コード例 #1
0
def gaussian_cnmf():
    print os.path.dirname(os.path.realpath(__file__))

    os.chdir(os.path.dirname(os.path.realpath(__file__)))

    data, labels = dataset_factory.dataset_factory(
        '../../../../dataset/ionosphere.mat',
        options={
            'data': 'data',
            'labels': 'labels'
        })

    print data
    k = np.unique(labels).size

    data = normalize_by_range(data, axis=0)
    vect_to_prove = [2**x for x in np.arange(-20, 25)]
    vector = generate_logarithm_vector_kernel(data,
                                              vect_to_prove,
                                              percentage=0.5)

    dt = [('key', 'S100'), ('value', 'S100')]
    arr = np.zeros((10, ), dtype=dt)

    arr[0]['value'] = str(k)
    arr[0]['key'] = 'k'
    arr[1]['value'] = "iter: " + str(3000)
    arr[1]['key'] = 'termination_criterion'
    arr[2]['value'] = 'random'
    arr[2]['key'] = 'initialization'
    arr[3]['value'] = '15'
    arr[3]['key'] = 'epocs'
    arr[4]['value'] = '1'
    arr[4]['key'] = 'clustering_accuracy'
    arr[5]['value'] = '1'
    arr[5]['key'] = 'purity'
    arr[6]['value'] = 'rbf'
    arr[6]['key'] = 'kernel'
    arr[7]['value'] = '1'
    arr[7]['key'] = 'param'
    arr[8]['value'] = str(vector)
    arr[8]['key'] = 'vect'

    def options(vect):

        option = {
            arr[0]['key']: int(arr[0]['value']),
            arr[1]['key']: {
                'iter': 3000
            },
            arr[2]['key']: arr[2]['value'],
            arr[3]['key']: int(arr[3]['value']),
            arr[4]['key']: int(arr[4]['value']),
            arr[5]['key']: int(arr[5]['value']),
            arr[6]['key']: arr[6]['value'],
            arr[7]['key']: int(arr[7]['value']),
            arr[8]['key']: vector
        }
        for i in vect:
            #define sigma
            option['param'] = i
            yield option

    option = {
        arr[0]['key']: int(arr[0]['value']),
        arr[1]['key']: {
            'iter': 3000
        },
        arr[2]['key']: arr[2]['value'],
        arr[3]['key']: int(arr[3]['value']),
        arr[4]['key']: int(arr[4]['value']),
        arr[5]['key']: int(arr[5]['value']),
        arr[6]['key']: arr[6]['value'],
        arr[7]['key']: int(arr[7]['value']),
        arr[8]['key']: vector
    }

    cnmf_experiment = CnmfExperiment(data, option)

    best_results_performance, results_performance = tunning_parameter_unsupervised_technique\
        (data, labels, cnmf_experiment, options(vector))

    import time
    ## dd/mm/yyyy format
    date = (time.strftime("%d%m%Y_%H-%M_"))

    np.save(
        str(date) + 'linear_cnmf', {
            'results_performance': results_performance,
            'best_results_performance': best_results_performance,
            'options': arr
        })
コード例 #2
0
option = {
    arr[0]['key']: int(arr[0]['value']),
    arr[1]['key']: {
        'iter': 1000
    },
    arr[2]['key']: arr[2]['value'],
    arr[3]['key']: int(arr[3]['value']),
    arr[4]['key']: int(arr[4]['value']),
    arr[5]['key']: int(arr[5]['value']),
    arr[6]['key']: arr[6]['value'],
    arr[7]['key']: int(arr[7]['value']),
    arr[8]['key']: vector,
    arr[9]['key']: int(arr[9]['value'])
}

cnmf_experiment = CnmfExperiment(data, option)

results_performance, last_results_performance, options_results_performance, \
    results_performance_tunning = contamination_experiment(
        data, contamination_data, labels, cnmf_experiment, options([1, 2, 3]), option)

import time
## dd/mm/yyyy format
date = (time.strftime("%d%m%Y_%H:%M_"))

np.save(
    str(date) + 'gaussian_cnmf', {
        'last_results_performance': last_results_performance,
        'results_performance': results_performance,
        'results_performance_tunning': results_performance_tunning,
        'options_results_performance': options_results_performance,