def test_resampletomean(): # ******* setting up DINTModel dm = SchemaMatcher(host="localhost", port=8080) logging.info("Cleaning models from DINT server") for m in dm.models: dm.remove_model(m) logging.info("Cleaning datasets from DINT server") for ds in dm.datasets: dm.remove_dataset(ds) m1 = create_dint_model(dm, "full", "ResampleToMean") m2 = create_dint_model(dm, "single", "ResampleToMean") m3 = create_dint_model(dm, "full_chardist", "ResampleToMean") m4 = create_dint_model(dm, "noheader", "ResampleToMean") m5 = create_dint_model(dm, "chardistonly", "ResampleToMean") models = [m1, m2, m3, m4, m5] loo_experiment = Experiment( models, experiment_type="leave_one_out", description="plain loo", result_csv=os.path.join('results', "performance_dint_resampletomean.csv"), debug_csv=os.path.join("results", "debug_dint_resampletomean.csv")) loo_experiment.run()
def test_models_holdout(): # ******* setting up DINTModel dm = SchemaMatcher(host="localhost", port=8080) logging.info("Cleaning models from DINT server") for m in dm.models: dm.remove_model(m) logging.info("Cleaning datasets from DINT server") for ds in dm.datasets: dm.remove_dataset(ds) m1 = create_dint_model(dm, "full", "NoResampling") m2 = create_dint_model(dm, "single", "NoResampling") m3 = create_dint_model(dm, "chardist", "NoResampling") m4 = create_dint_model(dm, "noheader", "NoResampling") m5 = create_dint_model(dm, "chardistonly", "NoResampling") rf_model = NNetModel(['rf@charfreq'], 'rf@charfreq model: no headers', add_headers=False, p_header=0, debug_csv=os.path.join("results", "debug_nnet_rf_holdout.csv")) models = [m1, m2, m3, m4, m5, rf_model] rhold_experiment = Experiment( models, experiment_type="repeated_holdout", description="repeated_holdout_0.5_10", result_csv=os.path.join('results', "performance_models_holdout.csv"), debug_csv=os.path.join("results", "debug_holdout.csv"), holdout=0.5, num=10) rhold_experiment.run()
datasets[1].column('Bureau of Meteorology station number'): 'station-number', }, resampling_strategy=resampling_strategy) print(model.summary) print() print("Now we should see the new model in the list") print(dm.models) # # remove a model... # print() print("We can also remove models") dm.remove_model(model.id) print(dm.models) #============== # # Let's evaluate a model... # #============== # # User labelled data # training_data = { datasets[0].column('Quality'): 'data-quality', datasets[0].column('Year'): 'year', datasets[0].column('Month'): 'month',