid.shape[1] - 1
        self.goal = end

        # Check if start and goal are the same
        if start == end:
            return [start]

        # Use heapq;the thread safety provided by ProrityQueue is not needed, as we only exec on a single thread
        open = [start]
        start.f = start.g = start.h = 0
        open_cost = {start: start.f}
        closed = set()

        for neighbour in environment.get_neighbours(start):
            heappush(open, neighbour)
            closed[neighbour] = start
            neighbour = self.heuristic(start, neighbour)

        while open:

            node = heappop(open)

            if node == end:
                return _reconstruct_path(end, grid)

            parent = closed[node]
            py, px = parent[0], parent[1]
            cy, cx = node[0], node[1]
            current_cost = costs[cy, cx]
            dy, dx = np.clip(cy - py, -1, 1), np.clip(cx - px, -1, 1)
            ny, nx = cy + dy, cx + dx
            # If the next node is not passable, the current node will be a dead end
            if not is_passable(grid, ny, nx):
                continue
            jump_points = jump(grid, cy, cx, dy, dx, self.goal[0], self.goal[1], grid[ny, nx], self.jump_gap,
                               self.jump_limit, 0)

            for node_vals in jump_points:
                if (node_vals == -1).all():
                    continue
                x, y = node_vals[0], node_vals[1]
                successor = (y, x)
                cost = current_cost + self.heuristic(node, successor)
                if costs[y, x] > cost:
                    costs[y, x] = cost
                    h = self.heuristic(successor.position, end.position)
                    heappush(open, (cost + h, successor))
                    closed[successor] = node

        return None
コード例 #4
0
    def find_path(self, environment: GridEnvironment, start: Node, end: Node, k=1, smooth=True, **kwargs) -> Union[
        List[Node], None]:
        grid = environment.grid

        # Use heapq;the thread safety provided by PriorityQueue is not needed, as we only exec on a single thread
        open = [start]
        start.f = start.g = start.h = 0
        open_cost = {start: start.f}
        closed = set()

        while open:
            node = heappop(open)
            if node in open_cost:
                open_cost.pop(node)
            if node in closed:
                continue
            closed.add(node)
            if node == end:
                return _reconstruct_path(node, grid, smooth=smooth)

            current_cost = node.f
            for neighbour in environment.get_neighbours(node):
                cost = current_cost + grid[neighbour.position]
                if cost < neighbour.g:
                    neighbour.g = cost
                    h = abs((node.position[0] - end.position[0])) + abs((node.position[1] - end.position[1]))
                    neighbour.h = h
                    neighbour.f = cost + (k * h)
                    neighbour.parent = node
                    if neighbour not in open_cost or neighbour.f < open_cost[neighbour]:
                        heappush(open, neighbour)
                        open_cost[neighbour] = neighbour.f

        return None
コード例 #5
0
def make(min_lat, max_lat, min_lon, max_lon, start_lat, start_lon, end_lat,
         end_lon, aircraft, failure_prob, output_path, resolution, hour,
         altitude, airspeed, wind_direction, wind_speed, algo, algo_args):
    """
    Path minimising the fatality risk posed.

    Generate a path minimising the fatality risk posed by a specified aircraft in the specified
    bounds. The path is output as a GeoJSON file in the form of a LineString of EPSG:4326 coordinates in (lon, lat) order
    from start to end.

    If an aircraft config json file is not specified, a default aircraft with reasonable parameters is used.

    All coordinates should be in decimal degrees and form a non degenerate polygon.

    """
    bounds = make_bounds_polygon((min_lon, max_lon), (min_lat, max_lat))
    pop_grid = _make_pop_grid(bounds, hour, resolution)
    if not aircraft:
        aircraft = _setup_default_aircraft()
    else:
        aircraft = _import_aircraft(aircraft)
    strike_grid, v_is = _make_strike_grid(aircraft, airspeed, altitude,
                                          failure_prob, pop_grid, resolution,
                                          wind_direction, wind_speed)
    res = _make_fatality_grid(aircraft, strike_grid, v_is)

    raster_shape = res.shape
    raster_indices = dict(Longitude=np.linspace(min_lon,
                                                max_lon,
                                                num=raster_shape[0]),
                          Latitude=np.linspace(min_lat,
                                               max_lat,
                                               num=raster_shape[1]))
    start_x, start_y = snap_coords_to_grid(raster_indices, start_lon,
                                           start_lat)
    end_x, end_y = snap_coords_to_grid(raster_indices, end_lon, end_lat)

    env = GridEnvironment(res, diagonals=False)
    if algo == 'ra*':
        algo = RiskGridAStar()
    elif algo == 'ga':
        raise NotImplementedError("GA CLI not implemented yet")
        algo = GeneticAlgorithm([], **algo_args)
    path = algo.find_path(env, Node((start_x, start_y)), Node((end_x, end_y)))

    if not path:
        print('Path not found')
        return 1

    snapped_path = []
    for node in path:
        lat = raster_indices['Latitude'][node.position[1]]
        lon = raster_indices['Longitude'][node.position[0]]
        snapped_path.append((lon, lat))
    snapped_path = sg.LineString(snapped_path)
    dataframe = gpd.GeoDataFrame({
        'geometry': [snapped_path]
    }).set_crs('EPSG:4326')
    dataframe.to_file(os.path.join(output_path, f'path.geojson'),
                      driver='GeoJSON')
コード例 #6
0
    def annotate(self,
                 data: List[gpd.GeoDataFrame],
                 raster_data: Tuple[Dict[str, np.array], np.array],
                 resolution=30,
                 **kwargs) -> Geometry:

        raster_grid = np.flipud(raster_data[1])

        start_x, start_y = snap_coords_to_grid(raster_data[0],
                                               self.start_coord[1],
                                               self.start_coord[0])
        end_x, end_y = snap_coords_to_grid(raster_data[0], self.end_coord[1],
                                           self.end_coord[0])

        if raster_grid[start_y, start_x] < 0:
            print('Start node in blocked area, path impossible')
            return None
        elif raster_grid[end_y, end_x] < 0:
            print('End node in blocked area, path impossible')
            return None

        env = GridEnvironment(raster_grid, diagonals=False)
        algo = self.algo(
            heuristic=self.heuristic(env, risk_to_dist_ratio=self.rdr))
        t0 = time()
        if isinstance(algo, RiskThetaStar):
            self.path = algo.find_path(env,
                                       Node((start_y, start_x)),
                                       Node((end_y, end_x)),
                                       thres=self.thresh)
        elif isinstance(algo, RiskGridAStar):
            self.path = algo.find_path(env, Node((start_y, start_x)),
                                       Node((end_y, end_x)))
        if self.path is None:
            print("Path not found")
            return None
        else:
            print('Path generated in ', time() - t0)

        # mpl.matshow(raster_data[1], cmap='jet')
        # mpl.colorbar()
        # mpl.plot([n.x for n in path], [n.y for n in path], color='red')
        # mpl.title(
        #     f'Costmap \n Start (x,y):({snapped_start_lon_idx}, {snapped_start_lat_idx})'
        #     f'\n End (x,y):({snapped_end_lon_idx}, {snapped_end_lat_idx})')
        # mpl.show()

        snapped_path = []
        for node in self.path:
            lat = raster_data[0]['Latitude'][node.position[0]]
            lon = raster_data[0]['Longitude'][node.position[1]]
            snapped_path.append((lon, lat))

        snapped_path = sg.LineString(snapped_path)
        self.dataframe = gpd.GeoDataFrame({
            'geometry': [snapped_path]
        }).set_crs('EPSG:4326')
        return gv.Contours(self.dataframe).opts(line_width=4,
                                                line_color='magenta')
コード例 #7
0
class GridEnvironmentNoDiagonalsNoPruningTestCase(unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        self.small_environment = GridEnvironment(SMALL_TEST_GRID,
                                                 diagonals=False)
        self.large_environment = GridEnvironment(LARGE_TEST_GRID,
                                                 diagonals=False)

    def test_grid_to_graph(self):
        self.maxDiff = None
        graph = self.small_environment._generate_graph()
        self.assertEqual(len(graph),
                         SMALL_TEST_GRID.shape[0] * SMALL_TEST_GRID.shape[1],
                         "Graph has wrong length")

    def test_large_graph_gen(self):
        graph = self.large_environment._generate_graph()
        pass
コード例 #8
0
    def annotate(self,
                 data: List[gpd.GeoDataFrame],
                 raster_data: Tuple[Dict[str, np.array], np.array],
                 resolution=20,
                 **kwargs) -> Geometry:

        raster_grid = raster_data[1] * resolution**2

        start_x, start_y = snap_coords_to_grid(raster_data[0],
                                               self.start_coords[1],
                                               self.start_coords[0])
        end_x, end_y = snap_coords_to_grid(raster_data[0], self.end_coords[1],
                                           self.end_coords[0])

        if raster_grid[start_y, start_x] < 0:
            print('Start node in blocked area, path impossible')
            return None
        elif raster_grid[end_y, end_x] < 0:
            print('End node in blocked area, path impossible')
            return None

        env = GridEnvironment(raster_grid, diagonals=False)
        algo = self.algo(
            heuristic=self.heuristic(env, risk_to_dist_ratio=self.rdr))
        t0 = time()
        path = algo.find_path(env, (start_y, start_x), (end_y, end_x))
        if path is None:
            print("Path not found")
            return None
        else:
            print('Path generated in ', time() - t0)

        # mpl.matshow(raster_data[1], cmap='jet')
        # mpl.colorbar()
        # mpl.plot([n.x for n in path], [n.y for n in path], color='red')
        # mpl.title(
        #     f'Costmap \n Start (x,y):({snapped_start_lon_idx}, {snapped_start_lat_idx})'
        #     f'\n End (x,y):({snapped_end_lon_idx}, {snapped_end_lat_idx})')
        # mpl.show()

        snapped_path = []
        for node in path:
            lat = raster_data[0]['Latitude'][node[0]]
            lon = raster_data[0]['Longitude'][node[1]]
            snapped_path.append((lon, lat))

        snapped_path = sg.LineString(snapped_path)
        self.dataframe = gpd.GeoDataFrame({
            'geometry': [snapped_path]
        }).set_crs('EPSG:4326')
        self.endpoint = self.dataframe.iloc[0].geometry.coords[-1]

        return super(PathfindingLayer, self).annotate(data, raster_data,
                                                      **kwargs)
コード例 #9
0
 def generate_path_data_popup(self, layer):
     from seedpod_ground_risk.pathfinding.environment import GridEnvironment
     from seedpod_ground_risk.ui_resources.info_popups import DataWindow
     from seedpod_ground_risk.layers.fatality_risk_layer import FatalityRiskLayer
     for dlayer in self.data_layers:
         if isinstance(
                 dlayer,
                 FatalityRiskLayer) and layer.aircraft == dlayer.ac_dict:
             cur_layer = GridEnvironment(
                 self._generated_data_layers[dlayer.key][1])
             grid = cur_layer.grid
             popup = DataWindow(layer, grid)
             popup.exec()
             break
コード例 #10
0
    def find_path(self, environment: GridEnvironment, start: Node, end: Node, k=0.9, smooth=True, **kwargs) -> Union[
        List[Node], None]:
        grid = environment.grid
        min_dist = 2 ** 0.5
        goal_val = grid[end.position]

        # Use heapq;the thread safety provided by PriorityQueue is not needed, as we only exec on a single thread
        open = [start]
        start.f = start.g = start.h = 0
        open_cost = {start: start.f}
        closed = set()

        while open:
            node = heappop(open)
            if node in open_cost:
                open_cost.pop(node)
            if node in closed:
                continue
            closed.add(node)
            if node == end:
                return _reconstruct_path(node, grid, smooth=smooth)

            current_cost = node.f
            node_val = grid[node.position]
            for neighbour in environment.get_neighbours(node):
                cost = current_cost \
                       + (((grid[neighbour.position] + node_val) / 2)
                          * (((node.position[1] - neighbour.position[1]) ** 2 + (
                                node.position[0] - neighbour.position[0]) ** 2) ** 0.5))
                if cost < neighbour.g:
                    neighbour.g = cost

                    dist = ((node.position[1] - end.position[1]) ** 2 + (
                            node.position[0] - end.position[0]) ** 2) ** 0.5
                    line = skline(node.position[1], node.position[0], end.position[1], end.position[0])
                    min_val = grid[line[0], line[1]].min()
                    node_val = grid[node.position]
                    h = k * ((((node_val + goal_val) / 2) * min_dist) + ((dist - min_dist) * min_val))

                    # h = self.heuristic(neighbour.position, end.position)
                    neighbour.h = h
                    neighbour.f = cost + h
                    neighbour.parent = node
                    if neighbour not in open_cost or neighbour.f < open_cost[neighbour]:
                        heappush(open, neighbour)
                        open_cost[neighbour] = neighbour.f

        return None
コード例 #11
0
    def find_path(self, environment: GridEnvironment, start: Tuple[int, int],
                  end: Tuple[int, int]) -> Union[List[Tuple[int, int]], None]:
        # Use heapq;the thread safety provided by ProrityQueue is not needed, as we only exec on a single thread
        open = [(0, start)]
        # heappush(open, (0, start))
        closed = {start: None}
        costs = np.full(environment.grid.shape, np.inf)
        costs[start[0], start[1]] = 0
        # if __debug__:
        #     debug_heuristic_cost = np.full(environment.grid.shape, np.inf)

        while open:
            node = heappop(open)[1]
            if node == end:
                # if __debug__:
                #     import matplotlib.pyplot as mpl
                #     mpl.matshow(costs)
                #     mpl.title('R A* g cost (start to node)')
                #     mpl.colorbar()
                #     # mpl.matshow(debug_heuristic_cost)
                #     # mpl.title('R A* h cost (node to goal)')
                #     # mpl.colorbar()
                #     mpl.show()
                return self._reconstruct_path(end, closed, environment.grid)

            current_cost = costs[node[0], node[1]]
            for neighbour in environment.get_neighbours(node):
                x, y = neighbour[1], neighbour[0]
                cost = current_cost + self.heuristic(node, neighbour)
                if costs[y, x] > cost:
                    costs[y, x] = cost
                    h = self.heuristic(neighbour, end)
                    heappush(open, (cost + h, neighbour))
                    closed[neighbour] = node
                    # if __debug__:
                    #     debug_heuristic_cost[y, x] = h

        # import matplotlib.pyplot as mpl
        # mpl.matshow(costs)
        # mpl.title('R A* g cost (start to node)')
        # mpl.colorbar()
        # mpl.matshow(debug_heuristic_cost)
        # mpl.title('R A* h cost (node to goal)')
        # mpl.colorbar()
        # mpl.show()

        return None
コード例 #12
0
    def find_path(self,
                  environment: GridEnvironment,
                  start: Node,
                  end: Node,
                  smooth=False,
                  k=1,
                  thres=3e-8,
                  method=np.mean,
                  **kwargs) -> Union[List[Node], None]:
        grid = environment.grid
        self.risk_threshold = thres
        self.cost_method = method
        self.max_cost = grid.max()
        self.max_dist = np.sqrt((grid.shape[0]**2) + (grid.shape[1]**2))

        # Use heapq;the thread safety provided by PriorityQueue is not needed, as we only exec on a single thread
        open = [start]
        start.f = start.g = start.h = 0
        start.parent = start
        open_cost = {start: self._euc_dist(start, end)}
        closed = set()

        while open:
            node = heappop(open)
            if node in open_cost:
                open_cost.pop(node)
            else:
                continue
            closed.add(node)
            if node == end:
                return _reconstruct_path(node, grid, smooth=smooth)

            for neighbour in environment.get_neighbours(node):
                if neighbour in closed:
                    continue
                cost, parent = self._calc_cost(neighbour, node, grid)
                if neighbour in open_cost and cost < neighbour.g:
                    del open_cost[neighbour]
                neighbour.g = cost
                neighbour.parent = parent
                neighbour.f = cost + (k * self._euc_dist(neighbour, node))
                heappush(open, neighbour)
                open_cost[neighbour] = neighbour.f

        return None
コード例 #13
0
    def find_path(self, environment: GridEnvironment, start: Node, end: Node) -> Union[
        List[Node], None]:
        if not environment.diagonals:
            raise ValueError('JPS relies on a grid environment with diagonals')

        self.environment = environment
        grid = environment.grid
        self._max_y, self._max_x = self.environment.grid.shape[0] - 1, self.environment.grid.shape[1] - 1
        self.goal = end

        # Use heapq;the thread safety provided by ProrityQueue is not needed, as we only exec on a single thread
        open = [start]
        start.f = start.g = start.h = 0
        open_cost = {start: start.f}
        closed = set()

        while open:
            node = heappop(open)
            open_cost.pop(node)
            if node in closed:
                continue
            closed.add(node)
            if node == end:
                return _reconstruct_path(end, grid)

            current_cost = node.f
            cy, cx = node.position
            successors = []
            for neighbour in environment.get_neighbours(node):
                dx, dy = neighbour.position[1] - cx, neighbour.position[0] - cy
                jump_point = self._jump(cy, cx, dy, dx)
                if jump_point:
                    successors.append(Node(jump_point))

            for successor in successors:
                cost = current_cost + grid[successor.position]
                if cost < successor.g:
                    successor.g = cost
                    h = self.heuristic(successor.position, end.position)
                    successor.h = h
                    successor.f = h + cost
                    if successor not in open_cost or successor.f < open_cost[successor]:
                        heappush(open, successor)
                        open_cost[successor] = successor.f
        return None
コード例 #14
0
 def setUp(self) -> None:
     super().setUp()
     self.env = GridEnvironment(SMALL_TEST_GRID)
     self.heuristic = EuclideanRiskHeuristic(self.env, risk_to_dist_ratio=1)
コード例 #15
0
def make_path(cost_grid,
              bounds_poly,
              start_latlon,
              end_latlon,
              algo='rt*',
              pathwise_cost=False,
              **kwargs):
    from seedpod_ground_risk.path_analysis.utils import snap_coords_to_grid
    from seedpod_ground_risk.pathfinding.environment import GridEnvironment, Node
    import shapely.geometry as sg

    raster_shape = cost_grid.shape
    min_lat, min_lon, max_lat, max_lon = bounds_poly.bounds
    start_lat, start_lon = start_latlon
    end_lat, end_lon = end_latlon
    raster_indices = dict(Longitude=np.linspace(min_lon,
                                                max_lon,
                                                num=raster_shape[0]),
                          Latitude=np.linspace(max_lat,
                                               min_lat,
                                               num=raster_shape[1]))
    start_x, start_y = snap_coords_to_grid(raster_indices, start_lon,
                                           start_lat)
    end_x, end_y = snap_coords_to_grid(raster_indices, end_lon, end_lat)

    if cost_grid[start_y, start_x] < 0:
        raise ValueError('Start node in blocked area, path impossible')
    elif cost_grid[end_y, end_x] < 0:
        raise ValueError('End node in blocked area, path impossible')

    env = GridEnvironment(cost_grid, diagonals=False)
    if algo == 'ra*2':
        from seedpod_ground_risk.pathfinding.a_star import RiskGridAStar
        algo = RiskGridAStar()
    elif algo == 'ra*':
        from seedpod_ground_risk.pathfinding.a_star import RiskAStar
        algo = RiskAStar()
    elif algo == 'rt*':
        from seedpod_ground_risk.pathfinding.theta_star import RiskThetaStar
        algo = RiskThetaStar()
    elif algo == 'ga':
        from functools import partial
        from seedpod_ground_risk.pathfinding.moo_ga import fitness_min_risk
        from seedpod_ground_risk.pathfinding.moo_ga import fitness_min_manhattan_length
        from seedpod_ground_risk.pathfinding.moo_ga import GeneticAlgorithm
        max_dist = np.sqrt((cost_grid.shape[0]**2) + (cost_grid.shape[1]**2))
        fitness_funcs = [
            partial(fitness_min_risk, cost_grid, cost_grid.max()),
            partial(fitness_min_manhattan_length, max_dist)
        ]
        fitness_weights = [1e11, 1]
        algo = GeneticAlgorithm(fitness_funcs, fitness_weights)
    path = algo.find_path(env, Node((start_y, start_x)), Node((end_y, end_x)),
                          **kwargs)

    if not path:
        print('Path not found')
        return None

    snapped_path = []
    for node in path:
        lat = raster_indices['Latitude'][min(node.position[0],
                                             raster_shape[1] - 1)]
        lon = raster_indices['Longitude'][min(node.position[1],
                                              raster_shape[0] - 1)]
        snapped_path.append((lon, lat))
    lla_path = sg.LineString(snapped_path)

    if pathwise_cost:
        path_cost = []
        for idx in range(len(path[:-1])):
            n0 = path[idx].position
            n1 = path[idx + 1].position
            l = line(n0[0], n0[1], n1[0], n1[1])
            path_cost.append(cost_grid[l[0], l[1]])
        return lla_path, path, np.hstack(path_cost)
    else:
        return lla_path
コード例 #16
0
 def setUp(self) -> None:
     super().setUp()
     self.small_environment = GridEnvironment(SMALL_TEST_GRID,
                                              diagonals=False)
     self.large_environment = GridEnvironment(LARGE_TEST_GRID,
                                              diagonals=False)