def main(): global args, logger args = get_parser().parse_args() logger = get_logger() # os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.gpu) logger.info(args) assert args.classes > 1 assert args.zoom_factor in [1, 2, 4, 8] assert (args.crop_h - 1) % 8 == 0 and (args.crop_w - 1) % 8 == 0 assert args.split in ['train', 'val', 'test'] logger.info("=> creating model ...") logger.info("Classes: {}".format(args.classes)) value_scale = 255 mean = [0.485, 0.456, 0.406] mean = [item * value_scale for item in mean] std = [0.229, 0.224, 0.225] std = [item * value_scale for item in std] train_transform = transforms.Compose([ transforms.RandScale([0.5, 2]), transforms.RandRotate([-10, 10], padding=mean, ignore_label=args.ignore_label), transforms.RandomGaussianBlur(), transforms.RandomHorizontalFlip(), transforms.Crop([args.crop_h, args.crop_w], crop_type='rand', padding=mean, ignore_label=args.ignore_label), transforms.ToTensor()]) val_transform = transforms.Compose([transforms.Crop([args.crop_h, args.crop_w], crop_type='center', padding=mean, ignore_label=args.ignore_label), transforms.ToTensor()]) val_data1 = datasets.SegData(split='train', data_root=args.data_root, data_list=args.val_list1, transform=val_transform) val_loader1 = torch.utils.data.DataLoader(val_data1, batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True) from pspnet import PSPNet model = PSPNet(backbone = args.backbone, layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, use_softmax=False, use_aux=False, pretrained=False, syncbn=False).cuda() logger.info(model) # model = torch.nn.DataParallel(model).cuda() model = model.cuda() cudnn.enabled = True cudnn.benchmark = True if os.path.isfile(args.model_path): logger.info("=> loading checkpoint '{}'".format(args.model_path)) checkpoint = torch.load(args.model_path) # model.load_state_dict(checkpoint['state_dict'], strict=False) # logger.info("=> loaded checkpoint '{}'".format(args.model_path)) pretrained_dict = {k.replace('module.',''): v for k, v in checkpoint['state_dict'].items()} dict1 = model.state_dict() model.load_state_dict(pretrained_dict, strict=False) else: raise RuntimeError("=> no checkpoint found at '{}'".format(args.model_path)) cv2.setNumThreads(0) validate(val_loader1, val_data1.data_list, model, args.classes, mean, std, args.base_size1, args.crop_h, args.crop_w, args.scales)
def main(): global args, logger, writer args = get_parser().parse_args() import multiprocessing as mp if mp.get_start_method(allow_none=True) != 'spawn': mp.set_start_method('spawn', force=True) rank, world_size = dist_init(args.port) logger = get_logger() writer = SummaryWriter(args.save_path) #os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.gpu) #if len(args.gpu) == 1: # args.syncbn = False if rank == 0: logger.info(args) assert args.classes > 1 assert args.zoom_factor in [1, 2, 4, 8] assert (args.crop_h-1) % 8 == 0 and (args.crop_w-1) % 8 == 0 assert args.net_type in [0, 1, 2, 3] if args.bn_group == 1: args.bn_group_comm = None else: assert world_size % args.bn_group == 0 args.bn_group_comm = simple_group_split(world_size, rank, world_size // args.bn_group) if rank == 0: logger.info("=> creating model ...") logger.info("Classes: {}".format(args.classes)) if args.net_type == 0: from pspnet import PSPNet model = PSPNet(backbone=args.backbone, layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, syncbn=args.syncbn, group_size=args.bn_group, group=args.bn_group_comm).cuda() elif args.net_type in [1, 2, 3]: from pspnet_div4 import PSPNet model = PSPNet(backbone=args.backbone, layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, syncbn=args.syncbn, group_size=args.bn_group, group=args.bn_group_comm, net_type=args.net_type).cuda() logger.info(model) # optimizer = torch.optim.SGD(model.parameters(), args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay) # newly introduced layer with lr x10 if args.net_type == 0: optimizer = torch.optim.SGD( [{'params': model.layer0.parameters()}, {'params': model.layer1.parameters()}, {'params': model.layer2.parameters()}, {'params': model.layer3.parameters()}, {'params': model.layer4.parameters()}, {'params': model.ppm.parameters(), 'lr': args.base_lr * 10}, {'params': model.conv6.parameters(), 'lr': args.base_lr * 10}, {'params': model.conv1_1x1.parameters(), 'lr': args.base_lr * 10}, {'params': model.cls.parameters(), 'lr': args.base_lr * 10}, {'params': model.aux.parameters(), 'lr': args.base_lr * 10}], lr=args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay) elif args.net_type == 1: optimizer = torch.optim.SGD( [{'params': model.layer0.parameters()}, {'params': model.layer1.parameters()}, {'params': model.layer2.parameters()}, {'params': model.layer3.parameters()}, {'params': model.layer4.parameters()}, {'params': model.layer4_p.parameters()}, {'params': model.ppm.parameters(), 'lr': args.base_lr * 10}, {'params': model.ppm_p.parameters(), 'lr': args.base_lr * 10}, {'params': model.cls.parameters(), 'lr': args.base_lr * 10}, {'params': model.cls_p.parameters(), 'lr': args.base_lr * 10}, {'params': model.aux.parameters(), 'lr': args.base_lr * 10}], lr=args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay) elif args.net_type == 2: optimizer = torch.optim.SGD( [{'params': model.layer0.parameters()}, {'params': model.layer1.parameters()}, {'params': model.layer2.parameters()}, {'params': model.layer3.parameters()}, {'params': model.layer4.parameters()}, {'params': model.layer4_p.parameters()}, {'params': model.ppm.parameters(), 'lr': args.base_lr * 10}, {'params': model.ppm_p.parameters(), 'lr': args.base_lr * 10}, {'params': model.cls.parameters(), 'lr': args.base_lr * 10}, {'params': model.cls_p.parameters(), 'lr': args.base_lr * 10}, {'params': model.att.parameters(), 'lr': args.base_lr * 10}, {'params': model.att_p.parameters(), 'lr': args.base_lr * 10}, {'params': model.aux.parameters(), 'lr': args.base_lr * 10}], lr=args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay) elif args.net_type == 3: optimizer = torch.optim.SGD( [{'params': model.layer0.parameters()}, {'params': model.layer1.parameters()}, {'params': model.layer2.parameters()}, {'params': model.layer3.parameters()}, {'params': model.layer4.parameters()}, {'params': model.layer4_p.parameters()}, {'params': model.ppm.parameters(), 'lr': args.base_lr * 10}, {'params': model.ppm_p.parameters(), 'lr': args.base_lr * 10}, {'params': model.cls.parameters(), 'lr': args.base_lr * 10}, {'params': model.cls_p.parameters(), 'lr': args.base_lr * 10}, {'params': model.att.parameters(), 'lr': args.base_lr * 10}, {'params': model.aux.parameters(), 'lr': args.base_lr * 10}], lr=args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay) fcw = V11RFCN() fcw_model = torch.load('checkpoint_e8.pth')['state_dict'] fcw_dict = fcw.state_dict() pretrained_fcw = {k: v for k, v in fcw_model.items() if k in fcw_dict} fcw_dict.update(pretrained_fcw) fcw.load_state_dict(fcw_dict) #fcw = DistModule(fcw) #print(fcw) fcw = fcw.cuda() #model = torch.nn.DataParallel(model).cuda() model = DistModule(model) #if args.syncbn: # from lib.syncbn import patch_replication_callback # patch_replication_callback(model) cudnn.enabled = True cudnn.benchmark = True criterion = nn.NLLLoss(ignore_index=args.ignore_label).cuda() if args.weight: def map_func(storage, location): return storage.cuda() if os.path.isfile(args.weight): logger.info("=> loading weight '{}'".format(args.weight)) checkpoint = torch.load(args.weight, map_location=map_func)['state_dict'] checkpoint = {k: v for k, v in checkpoint.items() if 'ppm' not in k} model_dict = model.state_dict() model_dict.update(checkpoint) model.load_state_dict(model_dict) logger.info("=> loaded weight '{}'".format(args.weight)) else: logger.info("=> no weight found at '{}'".format(args.weight)) if args.resume: load_state(args.resume, model, optimizer) value_scale = 255 mean = [0.485, 0.456, 0.406] mean = [item * value_scale for item in mean] std = [0.229, 0.224, 0.225] std = [item * value_scale for item in std] train_transform = transforms.Compose([ transforms.RandScale([args.scale_min, args.scale_max]), #transforms.RandRotate([args.rotate_min, args.rotate_max], padding=mean, ignore_label=args.ignore_label), transforms.RandomGaussianBlur(), transforms.RandomHorizontalFlip(), transforms.Crop([args.crop_h, args.crop_w], crop_type='rand', padding=mean, ignore_label=args.ignore_label), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)]) train_data = datasets.SegData(split='train', data_root=args.data_root, data_list=args.train_list, transform=train_transform) train_sampler = DistributedSampler(train_data) train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=False, sampler=train_sampler) if args.evaluate: val_transform = transforms.Compose([ transforms.Crop([args.crop_h, args.crop_w], crop_type='center', padding=mean, ignore_label=args.ignore_label), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)]) val_data = datasets.SegData(split='val', data_root=args.data_root, data_list=args.val_list, transform=val_transform) val_loader = torch.utils.data.DataLoader(val_data, batch_size=args.batch_size_val, shuffle=False, num_workers=args.workers, pin_memory=True) for epoch in range(args.start_epoch, args.epochs + 1): loss_train, mIoU_train, mAcc_train, allAcc_train = train(train_loader, model, criterion, optimizer, epoch, args.zoom_factor, args.batch_size, args.aux_weight, fcw) if rank == 0: writer.add_scalar('loss_train', loss_train, epoch) writer.add_scalar('mIoU_train', mIoU_train, epoch) writer.add_scalar('mAcc_train', mAcc_train, epoch) writer.add_scalar('allAcc_train', allAcc_train, epoch) # write parameters histogram costs lots of time # for name, param in model.named_parameters(): # writer.add_histogram(name, param, epoch) if epoch % args.save_step == 0 and rank == 0: filename = args.save_path + '/train_epoch_' + str(epoch) + '.pth' logger.info('Saving checkpoint to: ' + filename) torch.save({'epoch': epoch, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict()}, filename) #if epoch / args.save_step > 2: # deletename = args.save_path + '/train_epoch_' + str(epoch - args.save_step*2) + '.pth' # os.remove(deletename) if args.evaluate: loss_val, mIoU_val, mAcc_val, allAcc_val = validate(val_loader, model, criterion, args.classes, args.zoom_factor) writer.add_scalar('loss_val', loss_val, epoch) writer.add_scalar('mIoU_val', mIoU_val, epoch) writer.add_scalar('mAcc_val', mAcc_val, epoch) writer.add_scalar('allAcc_val', allAcc_val, epoch)
def main(): global args, logger, writer args = get_parser().parse_args() logger = get_logger() writer = SummaryWriter(args.save_path) # os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.gpu) if args.dist: dist_init(args.port, backend=args.backend) if len(args.gpu) == 1: args.syncbn = False logger.info(args) assert args.classes > 1 assert args.zoom_factor in [1, 2, 4, 8] assert (args.crop_h - 1) % 8 == 0 and (args.crop_w - 1) % 8 == 0 world_size = 1 rank = 0 if args.dist: rank = dist.get_rank() world_size = dist.get_world_size() if rank == 0: logger.info('dist:{}'.format(args.dist)) logger.info("=> creating model ...") logger.info("Classes: {}".format(args.classes)) # rank = dist.get_rank() if args.bn_group > 1: args.syncbn = True bn_sync_stats = True bn_group_comm = simple_group_split(world_size, rank, world_size // args.bn_group) else: args.syncbn = False bn_sync_stats = False bn_group_comm = None model = PSPNet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, syncbn=args.syncbn, group_size=args.bn_group, group=bn_group_comm, sync_stats=bn_sync_stats) if rank == 0: logger.info(model) # optimizer = torch.optim.SGD(model.parameters(), args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay) # newly introduced layer with lr x10 optimizer = torch.optim.SGD([{ 'params': model.layer0.parameters() }, { 'params': model.layer1.parameters() }, { 'params': model.layer2.parameters() }, { 'params': model.layer3.parameters() }, { 'params': model.layer4.parameters() }, { 'params': model.ppm.parameters(), 'lr': args.base_lr * 10 }, { 'params': model.cls.parameters(), 'lr': args.base_lr * 10 }, { 'params': model.aux.parameters(), 'lr': args.base_lr * 10 }], lr=args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay) # model = torch.nn.DataParallel(model).cuda() # if args.syncbn: # from lib.syncbn import patch_replication_callback # patch_replication_callback(model) model = model.cuda() cudnn.enabled = True cudnn.benchmark = True criterion = nn.NLLLoss(ignore_index=args.ignore_label) if args.weight: def map_func(storage, location): return storage.cuda() if os.path.isfile(args.weight): logger.info("=> loading weight '{}'".format(args.weight)) checkpoint = torch.load(args.weight, map_location=map_func) model.load_state_dict(checkpoint['state_dict']) logger.info("=> loaded weight '{}'".format(args.weight)) else: logger.info("=> no weight found at '{}'".format(args.weight)) if args.resume: if os.path.isfile(args.resume): logger.info("=> loading checkpoint '{}'".format(args.resume)) # checkpoint = torch.load(args.resume) # args.start_epoch = checkpoint['epoch'] # model.load_state_dict(checkpoint['state_dict']) # optimizer.load_state_dict(checkpoint['optimizer']) model, optimizer, args.start_epoch = restore_from( model, optimizer, args.resume) logger.info("=> loaded checkpoint '{}' (epoch {})".format( args.resume, args.start_epoch)) else: logger.info("=> no checkpoint found at '{}'".format(args.resume)) if args.dist: broadcast_params(model) value_scale = 255 mean = [0.485, 0.456, 0.406] mean = [item * value_scale for item in mean] std = [0.229, 0.224, 0.225] std = [item * value_scale for item in std] train_transform = transforms.Compose([ transforms.RandScale([args.scale_min, args.scale_max]), transforms.RandRotate([args.rotate_min, args.rotate_max], padding=mean, ignore_label=args.ignore_label), transforms.RandomGaussianBlur(), transforms.RandomHorizontalFlip(), transforms.Crop([args.crop_h, args.crop_w], crop_type='rand', padding=mean, ignore_label=args.ignore_label), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) train_data = datasets.SegData(split='train', data_root=args.data_root, data_list=args.train_list, transform=train_transform) train_sampler = None if args.dist: train_sampler = DistributedSampler(train_data) train_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=False if train_sampler else True, num_workers=args.workers, pin_memory=False, sampler=train_sampler) if args.evaluate: val_transform = transforms.Compose([ transforms.Crop([args.crop_h, args.crop_w], crop_type='center', padding=mean, ignore_label=args.ignore_label), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) val_data = datasets.SegData(split='val', data_root=args.data_root, data_list=args.val_list, transform=val_transform) val_sampler = None if args.dist: val_sampler = DistributedSampler(val_data) val_loader = torch.utils.data.DataLoader( val_data, batch_size=args.batch_size_val, shuffle=False, num_workers=args.workers, pin_memory=False, sampler=val_sampler) for epoch in range(args.start_epoch, args.epochs + 1): loss_train, mIoU_train, mAcc_train, allAcc_train = train( train_loader, model, criterion, optimizer, epoch, args.zoom_factor, args.batch_size, args.aux_weight) writer.add_scalar('loss_train', loss_train.cpu().numpy(), epoch) writer.add_scalar('mIoU_train', mIoU_train, epoch) writer.add_scalar('mAcc_train', mAcc_train, epoch) writer.add_scalar('allAcc_train', allAcc_train, epoch) # write parameters histogram costs lots of time # for name, param in model.named_parameters(): # writer.add_histogram(name, param, epoch) if args.evaluate and rank == 0: loss_val, mIoU_val, mAcc_val, allAcc_val = validate( val_loader, model, criterion, args.classes, args.zoom_factor) writer.add_scalar('loss_val', loss_val.cpu().numpy(), epoch) writer.add_scalar('mIoU_val', mIoU_val, epoch) writer.add_scalar('mAcc_val', mAcc_val, epoch) writer.add_scalar('allAcc_val', allAcc_val, epoch) if epoch % args.save_step == 0 and (rank == 0): filename = args.save_path + '/train_epoch_' + str(epoch) + '.pth' logger.info('Saving checkpoint to: ' + filename) torch.save( { 'epoch': epoch, 'state_dict': model.cpu().state_dict(), 'optimizer': optimizer.state_dict() }, filename)
def main(): """Create the model and start the training.""" with open(args.config) as f: config = yaml.load(f) for k, v in config['common'].items(): setattr(args, k, v) mkdirs(osp.join("logs/"+args.exp_name)) logger = create_logger('global_logger', "logs/" + args.exp_name + '/log.txt') logger.info('{}'.format(args)) ############################## for key, val in vars(args).items(): logger.info("{:16} {}".format(key, val)) logger.info("random_scale {}".format(args.random_scale)) logger.info("is_training {}".format(args.is_training)) h, w = map(int, args.input_size.split(',')) input_size = (h, w) h, w = map(int, args.input_size_target.split(',')) input_size_target = (h, w) print(type(input_size_target[1])) cudnn.enabled = True args.snapshot_dir = args.snapshot_dir + args.exp_name tb_logger = SummaryWriter("logs/"+args.exp_name) ############################## #validation data h, w = map(int, args.input_size_test.split(',')) input_size_test = (h,w) h, w = map(int, args.com_size.split(',')) com_size = (h, w) h, w = map(int, args.input_size_crop.split(',')) input_size_crop = h,w h,w = map(int, args.input_size_target_crop.split(',')) input_size_target_crop = h,w test_normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) test_transform = transforms.Compose([ transforms.Resize((input_size_test[1], input_size_test[0])), transforms.ToTensor(), test_normalize]) valloader = data.DataLoader(cityscapesDataSet( args.data_dir_target, args.data_list_target_val, crop_size=input_size_test, set='train', transform=test_transform),num_workers=args.num_workers, batch_size=1, shuffle=False, pin_memory=True) with open('./dataset/cityscapes_list/info.json', 'r') as fp: info = json.load(fp) mapping = np.array(info['label2train'], dtype=np.int) label_path_list_val = args.label_path_list_val label_path_list_test = args.label_path_list_test label_path_list_test = './dataset/cityscapes_list/label.txt' gt_imgs_val = open(label_path_list_val, 'r').read().splitlines() gt_imgs_val = [osp.join(args.data_dir_target_val, x) for x in gt_imgs_val] testloader = data.DataLoader(cityscapesDataSet( args.data_dir_target, args.data_list_target_test, crop_size=input_size_test, set='val', transform=test_transform), num_workers=args.num_workers, batch_size=1, shuffle=False, pin_memory=True) gt_imgs_test = open(label_path_list_test ,'r').read().splitlines() gt_imgs_test = [osp.join(args.data_dir_target_test, x) for x in gt_imgs_test] name_classes = np.array(info['label'], dtype=np.str) interp_val = nn.Upsample(size=(com_size[1], com_size[0]),mode='bilinear', align_corners=True) #### #build model #### builder = ModelBuilder() net_encoder = builder.build_encoder( arch=args.arch_encoder, fc_dim=args.fc_dim, weights=args.weights_encoder) net_decoder = builder.build_decoder( arch=args.arch_decoder, fc_dim=args.fc_dim, num_class=args.num_classes, weights=args.weights_decoder, use_aux=True) model = SegmentationModule( net_encoder, net_decoder, args.use_aux) if args.num_gpus > 1: model = torch.nn.DataParallel(model) patch_replication_callback(model) model.cuda() nets = (net_encoder, net_decoder, None, None) optimizers = create_optimizer(nets, args) cudnn.enabled=True cudnn.benchmark=True model.train() mean=[0.485, 0.456, 0.406] std=[0.229, 0.224, 0.225] source_normalize = transforms_seg.Normalize(mean=mean, std=std) mean_mapping = [0.485, 0.456, 0.406] mean_mapping = [item * 255 for item in mean_mapping] if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) source_transform = transforms_seg.Compose([ transforms_seg.Resize([input_size[1], input_size[0]]), segtransforms.RandScale((args.scale_min, args.scale_max)), #segtransforms.RandRotate((args.rotate_min, args.rotate_max), padding=mean_mapping, ignore_label=args.ignore_label), #segtransforms.RandomGaussianBlur(), segtransforms.RandomHorizontalFlip(), segtransforms.Crop([input_size_crop[1], input_size_crop[0]], crop_type='rand', padding=mean_mapping, ignore_label=args.ignore_label), transforms_seg.ToTensor(), source_normalize]) target_normalize = transforms_seg.Normalize(mean=mean, std=std) target_transform = transforms_seg.Compose([ transforms_seg.Resize([input_size_target[1], input_size_target[0]]), segtransforms.RandScale((args.scale_min, args.scale_max)), #segtransforms.RandRotate((args.rotate_min, args.rotate_max), padding=mean_mapping, ignore_label=args.ignore_label), #segtransforms.RandomGaussianBlur(), segtransforms.RandomHorizontalFlip(), segtransforms.Crop([input_size_target_crop[1], input_size_target_crop[0]],crop_type='rand', padding=mean_mapping, ignore_label=args.ignore_label), transforms_seg.ToTensor(), target_normalize]) trainloader = data.DataLoader( GTA5DataSet(args.data_dir, args.data_list, max_iters=args.num_steps * args.iter_size * args.batch_size, crop_size=input_size, transform = source_transform), batch_size=args.batch_size, shuffle=True, num_workers=1, pin_memory=True) trainloader_iter = enumerate(trainloader) targetloader = data.DataLoader(fake_cityscapesDataSet(args.data_dir_target, args.data_list_target, max_iters=args.num_steps * args.iter_size * args.batch_size, crop_size=input_size_target, set=args.set, transform=target_transform), batch_size=args.batch_size, shuffle=True, num_workers=1, pin_memory=True) targetloader_iter = enumerate(targetloader) # implement model.optim_parameters(args) to handle different models' lr setting criterion_seg = torch.nn.CrossEntropyLoss(ignore_index=255,reduce=False) interp_target = nn.Upsample(size=(input_size_target[1], input_size_target[0]), align_corners=True, mode='bilinear') # labels for adversarial training source_label = 0 target_label = 1 optimizer_encoder, optimizer_decoder, optimizer_disc, optimizer_reconst = optimizers batch_time = AverageMeter(10) loss_seg_value1 = AverageMeter(10) is_best_test = True best_mIoUs = 0 loss_seg_value2 = AverageMeter(10) loss_balance_value = AverageMeter(10) loss_pseudo_value = AverageMeter(10) bounding_num = AverageMeter(10) pseudo_num = AverageMeter(10) for i_iter in range(args.num_steps): # train G # don't accumulate grads in D end = time.time() _, batch = trainloader_iter.__next__() images, labels, _ = batch images = Variable(images).cuda(async=True) labels = Variable(labels).cuda(async=True) seg, aux_seg, loss_seg2, loss_seg1 = model(images, labels) loss_seg2 = torch.mean(loss_seg2) loss_seg1 = torch.mean(loss_seg1) loss = loss_seg2+args.lambda_seg*loss_seg1 #logger.info(loss_seg1.data.cpu().numpy()) loss_seg_value2.update(loss_seg2.data.cpu().numpy()) # train with target optimizer_encoder.zero_grad() optimizer_decoder.zero_grad() loss.backward() optimizer_encoder.step() optimizer_decoder.step() del seg, loss_seg2 _, batch = targetloader_iter.__next__() with torch.no_grad(): images, labels, _ = batch images = Variable(images).cuda(async=True) result = model(images, None) del result batch_time.update(time.time() - end) remain_iter = args.num_steps - i_iter remain_time = remain_iter * batch_time.avg t_m, t_s = divmod(remain_time, 60) t_h, t_m = divmod(t_m, 60) remain_time = '{:02d}:{:02d}:{:02d}'.format(int(t_h), int(t_m), int(t_s)) adjust_learning_rate(optimizer_encoder, i_iter, args.lr_encoder, args) adjust_learning_rate(optimizer_decoder, i_iter, args.lr_decoder, args) if i_iter % args.print_freq == 0: lr_encoder = optimizer_encoder.param_groups[0]['lr'] lr_decoder = optimizer_decoder.param_groups[0]['lr'] logger.info('exp = {}'.format(args.snapshot_dir)) logger.info('Iter = [{0}/{1}]\t' 'Time = {batch_time.avg:.3f}\t' 'loss_seg1 = {loss_seg1.avg:4f}\t' 'loss_seg2 = {loss_seg2.avg:.4f}\t' 'lr_encoder = {lr_encoder:.8f} lr_decoder = {lr_decoder:.8f}'.format( i_iter, args.num_steps, batch_time=batch_time, loss_seg1=loss_seg_value1, loss_seg2=loss_seg_value2, lr_encoder=lr_encoder, lr_decoder=lr_decoder)) logger.info("remain_time: {}".format(remain_time)) if not tb_logger is None: tb_logger.add_scalar('loss_seg_value1', loss_seg_value1.avg, i_iter) tb_logger.add_scalar('loss_seg_value2', loss_seg_value2.avg, i_iter) tb_logger.add_scalar('lr', lr_encoder, i_iter) ##### #save image result if i_iter % args.save_pred_every == 0 and i_iter != 0: logger.info('taking snapshot ...') model.eval() val_time = time.time() hist = np.zeros((19,19)) for index, batch in tqdm(enumerate(valloader)): with torch.no_grad(): image, name = batch output2, _ = model(Variable(image).cuda(), None) pred = interp_val(output2) del output2 pred = pred.cpu().data[0].numpy() pred = pred.transpose(1, 2, 0) pred = np.asarray(np.argmax(pred, axis=2), dtype=np.uint8) label = np.array(Image.open(gt_imgs_val[index])) #label = np.array(label.resize(com_size, Image. label = label_mapping(label, mapping) #logger.info(label.shape) hist += fast_hist(label.flatten(), pred.flatten(), 19) mIoUs = per_class_iu(hist) for ind_class in range(args.num_classes): logger.info('===>' + name_classes[ind_class] + ':\t' + str(round(mIoUs[ind_class] * 100, 2))) tb_logger.add_scalar(name_classes[ind_class] + '_mIoU', mIoUs[ind_class], i_iter) mIoUs = round(np.nanmean(mIoUs) *100, 2) if mIoUs >= best_mIoUs: is_best_test = True best_mIoUs = mIoUs else: is_best_test = False logger.info("current mIoU {}".format(mIoUs)) logger.info("best mIoU {}".format(best_mIoUs)) tb_logger.add_scalar('val mIoU', mIoUs, i_iter) tb_logger.add_scalar('val mIoU', mIoUs, i_iter) net_encoder, net_decoder, net_disc, net_reconst = nets save_checkpoint(net_encoder, 'encoder', i_iter, args, is_best_test) save_checkpoint(net_decoder, 'decoder', i_iter, args, is_best_test) model.train()