コード例 #1
0
ファイル: data.py プロジェクト: borm22244/Conditioning-RNN
 def __init__(self, root, verbose=False):
     assert os.path.isdir(root), root
     paths = utils.find_files_by_extensions(root, ['.data'])
     self.root = root
     self.samples = []
     self.seqlens = []
     if verbose:
         paths = Bar(root).iter(list(paths))
     for path in paths:
         eventseq, controlseq = torch.load(path)
         controlseq = ControlSeq.recover_compressed_array(controlseq)
         assert len(eventseq) == len(controlseq)
         self.samples.append((eventseq, controlseq))
         self.seqlens.append(len(eventseq))
     self.avglen = np.mean(self.seqlens)
コード例 #2
0
ファイル: generate.py プロジェクト: chi6/music_generation
def main(_):
    if os.path.isfile(FLAGS.control) or os.path.isdir(FLAGS.control):
        if os.path.isdir(FLAGS.control):
            files = list(utils.find_files_by_extensions(FLAGS.control))
            assert len(files) > 0, 'no file in "{control}"'.format(
                control=FLAGS.control)
            control = np.random.choice(files)
        events, compressed_controls = torch.load(FLAGS.control)
        controls = ControlSeq.recover_compressed_array(compressed_controls)
        max_len = FLAGS.max_length
        if FLAGS.max_length == 0:
            max_len = controls.shape[0]

        control = np.expand_dims(controls, 1).repeat(1, 1)
        control = 'control sequence from "{control}"'.format(control=control)

    assert max_len > 0, 'either max length or control sequence length should be given'

    #FLAGS.start_string = FLAGS.start_string.decode('utf-8')

    if os.path.isdir(FLAGS.checkpoint_path):
        FLAGS.checkpoint_path =\
            tf.train.latest_checkpoint(FLAGS.checkpoint_path)

    model = CharRNN(EventSeq.dim(),
                    ControlSeq.dim(),
                    sampling=True,
                    lstm_size=FLAGS.lstm_size,
                    num_layers=FLAGS.num_layers,
                    use_embedding=FLAGS.use_embedding,
                    embedding_size=FLAGS.embedding_size)
    model.sess.run(tf.global_variables_initializer())
    model.load(FLAGS.checkpoint_path)

    outputs = model.sample(1000,
                           prime=events[0:100],
                           vocab_size=EventSeq.dim())

    outputs = outputs.reshape([-1, 1])
    print(outputs)
    name = 'output-{i:03d}.mid'.format(i=0)
    path = os.path.join("output/", name)
    n_notes = utils.event_indeces_to_midi_file(outputs[:, 0], path)
    print('===> {path} ({n_notes} notes)'.format(path=path, n_notes=n_notes))
コード例 #3
0
if use_beam_search:
    greedy_ratio = 'DISABLED'
else:
    beam_size = 'DISABLED'

assert os.path.isfile(sess_path), f'"{sess_path}" is not a file'

if control is not None:
    if os.path.isfile(control) or os.path.isdir(control):
        if os.path.isdir(control):
            files = list(utils.find_files_by_extensions(control))
            assert len(files) > 0, f'no file in "{control}"'
            control = np.random.choice(files)
        _, compressed_controls = torch.load(control)
        controls = ControlSeq.recover_compressed_array(compressed_controls)
        if max_len == 0:
            max_len = controls.shape[0]
        controls = torch.tensor(controls, dtype=torch.float32)
        controls = controls.unsqueeze(1).repeat(1, batch_size, 1).to(device)
        control = f'control sequence from "{control}"'

    else:
        pitch_histogram, note_density = control.split(';')
        pitch_histogram = list(filter(len, pitch_histogram.split(',')))
        if len(pitch_histogram) == 0:
            pitch_histogram = np.ones(12) / 12
        else:
            pitch_histogram = np.array(list(map(float, pitch_histogram)))
            assert pitch_histogram.size == 12
            assert np.all(pitch_histogram >= 0)