def prepareData(images_mask, images_raw): inputArray = [] expectedArray = [] for file in os.listdir(images_raw): testImage = Image.open(images_raw + file) testMask = Image.open(images_mask + file.split(".")[0] + ".jpg") for augmented in augmentImage(testImage, "", applyGrayscale=False, printGeneratedLists=False): image = augmented[1] image = padImage(image, (IMG_WIDTH, IMG_HEIGHT)) inputValue = img_to_array(image) inputValue /= 255 inputArray.append(inputValue) for augmentedMask in augmentImage(testMask, "", applyGrayscale=False, isMask=True, printGeneratedLists=False): image = padImage(augmentedMask[1], (IMG_WIDTH, IMG_HEIGHT)) expectedOutput = img_to_array(image) expectedOutput /= 255 expectedArray.append(expectedOutput) inputArray = numpy.array(inputArray) expectedArray = numpy.array(expectedArray) return expectedArray, inputArray
def predict(imagePath): imageList = os.listdir(imagePath) for imageName in imageList: img_path = imagePath + imageName x = image.img_to_array(padImage(image.load_img(img_path), (256, 256))) x /= 255 x = np.expand_dims(x, axis=0) predict = model.predict(x) predict[0] *= 255 array_to_img(predict[0]).show()