コード例 #1
0
class Seq2SeqTrainer:
    """
    Seq2SeqTrainer
    """
    def __init__(self,
                 model,
                 criterion,
                 opt_config,
                 scheduler_config,
                 print_freq=10,
                 save_freq=1000,
                 grad_clip=float('inf'),
                 batch_first=False,
                 save_info={},
                 save_path='.',
                 train_iterations=0,
                 checkpoint_filename='checkpoint%s.pth',
                 keep_checkpoints=5,
                 math='fp32',
                 cuda=True,
                 distributed=False,
                 intra_epoch_eval=0,
                 iter_size=1,
                 translator=None,
                 verbose=False):
        """
        Constructor for the Seq2SeqTrainer.

        :param model: model to train
        :param criterion: criterion (loss function)
        :param opt_config: dictionary with options for the optimizer
        :param scheduler_config: dictionary with options for the learning rate
            scheduler
        :param print_freq: prints short summary every 'print_freq' iterations
        :param save_freq: saves checkpoint every 'save_freq' iterations
        :param grad_clip: coefficient for gradient clipping
        :param batch_first: if True the model uses (batch,seq,feature) tensors,
            if false the model uses (seq, batch, feature)
        :param save_info: dict with additional state stored in each checkpoint
        :param save_path: path to the directiory for checkpoints
        :param train_iterations: total number of training iterations to execute
        :param checkpoint_filename: name of files with checkpoints
        :param keep_checkpoints: max number of checkpoints to keep
        :param math: arithmetic type
        :param cuda: if True use cuda, if False train on cpu
        :param distributed: if True run distributed training
        :param intra_epoch_eval: number of additional eval runs within each
            training epoch
        :param iter_size: number of iterations between weight updates
        :param translator: instance of Translator, runs inference on test set
        :param verbose: enables verbose logging
        """
        super(Seq2SeqTrainer, self).__init__()
        self.model = model
        self.criterion = criterion
        self.epoch = 0
        self.save_info = save_info
        self.save_path = save_path
        self.save_freq = save_freq
        self.save_counter = 0
        self.checkpoint_filename = checkpoint_filename
        self.checkpoint_counter = cycle(range(keep_checkpoints))
        self.opt_config = opt_config
        self.cuda = cuda
        self.distributed = distributed
        self.print_freq = print_freq
        self.batch_first = batch_first
        self.verbose = verbose
        self.loss = None
        self.translator = translator
        self.intra_epoch_eval = intra_epoch_eval
        self.iter_size = iter_size

        if cuda:
            self.model = self.model.cuda()
            self.criterion = self.criterion.cuda()

        if math == 'fp16':
            self.model = self.model.half()

        if distributed:
            self.model = DDP(self.model)

        if math == 'fp16':
            self.fp_optimizer = Fp16Optimizer(self.model, grad_clip)
            params = self.fp_optimizer.fp32_params
        elif math == 'fp32':
            self.fp_optimizer = Fp32Optimizer(self.model, grad_clip)
            params = self.model.parameters()

        opt_name = opt_config.pop('optimizer')
        self.optimizer = torch.optim.__dict__[opt_name](params, **opt_config)
        logging.info(f'Using optimizer: {self.optimizer}')

        self.scheduler = WarmupMultiStepLR(self.optimizer, train_iterations,
                                           **scheduler_config)

    def iterate(self, src, tgt, update=True, training=True):
        """
        Performs one iteration of the training/validation.

        :param src: batch of examples from the source language
        :param tgt: batch of examples from the target language
        :param update: if True: optimizer does update of the weights
        :param training: if True: executes optimizer
        """
        src, src_length = src
        tgt, tgt_length = tgt
        src_length = torch.LongTensor(src_length)
        tgt_length = torch.LongTensor(tgt_length)

        num_toks = {}
        num_toks['tgt'] = int(sum(tgt_length - 1))
        num_toks['src'] = int(sum(src_length))

        if self.cuda:
            src = src.cuda()
            src_length = src_length.cuda()
            tgt = tgt.cuda()

        if self.batch_first:
            output = self.model(src, src_length, tgt[:, :-1])
            tgt_labels = tgt[:, 1:]
            T, B = output.size(1), output.size(0)
        else:
            output = self.model(src, src_length, tgt[:-1])
            tgt_labels = tgt[1:]
            T, B = output.size(0), output.size(1)

        loss = self.criterion(output.view(T * B, -1),
                              tgt_labels.contiguous().view(-1))

        loss_per_batch = loss.item()
        loss /= (B * self.iter_size)

        if training:
            self.fp_optimizer.step(loss, self.optimizer, self.scheduler,
                                   update)

        loss_per_token = loss_per_batch / num_toks['tgt']
        loss_per_sentence = loss_per_batch / B

        return loss_per_token, loss_per_sentence, num_toks

    def feed_data(self, data_loader, training=True):
        """
        Runs training or validation on batches from data_loader.

        :param data_loader: data loader
        :param training: if True runs training else runs validation
        """
        if training:
            assert self.optimizer is not None
            eval_fractions = np.linspace(0, 1, self.intra_epoch_eval + 2)[1:-1]
            iters_with_update = len(data_loader) // self.iter_size
            eval_iters = (eval_fractions * iters_with_update).astype(int)
            eval_iters = eval_iters * self.iter_size
            eval_iters = set(eval_iters)

        batch_time = AverageMeter()
        data_time = AverageMeter()
        losses_per_token = AverageMeter(skip_first=False)
        losses_per_sentence = AverageMeter(skip_first=False)

        tot_tok_time = AverageMeter()
        src_tok_time = AverageMeter()
        tgt_tok_time = AverageMeter()

        batch_size = data_loader.batch_size

        end = time.time()
        for i, (src, tgt) in enumerate(data_loader):
            self.save_counter += 1
            # measure data loading time
            data_time.update(time.time() - end)

            update = False
            if i % self.iter_size == self.iter_size - 1:
                update = True

            # do a train/evaluate iteration
            stats = self.iterate(src, tgt, update, training=training)
            loss_per_token, loss_per_sentence, num_toks = stats

            # measure accuracy and record loss
            losses_per_token.update(loss_per_token, num_toks['tgt'])
            losses_per_sentence.update(loss_per_sentence, batch_size)

            # measure elapsed time
            elapsed = time.time() - end
            batch_time.update(elapsed)
            src_tok_time.update(num_toks['src'] / elapsed)
            tgt_tok_time.update(num_toks['tgt'] / elapsed)
            tot_num_toks = num_toks['tgt'] + num_toks['src']
            tot_tok_time.update(tot_num_toks / elapsed)
            self.loss = losses_per_token.avg

            if training and i in eval_iters:
                test_bleu, _ = self.translator.run(calc_bleu=True,
                                                   epoch=self.epoch,
                                                   iteration=i)

                log = []
                log += [f'TRAIN [{self.epoch}][{i}/{len(data_loader)}]']
                log += [f'BLEU: {test_bleu:.2f}']
                log = '\t'.join(log)
                logging.info(log)

                self.model.train()
                self.preallocate(data_loader, training=True)

            if i % self.print_freq == 0:
                phase = 'TRAIN' if training else 'VALIDATION'
                log = []
                log += [f'{phase} [{self.epoch}][{i}/{len(data_loader)}]']
                log += [f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})']
                log += [f'Data {data_time.val:.2e} ({data_time.avg:.2e})']
                log += [
                    f'Tok/s {tot_tok_time.val:.0f} ({tot_tok_time.avg:.0f})'
                ]
                if self.verbose:
                    log += [
                        f'Src tok/s {src_tok_time.val:.0f} ({src_tok_time.avg:.0f})'
                    ]
                    log += [
                        f'Tgt tok/s {tgt_tok_time.val:.0f} ({tgt_tok_time.avg:.0f})'
                    ]
                    log += [
                        f'Loss/sentence {losses_per_sentence.val:.1f} ({losses_per_sentence.avg:.1f})'
                    ]
                log += [
                    f'Loss/tok {losses_per_token.val:.4f} ({losses_per_token.avg:.4f})'
                ]
                if training:
                    lr = self.optimizer.param_groups[0]['lr']
                    log += [f'LR {lr:.3e}']
                log = '\t'.join(log)
                logging.info(log)

            save_chkpt = (self.save_counter %
                          self.save_freq) == (self.save_freq - 1)
            if training and save_chkpt:
                self.save_counter = 0
                self.save_info['iteration'] = i
                identifier = next(self.checkpoint_counter, -1)
                if identifier != -1:
                    with sync_workers() as rank:
                        if rank == 0:
                            self.save(identifier=identifier)

            end = time.time()

        tot_tok_time.reduce('sum')
        losses_per_token.reduce('mean')

        return losses_per_token.avg, tot_tok_time.avg

    def preallocate(self, data_loader, training):
        """
        Generates maximum sequence length batch and runs forward and backward
        pass without updating model parameters.

        :param data_loader: data loader
        :param training: if True preallocates memory for backward pass
        """
        batch_size = data_loader.batch_size
        max_len = data_loader.dataset.max_len

        src_length = [max_len] * batch_size
        tgt_length = [max_len] * batch_size

        if self.batch_first:
            shape = (batch_size, max_len)
        else:
            shape = (max_len, batch_size)

        src = torch.full(shape, 4, dtype=torch.int64)
        tgt = torch.full(shape, 4, dtype=torch.int64)
        src = src, src_length
        tgt = tgt, tgt_length
        self.iterate(src, tgt, update=False, training=training)
        self.model.zero_grad()

    def optimize(self, data_loader):
        """
        Sets model in training mode, preallocates memory and runs training on
        data provided by data_loader.

        :param data_loader: data loader
        """
        torch.set_grad_enabled(True)
        self.model.train()
        torch.cuda.empty_cache()
        self.preallocate(data_loader, training=True)
        output = self.feed_data(data_loader, training=True)
        self.model.zero_grad()
        torch.cuda.empty_cache()
        return output

    def evaluate(self, data_loader):
        """
        Sets model in eval mode, disables gradients, preallocates memory and
        runs validation on data provided by data_loader.

        :param data_loader: data loader
        """
        torch.set_grad_enabled(False)
        self.model.eval()
        torch.cuda.empty_cache()
        self.preallocate(data_loader, training=False)
        output = self.feed_data(data_loader, training=False)
        self.model.zero_grad()
        torch.cuda.empty_cache()
        return output

    def load(self, filename):
        """
        Loads checkpoint from filename.

        :param filename: path to the checkpoint file
        """
        if os.path.isfile(filename):
            checkpoint = torch.load(filename, map_location={'cuda:0': 'cpu'})
            if self.distributed:
                self.model.module.load_state_dict(checkpoint['state_dict'])
            else:
                self.model.load_state_dict(checkpoint['state_dict'])
            self.fp_optimizer.initialize_model(self.model)
            self.optimizer.load_state_dict(checkpoint['optimizer'])
            self.scheduler.load_state_dict(checkpoint['scheduler'])
            self.epoch = checkpoint['epoch']
            self.loss = checkpoint['loss']
            logging.info(f'Loaded checkpoint {filename} (epoch {self.epoch})')
        else:
            logging.error(f'Invalid checkpoint: {filename}')

    def save(self, identifier=None, is_best=False, save_all=False):
        """
        Stores checkpoint to a file.

        :param identifier: identifier for periodic checkpoint
        :param is_best: if True stores checkpoint to 'model_best.pth'
        :param save_all: if True stores checkpoint after completed training
            epoch
        """
        def write_checkpoint(state, filename):
            filename = os.path.join(self.save_path, filename)
            logging.info(f'Saving model to {filename}')
            torch.save(state, filename)

        if self.distributed:
            model_state = self.model.module.state_dict()
        else:
            model_state = self.model.state_dict()

        state = {
            'epoch': self.epoch,
            'state_dict': model_state,
            'optimizer': self.optimizer.state_dict(),
            'scheduler': self.scheduler.state_dict(),
            'loss': getattr(self, 'loss', None),
        }
        state = dict(list(state.items()) + list(self.save_info.items()))

        if identifier is not None:
            filename = self.checkpoint_filename % identifier
            write_checkpoint(state, filename)

        if is_best:
            filename = 'model_best.pth'
            write_checkpoint(state, filename)

        if save_all:
            filename = f'checkpoint_epoch_{self.epoch:03d}.pth'
            write_checkpoint(state, filename)
コード例 #2
0
class Seq2SeqTrainer:
    """
    Seq2SeqTrainer
    """
    def __init__(self,
                 model,
                 criterion,
                 opt_config,
                 scheduler_config,
                 print_freq=10,
                 save_freq=1000,
                 grad_clip=float('inf'),
                 batch_first=False,
                 save_info={},
                 save_path='.',
                 checkpoint_filename='checkpoint%s.pth',
                 keep_checkpoints=5,
                 math='fp32',
                 cuda=True,
                 distributed=False,
                 distributed_overlap_allreduce=False,
                 distributed_overlap_allreduce_messagesize=1e7,
                 intra_epoch_eval=0,
                 translator=None,
                 verbose=False,
                 arch="gnmt"):
        super(Seq2SeqTrainer, self).__init__()
        self.model = model
        self.criterion = criterion
        self.epoch = 0
        self.save_info = save_info
        self.save_path = save_path
        self.save_freq = save_freq
        self.save_counter = 0
        self.checkpoint_filename = checkpoint_filename
        self.checkpoint_counter = cycle(range(keep_checkpoints))
        self.opt_config = opt_config
        self.cuda = cuda
        self.distributed = distributed
        self.print_freq = print_freq
        self.batch_first = batch_first
        self.verbose = verbose
        self.loss = None
        self.translator = translator
        self.intra_epoch_eval = intra_epoch_eval
        self.arch = arch

        self.retain_allreduce_buffers = True
        self.gradient_average = False

        if cuda:
            self.model = self.model.cuda()
            self.criterion = self.criterion.cuda()

        if math == 'fp16':
            self.model = self.model.half()
            if distributed:
                # self.model = apex.parallel.DistributedDataParallel(self.model, message_size=10000000, delay_allreduce=True)
                self.model = apex.parallel.DistributedDataParallel(
                    self.model,
                    message_size=distributed_overlap_allreduce_messagesize,
                    delay_allreduce=(not distributed_overlap_allreduce),
                    retain_allreduce_buffers=self.retain_allreduce_buffers,
                    gradient_average=self.gradient_average)
            self.fp_optimizer = Fp16Optimizer(self.model, grad_clip)
            params = [self.fp_optimizer.fp32_params]
        elif math == 'fp32':
            if distributed:
                # self.model = apex.parallel.DistributedDataParallel(self.model, message_size=10000000, delay_allreduce=True)
                self.model = apex.parallel.DistributedDataParallel(
                    self.model,
                    message_size=distributed_overlap_allreduce_messagesize,
                    delay_allreduce=(not distributed_overlap_allreduce))
            self.fp_optimizer = Fp32Optimizer(self.model, grad_clip)
            params = self.model.parameters()

        opt_name = opt_config.pop('optimizer')
        if opt_name == 'FusedAdam':
            self.optimizer = apex.optimizers.FusedAdam(params, **opt_config)
        else:
            self.optimizer = torch.optim.__dict__[opt_name](params,
                                                            **opt_config)

        gnmt_print(key=mlperf_log.OPT_NAME, value=mlperf_log.ADAM)
        gnmt_print(key=mlperf_log.OPT_LR, value=opt_config['lr'])
        gnmt_print(key=mlperf_log.OPT_HP_ADAM_BETA1,
                   value=self.optimizer.defaults['betas'][0])
        gnmt_print(key=mlperf_log.OPT_HP_ADAM_BETA2,
                   value=self.optimizer.defaults['betas'][1])
        gnmt_print(key=mlperf_log.OPT_HP_ADAM_EPSILON,
                   value=self.optimizer.defaults['eps'])

        self.scheduler = WarmupMultiStepLR(
            self.optimizer,
            lr_method=scheduler_config["lr_method"],
            warmup_iters=scheduler_config["warmup_iters"],
            remain_steps=scheduler_config["remain_steps"],
            decay_steps=scheduler_config["decay_steps"])

        logging.info(f'Using optimizer: {self.optimizer}')

    def iterate(self, src, tgt, update=True, training=True):
        src, src_length = src
        tgt, tgt_length = tgt
        src_length = torch.LongTensor(src_length)
        tgt_length = torch.LongTensor(tgt_length)

        num_toks = {}
        num_toks['tgt'] = int(sum(tgt_length - 1))
        num_toks['src'] = int(sum(src_length))

        if self.cuda:
            src = src.cuda()
            src_length = src_length.cuda()
            tgt = tgt.cuda()

        if self.batch_first:
            output = self.model(src, src_length, tgt[:, :-1])
            tgt_labels = tgt[:, 1:]
            T, B = output.size(1), output.size(0)
        else:
            output = self.model(src, src_length, tgt[:-1])
            tgt_labels = tgt[1:]
            T, B = output.size(0), output.size(1)

        loss = self.criterion(output.view(T * B, -1),
                              tgt_labels.contiguous().view(-1))

        loss_per_batch = loss.item()
        loss /= B

        if training:
            self.fp_optimizer.step(loss, self.optimizer, self.scheduler,
                                   update)

        loss_per_token = loss_per_batch / num_toks['tgt']
        loss_per_sentence = loss_per_batch / B

        return loss_per_token, loss_per_sentence, num_toks

    def feed_data(self, data_loader, training=True):
        """
        Runs training or validation on batches from data_loader.

        :param data_loader: data loader
        :param training: if True runs training else runs validation
        """
        if training:
            assert self.optimizer is not None
            eval_fractions = np.linspace(0, 1, self.intra_epoch_eval + 2)[1:-1]
            eval_iters = (eval_fractions * len(data_loader)).astype(int)
            eval_iters = set(eval_iters)

        batch_time = AverageMeter()
        data_time = AverageMeter()
        losses_per_token = AverageMeter()
        losses_per_sentence = AverageMeter()

        tot_tok_time = AverageMeter()
        src_tok_time = AverageMeter()
        tgt_tok_time = AverageMeter()

        batch_size = data_loader.batch_size
        layer_timestamps = []
        verbose = True

        module_whitelist = ["EmuBidirLSTM", "RecurrentAttention", "Classifier"]

        for i, (src, tgt) in enumerate(data_loader):
            break
        (src, src_length) = src
        (tgt, tgt_length) = tgt
        src_length = torch.LongTensor(src_length).cuda()
        src = src.cuda()
        tgt = tgt.cuda()
        model_input = (src, src_length, tgt[:-1])
        summary = torchsummary.summary(model=self.model,
                                       module_whitelist=module_whitelist,
                                       model_input=model_input,
                                       verbose=True)

        end = time.time()
        NUM_STEPS_TO_PROFILE = 100  # profile 100 steps
        for i, (src, tgt) in enumerate(data_loader):
            self.save_counter += 1
            # measure data loading time
            data_time.update(time.time() - end)

            with torchprofiler.Profiling(self.model, module_whitelist) as p:
                # do a train/evaluate iteration
                stats = self.iterate(src, tgt, training=training)
                loss_per_token, loss_per_sentence, num_toks = stats
            print(str(p))
            layer_timestamps.append(p.processed_times())

            # measure accuracy and record loss
            losses_per_token.update(loss_per_token, num_toks['tgt'])
            losses_per_sentence.update(loss_per_sentence, batch_size)

            # measure elapsed time
            elapsed = time.time() - end
            batch_time.update(elapsed)
            src_tok_time.update(num_toks['src'] / elapsed)
            tgt_tok_time.update(num_toks['tgt'] / elapsed)
            tot_num_toks = num_toks['tgt'] + num_toks['src']
            tot_tok_time.update(tot_num_toks / elapsed)
            self.loss = losses_per_token.avg

            if training and i in eval_iters:
                test_bleu, _ = self.translator.run(calc_bleu=True,
                                                   epoch=self.epoch,
                                                   iteration=i)

                log = []
                log += [f'TRAIN [{self.epoch}][{i}/{len(data_loader)}]']
                log += [f'BLEU: {test_bleu:.2f}']
                log = '\t'.join(log)
                logging.info(log)

                self.model.train()
                self.preallocate(data_loader, training=True)

            if i % self.print_freq == 0:
                phase = 'TRAIN' if training else 'VALIDATION'
                log = []
                log += [f'{phase} [{self.epoch}][{i}/{len(data_loader)}]']
                log += [f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})']
                log += [f'Data {data_time.val:.5f} ({data_time.avg:.5f})']
                log += [
                    f'Tok/s {tot_tok_time.val:.0f} ({tot_tok_time.avg:.0f})'
                ]
                if self.verbose:
                    log += [
                        f'Src tok/s {src_tok_time.val:.0f} ({src_tok_time.avg:.0f})'
                    ]
                    log += [
                        f'Tgt tok/s {tgt_tok_time.val:.0f} ({tgt_tok_time.avg:.0f})'
                    ]
                    log += [
                        f'Loss/sentence {losses_per_sentence.val:.1f} ({losses_per_sentence.avg:.1f})'
                    ]
                log += [
                    f'Loss/tok {losses_per_token.val:.4f} ({losses_per_token.avg:.4f})'
                ]
                lr = [
                    param_group['lr']
                    for param_group in self.optimizer.param_groups
                ]
                log += [f'Learning Rate {lr}']
                log = '\t'.join(log)
                logging.info(log)

            if i >= NUM_STEPS_TO_PROFILE:
                break

            save_chkpt = (self.save_counter %
                          self.save_freq) == (self.save_freq - 1)
            if training and save_chkpt:
                self.save_counter = 0
                self.save_info['iteration'] = i
                identifier = next(self.checkpoint_counter, -1)
                if identifier != -1:
                    with sync_workers() as rank:
                        if rank == 0:
                            self.save(identifier=identifier)

            end = time.time()

        if verbose:
            print(
                "\n==========================================================")
            print("Layer Type    Forward Time (ms)    Backward Time (ms)")
            print("==========================================================")

        tot_accounted_time = 0.0
        per_layer_times = []
        for i in range(len(layer_timestamps[0])):
            layer_type = str(layer_timestamps[0][i][0])
            layer_forward_time_sum = 0.0
            layer_backward_time_sum = 0.0
            for j in range(len(layer_timestamps)):
                layer_forward_time_sum += (layer_timestamps[j][i][2] / 1000)
                layer_backward_time_sum += (layer_timestamps[j][i][5] / 1000)
            per_layer_times.append(
                (layer_type, layer_forward_time_sum / len(layer_timestamps),
                 layer_backward_time_sum / len(layer_timestamps)))
            if verbose:
                print(per_layer_times[-1][0], per_layer_times[-1][1],
                      per_layer_times[-1][2])
            tot_accounted_time += (per_layer_times[-1][1] +
                                   per_layer_times[-1][2])

        print("Total accounted time: %.3f ms" % tot_accounted_time)

        summary_i = 0
        per_layer_times_i = 0
        last_summary_i = -1
        last_per_layer_times_i = -1
        while len(per_layer_times) > 0:
            per_layer_time = per_layer_times.pop(0)
            for summary_i in range(len(summary)):
                summary_elem = summary[summary_i]
                if str(summary_elem['layer_name']) != str(per_layer_time[0]):
                    continue
                if 'forward_time' in summary_elem and 'backward_time' in summary_elem:
                    continue
                summary_elem['forward_time'] = per_layer_time[1]
                summary_elem['backward_time'] = per_layer_time[2]
                break

        if training:
            create_graph(self.model, module_whitelist, (src, tgt), summary,
                         os.path.join("profiles", self.arch))

        tot_tok_time.reduce('sum')
        losses_per_token.reduce('mean')

        return losses_per_token.avg, tot_tok_time.avg

    def preallocate(self, data_loader, training):
        """
        Generates maximum sequence length batch and runs forward and backward
        pass without updating model parameters.

        :param data_loader: data loader
        :param training: if True preallocates memory for backward pass
        """
        batch_size = data_loader.batch_size
        max_len = data_loader.dataset.max_len

        src_length = [max_len] * batch_size
        tgt_length = [max_len] * batch_size

        if self.batch_first:
            shape = (batch_size, max_len)
        else:
            shape = (max_len, batch_size)

        src = torch.full(shape, 4, dtype=torch.int64)
        tgt = torch.full(shape, 4, dtype=torch.int64)
        src = src, src_length
        tgt = tgt, tgt_length
        self.iterate(src, tgt, update=False, training=training)

    def optimize(self, data_loader):
        """
        Sets model in training mode, preallocates memory and runs training on
        data provided by data_loader.

        :param data_loader: data loader
        """
        torch.set_grad_enabled(True)
        self.model.train()
        torch.cuda.empty_cache()
        self.preallocate(data_loader, training=True)
        output = self.feed_data(data_loader, training=True)
        torch.cuda.empty_cache()
        return output

    def evaluate(self, data_loader):
        """
        Sets model in eval mode, disables gradients, preallocates memory and
        runs validation on data provided by data_loader.

        :param data_loader: data loader
        """
        torch.set_grad_enabled(False)
        self.model.eval()
        torch.cuda.empty_cache()
        self.preallocate(data_loader, training=False)
        output = self.feed_data(data_loader, training=False)
        torch.cuda.empty_cache()
        return output

    def load(self, filename):
        """
        Loads checkpoint from filename.

        :param filename: path to the checkpoint file
        """
        if os.path.isfile(filename):
            checkpoint = torch.load(filename, map_location={'cuda:0': 'cpu'})
            self.model.load_state_dict(checkpoint['state_dict'])
            self.fp_optimizer.initialize_model(self.model)
            self.optimizer.load_state_dict(checkpoint['optimizer'])
            self.scheduler.load_state_dict(checkpoint['scheduler'])
            self.epoch = checkpoint['epoch']
            self.loss = checkpoint['loss']
            logging.info(f'Loaded checkpoint {filename} (epoch {self.epoch})')
        else:
            logging.error(f'Invalid checkpoint: {filename}')

    def save(self, identifier=None, is_best=False, save_all=False):
        """
        Stores checkpoint to a file.

        :param identifier: identifier for periodic checkpoint
        :param is_best: if True stores checkpoint to 'model_best.pth'
        :param save_all: if True stores checkpoint after completed training
            epoch
        """
        def write_checkpoint(state, filename):
            filename = os.path.join(self.save_path, filename)
            logging.info(f'Saving model to {filename}')
            torch.save(state, filename)

        state = {
            'epoch': self.epoch,
            'state_dict': self.model.state_dict(),
            'optimizer': self.optimizer.state_dict(),
            'scheduler': self.scheduler.state_dict(),
            'loss': getattr(self, 'loss', None),
        }
        state = dict(list(state.items()) + list(self.save_info.items()))

        if identifier is not None:
            filename = self.checkpoint_filename % identifier
            write_checkpoint(state, filename)

        if is_best:
            filename = 'model_best.pth'
            write_checkpoint(state, filename)

        if save_all:
            filename = f'checkpoint_epoch_{self.epoch:03d}.pth'
            write_checkpoint(state, filename)