def performOpen(self, options={}): """Perform the operation of opening the instrument connection.""" # init variables self.sequence = None self.sequence_to_waveforms = SequenceToWaveforms() self.waveforms = {} # always create a sequence at startup name = self.getValue('Sequence') self.sendValueToOther('Sequence', name)
class Driver(LabberDriver): """This class implements a multi-qubit pulse generator.""" def performOpen(self, options={}): """Perform the operation of opening the instrument connection.""" # init variables self.sequence = None self.sequence_to_waveforms = SequenceToWaveforms() self.waveforms = {} # always create a sequence at startup name = self.getValue('Sequence') self.sendValueToOther('Sequence', name) def performSetValue(self, quant, value, sweepRate=0.0, options={}): """Perform the Set Value instrument operation.""" # only do something here if changing the sequence type if quant.name == 'Sequence': # create new sequence if sequence type changed new_type = SEQUENCES[value] if not isinstance(self.sequence, new_type): # create a new sequence object if value == 'Custom': # for custom python files path = self.getValue('Custom Python file') (path, modName) = os.path.split(path) sys.path.append(path) modName = modName.split('.py')[0] # strip suffix mod = importlib.import_module(modName) # the custom sequence class has to be named # 'CustomSequence' if not isinstance(self.sequence, mod.CustomSequence): self.sequence = mod.CustomSequence() else: # standard built-in sequence self.sequence = new_type() elif (quant.name == 'Custom Python file' and self.getValue('Sequence') == 'Custom'): # for custom python files path = self.getValue('Custom Python file') (path, modName) = os.path.split(path) modName = modName.split('.py')[0] # strip suffix sys.path.append(path) mod = importlib.import_module(modName) # the custom sequence class has to be named 'CustomSequence' if not isinstance(self.sequence, mod.CustomSequence): self.sequence = mod.CustomSequence() return value def performGetValue(self, quant, options={}): """Perform the Get Value instrument operation.""" # ignore if no sequence if self.sequence is None: return quant.getValue() # check type of quantity if (quant.name.startswith('Voltage, QB') or quant.name.startswith('Single-shot, QB')): # perform demodulation, check if config is updated if self.isConfigUpdated(): # update sequence object with current driver configuation config = self.instrCfg.getValuesDict() self.sequence.set_parameters(config) self.sequence_to_waveforms.set_parameters(config) # get qubit index and waveforms n = int(quant.name.split(', QB')[1]) - 1 demod_iq = self.getValue('Demodulation - IQ') if demod_iq: signal_i = self.getValue('Demodulation - Input I') signal_q = self.getValue('Demodulation - Input Q') else: signal = self.getValue('Demodulation - Input') ref = self.getValue('Demodulation - Reference') # perform demodulation if demod_iq: value = self.sequence_to_waveforms.readout.demodulate_iq( n, signal_i, signal_q, ref) else: value = self.sequence_to_waveforms.readout.demodulate( n, signal, ref) # average values if not single-shot if not quant.name.startswith('Single-shot, QB'): value = np.mean(value) elif quant.isVector(): # traces, check if waveform needs to be re-calculated if self.isConfigUpdated(): # update sequence object with current driver configuation config = self.instrCfg.getValuesDict() self.sequence.set_parameters(config) self.sequence_to_waveforms.set_parameters(config) # check if calculating multiple sequences, for randomization if config.get('Output multiple sequences', False): # create multiple randomizations, store in memory n_call = int(config.get('Number of multiple sequences', 1)) calls = [] for n in range(n_call): config['Randomize'] += 1 calls.append( copy.deepcopy( self.sequence_to_waveforms.get_waveforms( self.sequence.get_sequence(config)))) # after all calls are done, convert output to matrix form self.waveforms = dict() n_qubit = self.sequence.n_qubit # Align RB waveforms to end align_RB_to_end = config.get('Align RB waveforms to end', False) # start with xy, z and gate waveforms, list of data for key in ['xy', 'z', 'gate']: # get size of longest waveform self.waveforms[key] = [] for n in range(n_qubit): length = max([len(call[key][n]) for call in calls]) # build matrix datatype = calls[0][key][n].dtype data = np.zeros((n_call, length), dtype=datatype) for m, call in enumerate(calls): if align_RB_to_end: data[m][-len(call[key][n]):] = call[key][n] else: data[m][:len(call[key][n])] = call[key][n] self.waveforms[key].append(data) # same for readout waveforms for key in ['readout_trig', 'readout_iq']: length = max([len(call[key]) for call in calls]) datatype = calls[0][key].dtype data = np.zeros((n_call, length), dtype=datatype) for m, call in enumerate(calls): if align_RB_to_end: data[m][-len(call[key]):] = call[key] else: data[m][:len(call[key])] = call[key] self.waveforms[key] = data else: # normal operation, calcluate waveforms self.waveforms = self.sequence_to_waveforms.get_waveforms( self.sequence.get_sequence(config)) # get correct data from waveforms stored in memory value = self.getWaveformFromMemory(quant) else: # for all other cases, do nothing value = quant.getValue() return value def getWaveformFromMemory(self, quant): """Return data from already calculated waveforms.""" # check which data to return if quant.name[-1] in ('1', '2', '3', '4', '5', '6', '7', '8', '9'): # get name and number of qubit waveform asked for name = quant.name[:-1] n = int(quant.name[-1]) - 1 # get correct vector if name == 'Trace - I': if self.getValue('Swap IQ'): value = self.waveforms['xy'][n].imag else: value = self.waveforms['xy'][n].real elif name == 'Trace - Q': if self.getValue('Swap IQ'): value = self.waveforms['xy'][n].real else: value = self.waveforms['xy'][n].imag elif name == 'Trace - Z': value = self.waveforms['z'][n] elif name == 'Trace - G': value = self.waveforms['gate'][n] elif quant.name == 'Trace - Readout trig': value = self.waveforms['readout_trig'] elif quant.name == 'Trace - Readout I': value = self.waveforms['readout_iq'].real elif quant.name == 'Trace - Readout Q': value = self.waveforms['readout_iq'].imag # return data as dict with sampling information dt = 1 / self.sequence_to_waveforms.sample_rate value = quant.getTraceDict(value, dt=dt) return value
class Driver(LabberDriver): """This class implements a multi-qubit pulse generator.""" def performOpen(self, options={}): """Perform the operation of opening the instrument connection.""" # init variables self.sequence = None self.sequence_to_waveforms = SequenceToWaveforms() self.waveforms = {} # always create a sequence at startup name = self.getValue('Sequence') self.sendValueToOther('Sequence', name) def performSetValue(self, quant, value, sweepRate=0.0, options={}): """Perform the Set Value instrument operation.""" # only do something here if changing the sequence type if quant.name == 'Sequence': # create new sequence if sequence type changed new_type = SEQUENCES[value] if not isinstance(self.sequence, new_type): # create a new sequence object if value == 'Custom': # for custom python files path = self.getValue('Custom Python file') (path, modName) = os.path.split(path) sys.path.append(path) modName = modName.split('.py')[0] # strip suffix mod = importlib.import_module(modName) # the custom sequence class has to be named # 'CustomSequence' if not isinstance(self.sequence, mod.CustomSequence): self.sequence = mod.CustomSequence() else: # standard built-in sequence self.sequence = new_type() elif (quant.name == 'Custom Python file' and self.getValue('Sequence') == 'Custom'): # for custom python files path = self.getValue('Custom Python file') (path, modName) = os.path.split(path) modName = modName.split('.py')[0] # strip suffix sys.path.append(path) mod = importlib.import_module(modName) # the custom sequence class has to be named 'CustomSequence' if not isinstance(self.sequence, mod.CustomSequence): self.sequence = mod.CustomSequence() return value def performGetValue(self, quant, options={}): """Perform the Get Value instrument operation.""" # ignore if no sequence if self.sequence is None: return quant.getValue() # check type of quantity if (quant.name.startswith('Voltage, QB') or quant.name.startswith('Single-shot, QB')): # perform demodulation, check if config is updated if self.isConfigUpdated(): # update sequence object with current driver configuation config = self.instrCfg.getValuesDict() self.sequence.set_parameters(config) self.sequence_to_waveforms.set_parameters(config) # get qubit index and waveforms n = int(quant.name.split(', QB')[1]) - 1 demod_iq = self.getValue('Demodulation - IQ') if demod_iq: signal_i = self.getValue('Demodulation - Input I') signal_q = self.getValue('Demodulation - Input Q') else: signal = self.getValue('Demodulation - Input') ref = self.getValue('Demodulation - Reference') # perform demodulation if demod_iq: value = self.sequence_to_waveforms.readout.demodulate_iq( n, signal_i, signal_q, ref) else: value = self.sequence_to_waveforms.readout.demodulate( n, signal, ref) # average values if not single-shot if not quant.name.startswith('Single-shot, QB'): value = np.mean(value) elif quant.isVector(): # traces, check if waveform needs to be re-calculated if self.isConfigUpdated(): # update sequence object with current driver configuation config = self.instrCfg.getValuesDict() self.sequence.set_parameters(config) self.sequence_to_waveforms.set_parameters(config) # calcluate waveforms self.waveforms = self.sequence_to_waveforms.get_waveforms( self.sequence.get_sequence(config)) # get correct data from waveforms stored in memory value = self.getWaveformFromMemory(quant) else: # for all other cases, do nothing value = quant.getValue() return value def getWaveformFromMemory(self, quant): """Return data from already calculated waveforms.""" # check which data to return if quant.name[-1] in ('1', '2', '3', '4', '5', '6', '7', '8', '9'): # get name and number of qubit waveform asked for name = quant.name[:-1] n = int(quant.name[-1]) - 1 # get correct vector if name == 'Trace - I': if self.getValue('Swap IQ'): value = self.waveforms['xy'][n].imag else: value = self.waveforms['xy'][n].real elif name == 'Trace - Q': if self.getValue('Swap IQ'): value = self.waveforms['xy'][n].real else: value = self.waveforms['xy'][n].imag elif name == 'Trace - Z': value = self.waveforms['z'][n] elif name == 'Trace - G': value = self.waveforms['gate'][n] elif quant.name == 'Trace - Readout trig': value = self.waveforms['readout_trig'] elif quant.name == 'Trace - Readout I': value = self.waveforms['readout_iq'].real elif quant.name == 'Trace - Readout Q': value = self.waveforms['readout_iq'].imag # return data as dict with sampling information dt = 1 / self.sequence_to_waveforms.sample_rate value = quant.getTraceDict(value, dt=dt) return value