def post_process_group(is_new, is_regression, is_new_group_environment, cache_key, group_id=None, **kwargs): """ Fires post processing hooks for a group. """ from sentry.eventstore.models import Event from sentry.eventstore.processing import event_processing_store from sentry.utils import snuba from sentry.reprocessing2 import is_reprocessed_event with snuba.options_override({"consistent": True}): # We use the data being present/missing in the processing store # to ensure that we don't duplicate work should the forwarding consumers # need to rewind history. data = event_processing_store.get(cache_key) if not data: logger.info( "post_process.skipped", extra={ "cache_key": cache_key, "reason": "missing_cache" }, ) return event = Event(project_id=data["project"], event_id=data["event_id"], group_id=group_id, data=data) set_current_project(event.project_id) is_reprocessed = is_reprocessed_event(event.data) # NOTE: we must pass through the full Event object, and not an # event_id since the Event object may not actually have been stored # in the database due to sampling. from sentry.models import ( Project, Organization, EventDict, GroupInboxReason, ) from sentry.models.groupinbox import add_group_to_inbox from sentry.models.group import get_group_with_redirect from sentry.rules.processor import RuleProcessor from sentry.tasks.servicehooks import process_service_hook # Re-bind node data to avoid renormalization. We only want to # renormalize when loading old data from the database. event.data = EventDict(event.data, skip_renormalization=True) # Re-bind Project and Org since we're reading the Event object # from cache which may contain stale parent models. event.project = Project.objects.get_from_cache(id=event.project_id) event.project._organization_cache = Organization.objects.get_from_cache( id=event.project.organization_id) if event.group_id: # Re-bind Group since we're reading the Event object # from cache, which may contain a stale group and project event.group, _ = get_group_with_redirect(event.group_id) event.group_id = event.group.id event.group.project = event.project event.group.project._organization_cache = event.project._organization_cache bind_organization_context(event.project.organization) _capture_stats(event, is_new) if event.group_id and not is_reprocessed: # we process snoozes before rules as it might create a regression # but not if it's new because you can't immediately snooze a new group has_reappeared = False if is_new else process_snoozes(event.group) if not has_reappeared: # If true, we added the .UNIGNORED reason already if is_new: add_group_to_inbox(event.group, GroupInboxReason.NEW) elif is_regression: add_group_to_inbox(event.group, GroupInboxReason.REGRESSION) handle_owner_assignment(event.project, event.group, event) rp = RuleProcessor(event, is_new, is_regression, is_new_group_environment, has_reappeared) has_alert = False # TODO(dcramer): ideally this would fanout, but serializing giant # objects back and forth isn't super efficient for callback, futures in rp.apply(): has_alert = True with sentry_sdk.start_transaction(op="post_process_group", name="rule_processor_apply", sampled=True): safe_execute(callback, event, futures) if features.has("projects:servicehooks", project=event.project): allowed_events = set(["event.created"]) if has_alert: allowed_events.add("event.alert") if allowed_events: for servicehook_id, events in _get_service_hooks( project_id=event.project_id): if any(e in allowed_events for e in events): process_service_hook.delay( servicehook_id=servicehook_id, event=event) from sentry.tasks.sentry_apps import process_resource_change_bound if event.get_event_type( ) == "error" and _should_send_error_created_hooks(event.project): process_resource_change_bound.delay(action="created", sender="Error", instance_id=event.event_id, instance=event) if is_new: process_resource_change_bound.delay(action="created", sender="Group", instance_id=event.group_id) from sentry.plugins.base import plugins for plugin in plugins.for_project(event.project): plugin_post_process_group(plugin_slug=plugin.slug, event=event, is_new=is_new, is_regresion=is_regression) from sentry import similarity safe_execute(similarity.record, event.project, [event]) if event.group_id: # Patch attachments that were ingested on the standalone path. update_existing_attachments(event) if not is_reprocessed: event_processed.send_robust( sender=post_process_group, project=event.project, event=event, primary_hash=kwargs.get("primary_hash"), ) with metrics.timer("tasks.post_process.delete_event_cache"): event_processing_store.delete_by_key(cache_key)
def _do_save_event( cache_key=None, data=None, start_time=None, event_id=None, project_id=None, **kwargs ): """ Saves an event to the database. """ set_current_project(project_id) from sentry.event_manager import EventManager, HashDiscarded event_type = "none" if cache_key and data is None: with metrics.timer("tasks.store.do_save_event.get_cache") as metric_tags: data = event_processing_store.get(cache_key) if data is not None: metric_tags["event_type"] = event_type = data.get("type") or "none" with metrics.global_tags(event_type=event_type): if data is not None: data = CanonicalKeyDict(data) if event_id is None and data is not None: event_id = data["event_id"] # only when we come from reprocessing we get a project_id sent into # the task. if project_id is None: project_id = data.pop("project") set_current_project(project_id) # We only need to delete raw events for events that support # reprocessing. If the data cannot be found we want to assume # that we need to delete the raw event. if not data or reprocessing.event_supports_reprocessing(data): with metrics.timer("tasks.store.do_save_event.delete_raw_event"): delete_raw_event(project_id, event_id, allow_hint_clear=True) # This covers two cases: where data is None because we did not manage # to fetch it from the default cache or the empty dictionary was # stored in the default cache. The former happens if the event # expired while being on the queue, the second happens on reprocessing # if the raw event was deleted concurrently while we held on to # it. This causes the node store to delete the data and we end up # fetching an empty dict. We could in theory not invoke `save_event` # in those cases but it's important that we always clean up the # reprocessing reports correctly or they will screw up the UI. So # to future proof this correctly we just handle this case here. if not data: metrics.incr( "events.failed", tags={"reason": "cache", "stage": "post"}, skip_internal=False ) return try: with metrics.timer("tasks.store.do_save_event.event_manager.save"): manager = EventManager(data) # event.project.organization is populated after this statement. manager.save( project_id, assume_normalized=True, start_time=start_time, cache_key=cache_key ) except HashDiscarded: pass finally: if cache_key: with metrics.timer("tasks.store.do_save_event.delete_cache"): event_processing_store.delete_by_key(cache_key) with metrics.timer("tasks.store.do_save_event.delete_attachment_cache"): attachment_cache.delete(cache_key) if start_time: metrics.timing( "events.time-to-process", time() - start_time, instance=data["platform"] )
def post_process_group(is_new, is_regression, is_new_group_environment, cache_key, group_id=None, **kwargs): """ Fires post processing hooks for a group. """ from sentry.eventstore.models import Event from sentry.eventstore.processing import event_processing_store from sentry.reprocessing2 import is_reprocessed_event from sentry.utils import snuba with snuba.options_override({"consistent": True}): # We use the data being present/missing in the processing store # to ensure that we don't duplicate work should the forwarding consumers # need to rewind history. data = event_processing_store.get(cache_key) if not data: logger.info( "post_process.skipped", extra={ "cache_key": cache_key, "reason": "missing_cache" }, ) return event = Event(project_id=data["project"], event_id=data["event_id"], group_id=group_id, data=data) set_current_event_project(event.project_id) is_transaction_event = not bool(event.group_id) from sentry.models import EventDict, Organization, Project # Re-bind node data to avoid renormalization. We only want to # renormalize when loading old data from the database. event.data = EventDict(event.data, skip_renormalization=True) # Re-bind Project and Org since we're reading the Event object # from cache which may contain stale parent models. event.project = Project.objects.get_from_cache(id=event.project_id) event.project.set_cached_field_value( "organization", Organization.objects.get_from_cache( id=event.project.organization_id)) # Simplified post processing for transaction events. # This should eventually be completely removed and transactions # will not go through any post processing. if is_transaction_event: transaction_processed.send_robust( sender=post_process_group, project=event.project, event=event, ) event_processing_store.delete_by_key(cache_key) return is_reprocessed = is_reprocessed_event(event.data) sentry_sdk.set_tag("is_reprocessed", is_reprocessed) # NOTE: we must pass through the full Event object, and not an # event_id since the Event object may not actually have been stored # in the database due to sampling. from sentry.models import Commit, GroupInboxReason from sentry.models.group import get_group_with_redirect from sentry.models.groupinbox import add_group_to_inbox from sentry.rules.processor import RuleProcessor from sentry.tasks.groupowner import process_suspect_commits from sentry.tasks.servicehooks import process_service_hook # Re-bind Group since we're reading the Event object # from cache, which may contain a stale group and project event.group, _ = get_group_with_redirect(event.group_id) event.group_id = event.group.id event.group.project = event.project event.group.project.set_cached_field_value("organization", event.project.organization) bind_organization_context(event.project.organization) _capture_stats(event, is_new) with sentry_sdk.start_span( op="tasks.post_process_group.add_group_to_inbox"): try: if is_reprocessed and is_new: add_group_to_inbox(event.group, GroupInboxReason.REPROCESSED) except Exception: logger.exception( "Failed to add group to inbox for reprocessed groups") if not is_reprocessed: # we process snoozes before rules as it might create a regression # but not if it's new because you can't immediately snooze a new group has_reappeared = not is_new try: if has_reappeared: has_reappeared = process_snoozes(event.group) except Exception: logger.exception("Failed to process snoozes for group") try: if not has_reappeared: # If true, we added the .UNIGNORED reason already if is_new: add_group_to_inbox(event.group, GroupInboxReason.NEW) elif is_regression: add_group_to_inbox(event.group, GroupInboxReason.REGRESSION) except Exception: logger.exception( "Failed to add group to inbox for non-reprocessed groups") with sentry_sdk.start_span( op="tasks.post_process_group.handle_owner_assignment"): try: handle_owner_assignment(event.project, event.group, event) except Exception: logger.exception("Failed to handle owner assignments") rp = RuleProcessor(event, is_new, is_regression, is_new_group_environment, has_reappeared) has_alert = False with sentry_sdk.start_span( op="tasks.post_process_group.rule_processor_callbacks"): # TODO(dcramer): ideally this would fanout, but serializing giant # objects back and forth isn't super efficient for callback, futures in rp.apply(): has_alert = True safe_execute(callback, event, futures, _with_transaction=False) try: lock = locks.get( f"w-o:{event.group_id}-d-l", duration=10, ) with lock.acquire(): has_commit_key = f"w-o:{event.project.organization_id}-h-c" org_has_commit = cache.get(has_commit_key) if org_has_commit is None: org_has_commit = Commit.objects.filter( organization_id=event.project.organization_id ).exists() cache.set(has_commit_key, org_has_commit, 3600) if org_has_commit: group_cache_key = f"w-o-i:g-{event.group_id}" if cache.get(group_cache_key): metrics.incr( "sentry.tasks.process_suspect_commits.debounce", tags={"detail": "w-o-i:g debounce"}, ) else: from sentry.utils.committers import get_frame_paths cache.set(group_cache_key, True, 604800) # 1 week in seconds event_frames = get_frame_paths(event.data) process_suspect_commits.delay( event_id=event.event_id, event_platform=event.platform, event_frames=event_frames, group_id=event.group_id, project_id=event.project_id, ) except UnableToAcquireLock: pass except Exception: logger.exception("Failed to process suspect commits") if features.has("projects:servicehooks", project=event.project): allowed_events = {"event.created"} if has_alert: allowed_events.add("event.alert") if allowed_events: for servicehook_id, events in _get_service_hooks( project_id=event.project_id): if any(e in allowed_events for e in events): process_service_hook.delay( servicehook_id=servicehook_id, event=event) from sentry.tasks.sentry_apps import process_resource_change_bound if event.get_event_type( ) == "error" and _should_send_error_created_hooks(event.project): process_resource_change_bound.delay(action="created", sender="Error", instance_id=event.event_id, instance=event) if is_new: process_resource_change_bound.delay(action="created", sender="Group", instance_id=event.group_id) from sentry.plugins.base import plugins for plugin in plugins.for_project(event.project): plugin_post_process_group(plugin_slug=plugin.slug, event=event, is_new=is_new, is_regresion=is_regression) from sentry import similarity with sentry_sdk.start_span( op="tasks.post_process_group.similarity"): safe_execute(similarity.record, event.project, [event], _with_transaction=False) # Patch attachments that were ingested on the standalone path. with sentry_sdk.start_span( op="tasks.post_process_group.update_existing_attachments"): try: update_existing_attachments(event) except Exception: logger.exception("Failed to update existing attachments") if not is_reprocessed: event_processed.send_robust( sender=post_process_group, project=event.project, event=event, primary_hash=kwargs.get("primary_hash"), ) with metrics.timer("tasks.post_process.delete_event_cache"): event_processing_store.delete_by_key(cache_key)
def _do_process_event( cache_key, start_time, event_id, process_task, data=None, data_has_changed=None, from_symbolicate=False, ): from sentry.plugins.base import plugins if data is None: data = event_processing_store.get(cache_key) if data is None: metrics.incr( "events.failed", tags={"reason": "cache", "stage": "process"}, skip_internal=False ) error_logger.error("process.failed.empty", extra={"cache_key": cache_key}) return data = CanonicalKeyDict(data) project_id = data["project"] set_current_project(project_id) event_id = data["event_id"] with sentry_sdk.start_span(op="tasks.store.process_event.get_project_from_cache"): project = Project.objects.get_from_cache(id=project_id) with metrics.timer("tasks.store.process_event.organization.get_from_cache"): project._organization_cache = Organization.objects.get_from_cache( id=project.organization_id ) has_changed = bool(data_has_changed) with sentry_sdk.start_span(op="tasks.store.process_event.get_reprocessing_revision"): # Fetch the reprocessing revision reprocessing_rev = reprocessing.get_reprocessing_revision(project_id) # Stacktrace based event processors. with sentry_sdk.start_span(op="task.store.process_event.stacktraces"): with metrics.timer( "tasks.store.process_event.stacktraces", tags={"from_symbolicate": from_symbolicate} ): new_data = process_stacktraces(data) if new_data is not None: has_changed = True data = new_data # Second round of datascrubbing after stacktrace and language-specific # processing. First round happened as part of ingest. # # *Right now* the only sensitive data that is added in stacktrace # processing are usernames in filepaths, so we run directly after # stacktrace processors. # # We do not yet want to deal with context data produced by plugins like # sessionstack or fullstory (which are in `get_event_preprocessors`), as # this data is very unlikely to be sensitive data. This is why scrubbing # happens somewhere in the middle of the pipeline. # # On the other hand, Javascript event error translation is happening after # this block because it uses `get_event_preprocessors` instead of # `get_event_enhancers`. # # We are fairly confident, however, that this should run *before* # re-normalization as it is hard to find sensitive data in partially # trimmed strings. if has_changed and options.get("processing.can-use-scrubbers"): with sentry_sdk.start_span(op="task.store.datascrubbers.scrub"): with metrics.timer( "tasks.store.datascrubbers.scrub", tags={"from_symbolicate": from_symbolicate} ): new_data = safe_execute(scrub_data, project=project, event=data.data) # XXX(markus): When datascrubbing is finally "totally stable", we might want # to drop the event if it crashes to avoid saving PII if new_data is not None and features.has( "organizations:datascrubbers-v2", project.organization, actor=None ): data.data = new_data # TODO(dcramer): ideally we would know if data changed by default # Default event processors. for plugin in plugins.all(version=2): with sentry_sdk.start_span(op="task.store.process_event.preprocessors") as span: span.set_data("plugin", plugin.slug) span.set_data("from_symbolicate", from_symbolicate) with metrics.timer( "tasks.store.process_event.preprocessors", tags={"plugin": plugin.slug, "from_symbolicate": from_symbolicate}, ): processors = safe_execute( plugin.get_event_preprocessors, data=data, _with_transaction=False ) for processor in processors or (): try: result = processor(data) except Exception: error_logger.exception("tasks.store.preprocessors.error") data.setdefault("_metrics", {})["flag.processing.error"] = True has_changed = True else: if result: data = result has_changed = True assert data["project"] == project_id, "Project cannot be mutated by plugins" # We cannot persist canonical types in the cache, so we need to # downgrade this. if isinstance(data, CANONICAL_TYPES): data = dict(data.items()) if has_changed: # Run some of normalization again such that we don't: # - persist e.g. incredibly large stacktraces from minidumps # - store event timestamps that are older than our retention window # (also happening with minidumps) normalizer = StoreNormalizer( remove_other=False, is_renormalize=True, **DEFAULT_STORE_NORMALIZER_ARGS ) data = normalizer.normalize_event(dict(data)) issues = data.get("processing_issues") try: if issues and create_failed_event( cache_key, data, project_id, list(issues.values()), event_id=event_id, start_time=start_time, reprocessing_rev=reprocessing_rev, ): return except RetryProcessing: # If `create_failed_event` indicates that we need to retry we # invoke ourselves again. This happens when the reprocessing # revision changed while we were processing. _do_preprocess_event(cache_key, data, start_time, event_id, process_task, project) return cache_key = event_processing_store.store(data) submit_save_event(project, cache_key, event_id, start_time, data)
def create_failed_event( cache_key, data, project_id, issues, event_id, start_time=None, reprocessing_rev=None ): """If processing failed we put the original data from the cache into a raw event. Returns `True` if a failed event was inserted """ set_current_project(project_id) # We can only create failed events for events that can potentially # create failed events. if not reprocessing.event_supports_reprocessing(data): return False reprocessing_active = ProjectOption.objects.get_value( project_id, "sentry:reprocessing_active", REPROCESSING_DEFAULT ) # In case there is reprocessing active but the current reprocessing # revision is already different than when we started, we want to # immediately retry the event. This resolves the problem when # otherwise a concurrent change of debug symbols might leave a # reprocessing issue stuck in the project forever. if ( reprocessing_active and reprocessing.get_reprocessing_revision(project_id, cached=False) != reprocessing_rev ): raise RetryProcessing() # The first time we encounter a failed event and the hint was cleared # we send a notification. sent_notification = ProjectOption.objects.get_value( project_id, "sentry:sent_failed_event_hint", False ) if not sent_notification: project = Project.objects.get_from_cache(id=project_id) Activity.objects.create( type=Activity.NEW_PROCESSING_ISSUES, project=project, datetime=to_datetime(start_time), data={"reprocessing_active": reprocessing_active, "issues": issues}, ).send_notification() ProjectOption.objects.set_value(project, "sentry:sent_failed_event_hint", True) # If reprocessing is not active we bail now without creating the # processing issues if not reprocessing_active: return False # We need to get the original data here instead of passing the data in # from the last processing step because we do not want any # modifications to take place. delete_raw_event(project_id, event_id) data = event_processing_store.get(cache_key) if data is None: metrics.incr("events.failed", tags={"reason": "cache", "stage": "raw"}, skip_internal=False) error_logger.error("process.failed_raw.empty", extra={"cache_key": cache_key}) return True data = CanonicalKeyDict(data) from sentry.models import RawEvent, ProcessingIssue raw_event = RawEvent.objects.create( project_id=project_id, event_id=event_id, datetime=datetime.utcfromtimestamp(data["timestamp"]).replace(tzinfo=timezone.utc), data=data, ) for issue in issues: ProcessingIssue.objects.record_processing_issue( raw_event=raw_event, scope=issue["scope"], object=issue["object"], type=issue["type"], data=issue["data"], ) event_processing_store.delete_by_key(cache_key) return True
def _do_symbolicate_event(cache_key, start_time, event_id, symbolicate_task, data=None): from sentry.lang.native.processing import get_symbolication_function if data is None: data = event_processing_store.get(cache_key) if data is None: metrics.incr( "events.failed", tags={"reason": "cache", "stage": "symbolicate"}, skip_internal=False ) error_logger.error("symbolicate.failed.empty", extra={"cache_key": cache_key}) return data = CanonicalKeyDict(data) project_id = data["project"] set_current_project(project_id) event_id = data["event_id"] symbolication_function = get_symbolication_function(data) has_changed = False from_reprocessing = symbolicate_task is symbolicate_event_from_reprocessing try: with sentry_sdk.start_span(op="tasks.store.symbolicate_event.symbolication") as span: span.set_data("symbolicaton_function", symbolication_function.__name__) with metrics.timer("tasks.store.symbolicate_event.symbolication"): symbolicated_data = symbolication_function(data) span.set_data("symbolicated_data", bool(symbolicated_data)) if symbolicated_data: data = symbolicated_data has_changed = True except RetrySymbolication as e: if start_time and (time() - start_time) > settings.SYMBOLICATOR_PROCESS_EVENT_WARN_TIMEOUT: error_logger.warning( "symbolicate.slow", extra={"project_id": project_id, "event_id": event_id} ) if start_time and (time() - start_time) > settings.SYMBOLICATOR_PROCESS_EVENT_HARD_TIMEOUT: # Do not drop event but actually continue with rest of pipeline # (persisting unsymbolicated event) error_logger.exception( "symbolicate.failed.infinite_retry", extra={"project_id": project_id, "event_id": event_id}, ) data.setdefault("_metrics", {})["flag.processing.error"] = True data.setdefault("_metrics", {})["flag.processing.fatal"] = True has_changed = True else: # Requeue the task in the "sleep" queue retry_symbolicate_event.apply_async( args=(), kwargs={ "symbolicate_task_name": symbolicate_task.__name__, "task_kwargs": { "cache_key": cache_key, "event_id": event_id, "start_time": start_time, }, }, countdown=e.retry_after, ) return except Exception: error_logger.exception("tasks.store.symbolicate_event.symbolication") data.setdefault("_metrics", {})["flag.processing.error"] = True data.setdefault("_metrics", {})["flag.processing.fatal"] = True has_changed = True # We cannot persist canonical types in the cache, so we need to # downgrade this. if isinstance(data, CANONICAL_TYPES): data = dict(data.items()) if has_changed: cache_key = event_processing_store.store(data) process_task = process_event_from_reprocessing if from_reprocessing else process_event _do_process_event( cache_key=cache_key, start_time=start_time, event_id=event_id, process_task=process_task, data=data, data_has_changed=has_changed, from_symbolicate=True, )
def _do_save_event( cache_key=None, data=None, start_time=None, event_id=None, project_id=None, **kwargs ): """ Saves an event to the database. """ set_current_event_project(project_id) from sentry.event_manager import EventManager, HashDiscarded event_type = "none" if cache_key and data is None: with metrics.timer("tasks.store.do_save_event.get_cache") as metric_tags: data = event_processing_store.get(cache_key) if data is not None: metric_tags["event_type"] = event_type = data.get("type") or "none" with metrics.global_tags(event_type=event_type): if data is not None: data = CanonicalKeyDict(data) if event_id is None and data is not None: event_id = data["event_id"] # only when we come from reprocessing we get a project_id sent into # the task. if project_id is None: project_id = data.pop("project") set_current_event_project(project_id) # We only need to delete raw events for events that support # reprocessing. If the data cannot be found we want to assume # that we need to delete the raw event. if not data or reprocessing.event_supports_reprocessing(data): with metrics.timer("tasks.store.do_save_event.delete_raw_event"): delete_raw_event(project_id, event_id, allow_hint_clear=True) # This covers two cases: where data is None because we did not manage # to fetch it from the default cache or the empty dictionary was # stored in the default cache. The former happens if the event # expired while being on the queue, the second happens on reprocessing # if the raw event was deleted concurrently while we held on to # it. This causes the node store to delete the data and we end up # fetching an empty dict. We could in theory not invoke `save_event` # in those cases but it's important that we always clean up the # reprocessing reports correctly or they will screw up the UI. So # to future proof this correctly we just handle this case here. if not data: metrics.incr( "events.failed", tags={"reason": "cache", "stage": "post"}, skip_internal=False ) return try: if killswitch_matches_context( "store.load-shed-save-event-projects", { "project_id": project_id, "event_type": event_type, "platform": data.get("platform") or "none", }, ): raise HashDiscarded("Load shedding save_event") with metrics.timer("tasks.store.do_save_event.event_manager.save"): manager = EventManager(data) # event.project.organization is populated after this statement. manager.save( project_id, assume_normalized=True, start_time=start_time, cache_key=cache_key ) # Put the updated event back into the cache so that post_process # has the most recent data. data = manager.get_data() if isinstance(data, CANONICAL_TYPES): data = dict(data.items()) with metrics.timer("tasks.store.do_save_event.write_processing_cache"): event_processing_store.store(data) except HashDiscarded: # Delete the event payload from cache since it won't show up in post-processing. if cache_key: with metrics.timer("tasks.store.do_save_event.delete_cache"): event_processing_store.delete_by_key(cache_key) finally: reprocessing2.mark_event_reprocessed(data) if cache_key: with metrics.timer("tasks.store.do_save_event.delete_attachment_cache"): attachment_cache.delete(cache_key) if start_time: metrics.timing( "events.time-to-process", time() - start_time, instance=data["platform"], tags={ "is_reprocessing2": "true" if reprocessing2.is_reprocessed_event(data) else "false", }, ) time_synthetic_monitoring_event(data, project_id, start_time)
def _do_symbolicate_event( cache_key, start_time, event_id, symbolicate_task, data=None, queue_switches=0 ): from sentry.lang.native.processing import get_symbolication_function if data is None: data = event_processing_store.get(cache_key) if data is None: metrics.incr( "events.failed", tags={"reason": "cache", "stage": "symbolicate"}, skip_internal=False ) error_logger.error("symbolicate.failed.empty", extra={"cache_key": cache_key}) return data = CanonicalKeyDict(data) project_id = data["project"] set_current_event_project(project_id) event_id = data["event_id"] from_reprocessing = ( symbolicate_task is symbolicate_event_from_reprocessing or symbolicate_task is symbolicate_event_from_reprocessing_low_priority ) # check whether the event is in the wrong queue and if so, move it to the other one. # we do this at most SYMBOLICATOR_MAX_QUEUE_SWITCHES times. if queue_switches >= SYMBOLICATOR_MAX_QUEUE_SWITCHES: metrics.gauge("tasks.store.symbolicate_event.low_priority.max_queue_switches", 1) else: is_low_priority = symbolicate_task in [ symbolicate_event_low_priority, symbolicate_event_from_reprocessing_low_priority, ] should_be_low_priority = should_demote_symbolication(project_id) if is_low_priority != should_be_low_priority: metrics.gauge("tasks.store.symbolicate_event.low_priority.wrong_queue", 1) submit_symbolicate( should_be_low_priority, from_reprocessing, cache_key, event_id, start_time, data, queue_switches + 1, ) return def _continue_to_process_event(): process_task = process_event_from_reprocessing if from_reprocessing else process_event _do_process_event( cache_key=cache_key, start_time=start_time, event_id=event_id, process_task=process_task, data=data, data_has_changed=has_changed, from_symbolicate=True, ) symbolication_function = get_symbolication_function(data) symbolication_function_name = getattr(symbolication_function, "__name__", "none") if killswitch_matches_context( "store.load-shed-symbolicate-event-projects", { "project_id": project_id, "event_id": event_id, "platform": data.get("platform") or "null", "symbolication_function": symbolication_function_name, }, ): return _continue_to_process_event() has_changed = False symbolication_start_time = time() submission_ratio = options.get("symbolicate-event.low-priority.metrics.submission-rate") submit_realtime_metrics = not from_reprocessing and random.random() < submission_ratio if submit_realtime_metrics: with sentry_sdk.start_span(op="tasks.store.symbolicate_event.low_priority.metrics.counter"): timestamp = int(symbolication_start_time) try: realtime_metrics.increment_project_event_counter(project_id, timestamp) except Exception as e: sentry_sdk.capture_exception(e) with sentry_sdk.start_span(op="tasks.store.symbolicate_event.symbolication") as span: span.set_data("symbolication_function", symbolication_function_name) with metrics.timer( "tasks.store.symbolicate_event.symbolication", tags={"symbolication_function": symbolication_function_name}, ): while True: try: with sentry_sdk.start_span( op="tasks.store.symbolicate_event.%s" % symbolication_function_name ) as span: symbolicated_data = symbolication_function(data) span.set_data("symbolicated_data", bool(symbolicated_data)) if symbolicated_data: data = symbolicated_data has_changed = True break except RetrySymbolication as e: if ( time() - symbolication_start_time ) > settings.SYMBOLICATOR_PROCESS_EVENT_WARN_TIMEOUT: error_logger.warning( "symbolicate.slow", extra={"project_id": project_id, "event_id": event_id}, ) if ( time() - symbolication_start_time ) > settings.SYMBOLICATOR_PROCESS_EVENT_HARD_TIMEOUT: # Do not drop event but actually continue with rest of pipeline # (persisting unsymbolicated event) metrics.incr( "tasks.store.symbolicate_event.fatal", tags={ "reason": "timeout", "symbolication_function": symbolication_function_name, }, ) error_logger.exception( "symbolicate.failed.infinite_retry", extra={"project_id": project_id, "event_id": event_id}, ) data.setdefault("_metrics", {})["flag.processing.error"] = True data.setdefault("_metrics", {})["flag.processing.fatal"] = True has_changed = True break else: # sleep for `retry_after` but max 5 seconds and try again metrics.incr( "tasks.store.symbolicate_event.retry", tags={"symbolication_function": symbolication_function_name}, ) sleep(min(e.retry_after, SYMBOLICATOR_MAX_RETRY_AFTER)) continue except Exception: metrics.incr( "tasks.store.symbolicate_event.fatal", tags={ "reason": "error", "symbolication_function": symbolication_function_name, }, ) error_logger.exception("tasks.store.symbolicate_event.symbolication") data.setdefault("_metrics", {})["flag.processing.error"] = True data.setdefault("_metrics", {})["flag.processing.fatal"] = True has_changed = True break if submit_realtime_metrics: with sentry_sdk.start_span( op="tasks.store.symbolicate_event.low_priority.metrics.histogram" ): symbolication_duration = int(time() - symbolication_start_time) try: realtime_metrics.increment_project_duration_counter( project_id, timestamp, symbolication_duration ) except Exception as e: sentry_sdk.capture_exception(e) # We cannot persist canonical types in the cache, so we need to # downgrade this. if isinstance(data, CANONICAL_TYPES): data = dict(data.items()) if has_changed: cache_key = event_processing_store.store(data) return _continue_to_process_event()
def _do_preprocess_event(cache_key, data, start_time, event_id, process_task, project): from sentry.lang.native.processing import should_process_with_symbolicator if cache_key and data is None: data = event_processing_store.get(cache_key) if data is None: metrics.incr("events.failed", tags={ "reason": "cache", "stage": "pre" }, skip_internal=False) error_logger.error("preprocess.failed.empty", extra={"cache_key": cache_key}) return original_data = data data = CanonicalKeyDict(data) project_id = data["project"] set_current_event_project(project_id) if project is None: project = Project.objects.get_from_cache(id=project_id) else: assert project.id == project_id, (project.id, project_id) from_reprocessing = process_task is process_event_from_reprocessing with metrics.timer( "tasks.store.preprocess_event.organization.get_from_cache"): project.set_cached_field_value( "organization", Organization.objects.get_from_cache(id=project.organization_id)) if should_process_with_symbolicator(data): reprocessing2.backup_unprocessed_event(project=project, data=original_data) is_low_priority = should_demote_symbolication(project_id) submit_symbolicate( is_low_priority, from_reprocessing, cache_key, event_id, start_time, original_data, ) return if should_process(data): submit_process( project, from_reprocessing, cache_key, event_id, start_time, data_has_changed=False, ) return submit_save_event(project_id, from_reprocessing, cache_key, event_id, start_time, original_data)
def _do_symbolicate_event(cache_key, start_time, event_id, symbolicate_task, data=None): from sentry.lang.native.processing import get_symbolication_function if data is None: data = event_processing_store.get(cache_key) if data is None: metrics.incr("events.failed", tags={ "reason": "cache", "stage": "symbolicate" }, skip_internal=False) error_logger.error("symbolicate.failed.empty", extra={"cache_key": cache_key}) return data = CanonicalKeyDict(data) project_id = data["project"] set_current_event_project(project_id) event_id = data["event_id"] if killswitch_matches_context( "store.load-shed-symbolicate-event-projects", { "project_id": project_id, "event_id": event_id, "platform": data.get("platform") or "null", }, ): return symbolication_function = get_symbolication_function(data) has_changed = False from_reprocessing = symbolicate_task is symbolicate_event_from_reprocessing symbolication_start_time = time() with sentry_sdk.start_span( op="tasks.store.symbolicate_event.symbolication") as span: span.set_data("symbolicaton_function", symbolication_function.__name__) with metrics.timer( "tasks.store.symbolicate_event.symbolication", tags={ "symbolication_function": symbolication_function.__name__ }, ): while True: try: with sentry_sdk.start_span( op="tasks.store.symbolicate_event.%s" % symbolication_function.__name__) as span: symbolicated_data = symbolication_function(data) span.set_data("symbolicated_data", bool(symbolicated_data)) if symbolicated_data: data = symbolicated_data has_changed = True break except RetrySymbolication as e: if (time() - symbolication_start_time ) > settings.SYMBOLICATOR_PROCESS_EVENT_WARN_TIMEOUT: error_logger.warning( "symbolicate.slow", extra={ "project_id": project_id, "event_id": event_id }, ) if (time() - symbolication_start_time ) > settings.SYMBOLICATOR_PROCESS_EVENT_HARD_TIMEOUT: # Do not drop event but actually continue with rest of pipeline # (persisting unsymbolicated event) metrics.incr( "tasks.store.symbolicate_event.fatal", tags={ "reason": "timeout", "symbolication_function": symbolication_function.__name__, }, ) error_logger.exception( "symbolicate.failed.infinite_retry", extra={ "project_id": project_id, "event_id": event_id }, ) data.setdefault("_metrics", {})["flag.processing.error"] = True data.setdefault("_metrics", {})["flag.processing.fatal"] = True has_changed = True break else: # sleep for `retry_after` but max 5 seconds and try again metrics.incr( "tasks.store.symbolicate_event.retry", tags={ "symbolication_function": symbolication_function.__name__ }, ) sleep(min(e.retry_after, SYMBOLICATOR_MAX_RETRY_AFTER)) continue except Exception: metrics.incr( "tasks.store.symbolicate_event.fatal", tags={ "reason": "error", "symbolication_function": symbolication_function.__name__, }, ) error_logger.exception( "tasks.store.symbolicate_event.symbolication") data.setdefault("_metrics", {})["flag.processing.error"] = True data.setdefault("_metrics", {})["flag.processing.fatal"] = True has_changed = True break # We cannot persist canonical types in the cache, so we need to # downgrade this. if isinstance(data, CANONICAL_TYPES): data = dict(data.items()) if has_changed: cache_key = event_processing_store.store(data) process_task = process_event_from_reprocessing if from_reprocessing else process_event _do_process_event( cache_key=cache_key, start_time=start_time, event_id=event_id, process_task=process_task, data=data, data_has_changed=has_changed, from_symbolicate=True, )