コード例 #1
0
def callRFC():
    ### Feature selection
    num_to_keep = 9
    my_features_list = select_k_best_features(my_dataset, features_list, num_to_keep)

    ### Make classier pipeline
    pipeline_rfc = Pipeline(steps=[
        ('classifier', RandomForestClassifier(random_state = 42))  
    ])

    parameters_rfc = {
        'classifier__max_features': ('sqrt', 1),
        'classifier__max_depth': np.arange(3, 8),
        'classifier__n_estimators' : (10, 20)
    }

    ### Grid search for the optimal parameters
    precision_n_recall(pipeline_rfc, parameters_rfc, my_dataset, my_features_list)

    clf = RandomForestClassifier(max_depth = 5, 
                                 max_features = 'sqrt', 
                                 n_estimators = 10, 
                                 random_state = 42)

    tester_prep(clf, my_dataset, my_features_list)
コード例 #2
0
def callSVC():
    ### Feature selection
    num_to_keep = 8
    my_features_list = select_k_best_features(my_dataset, features_list, num_to_keep)

    ### Make classier pipeline
    pipeline_svc = Pipeline(steps=[
            ('scaler', StandardScaler()),
            ('classifier', SVC(kernel = 'rbf', random_state = 42, class_weight = 'auto'))
    ])

    parameters_svc = {
        'classifier__gamma': 10.0 ** np.arange(-4, 0),
        'classifier__C': 10.0 ** np.arange(1, 5)
        }


    ### Grid search for the optimal parameters
    precision_n_recall(pipeline_svc, parameters_svc, my_dataset, my_features_list)

    clf = Pipeline(steps=[
            ('scaler', StandardScaler()),
            ('classifier', SVC(kernel = 'rbf', C = 1000, gamma = 0.0001, 
                               random_state = 42, class_weight = 'auto'))
    ])

    tester_prep(clf, my_dataset, my_features_list)
コード例 #3
0
def callNBC():
    ### Feature selection
    num_to_keep = 8
    my_features_list = select_k_best_features(my_dataset, features_list, num_to_keep)
    clf = GaussianNB()

    tester_prep(clf, my_dataset, my_features_list)
コード例 #4
0
def callLR():
    ### Feature selection
    num_to_keep = 16
    my_features_list = select_k_best_features(my_dataset, features_list, num_to_keep)

    ### Make classier pipeline
    pipeline_lrg = Pipeline(steps=[
            ('scaler', StandardScaler()),
            ('classifier', LogisticRegression(tol = 0.001, random_state = 42))
    ])

    parameters_lrg = {
        'classifier__penalty': ('l1', 'l2'),
        'classifier__C': 10.0 ** np.arange(-10, -3)
        }

    ### Grid search for the optimal parameters
    precision_n_recall(pipeline_lrg, parameters_lrg, my_dataset, my_features_list)

    clf = Pipeline(steps=[
            ('scaler', StandardScaler()),
            ('classifier', LogisticRegression(tol = 0.001, C = 10**-8, penalty = 'l2', 
                                              random_state = 42))
    ])

    tester_prep(clf, my_dataset, my_features_list)