コード例 #1
0
class MyTestCase(unittest.TestCase):
    def setUp(self):
        self.sensor_model = SensorModel(map)
        self.particle = Particle(map)
        self.particle.x = 250
        self.particle.y = 250
        self.particle.theta = 0

    def test_plot(self):
        self.sensor_model.plot_model()

    def test_laser_state(self):
        (x, y, theta) = _laser_state(self.particle)
        self.assertEqual(x, 275)
        self.assertEqual(y, 250)
        self.assertEqual(theta, 0)
        self.particle.theta = -math.pi / 2
        (x, y, theta) = _laser_state(self.particle)
        self.assertEqual(x, 250)
        self.assertEqual(y, 225)
        self.assertEqual(theta, -math.pi / 2)

    def test_ray_cast(self):
        laser_state = _laser_state(self.particle)
        right = self.sensor_model._ray_cast(laser_state, -math.pi / 2)
        self.assertAlmostEqual(right, 250, places=0)  # should hit edge of map
        straight = self.sensor_model._ray_cast(laser_state, 0)
        self.assertAlmostEqual(
            straight, 225,
            places=0)  # should hit wall in front, minus 25 for laser offset
        left = self.sensor_model._ray_cast(laser_state, math.pi / 2)
        self.assertAlmostEqual(left, 750,
                               places=0)  # should hit edge of map on left
        left_diagonal = self.sensor_model._ray_cast(laser_state, math.pi / 4)
        self.assertAlmostEqual(left_diagonal,
                               225 / math.cos(math.pi / 4),
                               places=0)  # should hit wall off to left

    def test__get_probability(self):
        log_probabilities = []
        particle = Particle(map)
        particle.x = 250
        particle.y = 500
        particle.theta = 0
        for _ in range(0, 10):
            x = 200 + 10 * _
            ranges = []
            for i in range(-90, 91):
                side = abs(500.0 / (math.sin(i * math.pi / 180) + 0.000001))
                wall = abs((500.0 - x - 25) /
                           (math.cos(i * math.pi / 180) + 0.0000001))
                ranges.append(min(side, wall))
            log_probabilities.append(
                self.sensor_model.get_probability(particle, ranges))
        most_likely_reading = max(enumerate(log_probabilities),
                                  key=lambda x: x[1])[0]
        self.assertEqual(most_likely_reading, 5)
コード例 #2
0
class MyTestCase(unittest.TestCase):
    def setUp(self):
        self.sensor_model = SensorModel(map)
        self.particle = Particle(map)
        self.particle.x = 250
        self.particle.y = 250
        self.particle.theta = 0

    def test_plot(self):
        self.sensor_model.plot_model()

    def test_laser_state(self):
        (x, y, theta) = _laser_state(self.particle)
        self.assertEqual(x, 275)
        self.assertEqual(y, 250)
        self.assertEqual(theta, 0)
        self.particle.theta = -math.pi/2
        (x, y, theta) = _laser_state(self.particle)
        self.assertEqual(x, 250)
        self.assertEqual(y, 225)
        self.assertEqual(theta, -math.pi/2)

    def test_ray_cast(self):
        laser_state = _laser_state(self.particle)
        right = self.sensor_model._ray_cast(laser_state, -math.pi/2)
        self.assertAlmostEqual(right, 250, places=0)  # should hit edge of map
        straight = self.sensor_model._ray_cast(laser_state, 0)
        self.assertAlmostEqual(straight, 225, places=0)  # should hit wall in front, minus 25 for laser offset
        left = self.sensor_model._ray_cast(laser_state, math.pi/2)
        self.assertAlmostEqual(left, 750, places=0)  # should hit edge of map on left
        left_diagonal = self.sensor_model._ray_cast(laser_state, math.pi/4)
        self.assertAlmostEqual(left_diagonal, 225/math.cos(math.pi/4), places=0)  # should hit wall off to left

    def test__get_probability(self):
        log_probabilities = []
        particle = Particle(map)
        particle.x = 250
        particle.y = 500
        particle.theta = 0
        for _ in range(0, 10):
            x = 200 + 10*_
            ranges = []
            for i in range(-90, 91):
                side = abs(500.0/(math.sin(i*math.pi/180)+0.000001))
                wall = abs((500.0-x-25)/(math.cos(i*math.pi/180)+0.0000001))
                ranges.append(min(side, wall))
            log_probabilities.append(self.sensor_model.get_probability(particle, ranges))
        most_likely_reading = max(enumerate(log_probabilities), key=lambda x: x[1])[0]
        self.assertEqual(most_likely_reading, 5)
コード例 #3
0
class ParticleFilter(object):
    """
    This is the main particle filter object.
    """
    def __init__(self, map_file='../data/map/wean.dat'):
        self.map = Map(map_file)
        #self.map.display_gaussian([], 'Gaussian Blurred Map')
        self._number_particles = 1000
        self.particles = list()
        self._particle_probabilities = []
        for _ in range(0, self._number_particles):
            print 'Initializing particle', _
            particle = Particle(self.map)
            #particle.x = 4080 + np.random.normal(scale=35)
            #particle.y = 3980 + np.random.normal(scale=15)
            #particle.theta = math.pi + 0.1 + np.random.normal(scale=.1)
            self.particles.append(particle)
            self._particle_probabilities.append(1)
        self._motion_model = MotionModel(0.001, 0.001, 0.1, 0.1)
        self._sensor_model = SensorModel(self.map)
        self._ranges = []

    def log(self, file_handle):
        line = list()
        for particle in self.particles:
            loc = str(particle.x) + ',' + str(particle.y)
            line.append(loc)
        file_handle.write(';'.join(line))
        file_handle.write('\n')

    def display(self):
        self.map.display(self.particles, ranges=self._ranges)

    def update(self, line):
        """
        Update step.
        Reading is a single reading (i.e. line) from the log file
        Could be either an odometry or laser reading
        """
        measurement_type = line[0]  # O = odometry, L = laser scan
        measurements = np.fromstring(line[2:], sep=' ')
        odometry = measurements[0:3]
        time_stamp = measurements[-1]  # last variable
        for particle in self.particles:
            self._motion_model.update(particle, odometry, time_stamp)
        if measurement_type == "L":
            odometry_laser = measurements[3:6]  # coordinates of the laser in standard odometry frame
            self._ranges = measurements[6:-1]  # exclude last variable, the time stamp
            self._particle_probabilities = list()  # unnormalized sensor model probabilities of the particles
            for particle in self.particles:
                self._particle_probabilities.append(self._sensor_model.get_probability(particle, self._ranges))
            argsorted_probabilities = np.argsort(-np.asarray(self._particle_probabilities))
            self.particles[argsorted_probabilities[0]].debug = True
            self.particles[argsorted_probabilities[1]].debug = True
            self.particles[argsorted_probabilities[2]].debug = True

    def _resample(self):
        """
        Resamples the particles given unnormalized particle probabilites
        """
        particle_probabilities = np.asarray(self._particle_probabilities)/sum(self._particle_probabilities)  # normalize
        indices = np.random.choice(range(0, self._number_particles), size=self._number_particles, replace=True,
                                   p=particle_probabilities)
        indices.sort()
        previous_index = -1
        new_particles = list()
        for index in indices:
            if index != previous_index:
                new_particles.append(self.particles[index])
            else:
                new_particles.append(deepcopy(self.particles[index]))
            previous_index = index
        self.particles = new_particles
コード例 #4
0
class ParticleFilter(object):
    """
    This is the main particle filter object.
    """
    def __init__(self, map_file='../data/map/wean.dat'):
        self.map = Map(map_file)
        #self.map.display_gaussian([], 'Gaussian Blurred Map')
        self._number_particles = 1000
        self.particles = list()
        self._particle_probabilities = []
        for _ in range(0, self._number_particles):
            print 'Initializing particle', _
            particle = Particle(self.map)
            #particle.x = 4080 + np.random.normal(scale=35)
            #particle.y = 3980 + np.random.normal(scale=15)
            #particle.theta = math.pi + 0.1 + np.random.normal(scale=.1)
            self.particles.append(particle)
            self._particle_probabilities.append(1)
        self._motion_model = MotionModel(0.001, 0.001, 0.1, 0.1)
        self._sensor_model = SensorModel(self.map)
        self._ranges = []

    def log(self, file_handle):
        line = list()
        for particle in self.particles:
            loc = str(particle.x) + ',' + str(particle.y)
            line.append(loc)
        file_handle.write(';'.join(line))
        file_handle.write('\n')

    def display(self):
        self.map.display(self.particles, ranges=self._ranges)

    def update(self, line):
        """
        Update step.
        Reading is a single reading (i.e. line) from the log file
        Could be either an odometry or laser reading
        """
        measurement_type = line[0]  # O = odometry, L = laser scan
        measurements = np.fromstring(line[2:], sep=' ')
        odometry = measurements[0:3]
        time_stamp = measurements[-1]  # last variable
        for particle in self.particles:
            self._motion_model.update(particle, odometry, time_stamp)
        if measurement_type == "L":
            odometry_laser = measurements[
                3:6]  # coordinates of the laser in standard odometry frame
            self._ranges = measurements[
                6:-1]  # exclude last variable, the time stamp
            self._particle_probabilities = list(
            )  # unnormalized sensor model probabilities of the particles
            for particle in self.particles:
                self._particle_probabilities.append(
                    self._sensor_model.get_probability(particle, self._ranges))
            argsorted_probabilities = np.argsort(
                -np.asarray(self._particle_probabilities))
            self.particles[argsorted_probabilities[0]].debug = True
            self.particles[argsorted_probabilities[1]].debug = True
            self.particles[argsorted_probabilities[2]].debug = True

    def _resample(self):
        """
        Resamples the particles given unnormalized particle probabilites
        """
        particle_probabilities = np.asarray(
            self._particle_probabilities) / sum(
                self._particle_probabilities)  # normalize
        indices = np.random.choice(range(0, self._number_particles),
                                   size=self._number_particles,
                                   replace=True,
                                   p=particle_probabilities)
        indices.sort()
        previous_index = -1
        new_particles = list()
        for index in indices:
            if index != previous_index:
                new_particles.append(self.particles[index])
            else:
                new_particles.append(deepcopy(self.particles[index]))
            previous_index = index
        self.particles = new_particles