コード例 #1
0
 def test_simpleNormalizer(self):
     """Verify that the factory sets min and max from a dataset."""
     out = normalizerFactory(self.data, None, False, None, None)
     self._testNormalizer(out)
コード例 #2
0
 def test_normSubclass(self):
     """Verify that passing a subclass of Normalize is allowed."""
     emin, emax = 5, 100
     norm = LogNorm(vmin=emin, vmax=emax)
     out = normalizerFactory(self.data, norm, False, None, None)
     self.assertIs(norm, out)
コード例 #3
0
 def test_passNormaliser(self):
     """Verify that passing an instance of Normalize is allowed."""
     emin, emax = 5, 100
     norm = Normalize(vmin=emin, vmax=emax)
     out = normalizerFactory(self.data, norm, False, None, None)
     self.assertIs(norm, out)
コード例 #4
0
 def test_positiveLogNorm(self):
     """Verify the logScaling for a positive dataset."""
     self.data[self.data <= 0] = 1
     out = normalizerFactory(self.data, None, True, None, None)
     self._testNormalizer(out)
コード例 #5
0
def cartMeshPlot(data,
                 xticks=None,
                 yticks=None,
                 ax=None,
                 cmap=None,
                 logColor=False,
                 normalizer=None,
                 cbarLabel=None,
                 **kwargs):
    """
    Create a cartesian mesh plot of the data

    Parameters
    ----------
    data: numpy.array
        2D array of data to be plotted
    xticks: iterable or None
    yticks: iterable or None
        Values corresponding to lower x/y boundary of meshes.
        If not given, treat this as a matrix plot like
        :func:`matplotlib.pyplot.imshow`.
        If given, they should contain one more item than
        number of elements in their dimension to give dimensions
        for all meshes.
    {ax}
    {cmap}
    logColor: bool
        If true, apply a logarithmic coloring
    normalizer: callable or :py:class:`matplotlib.colors.Normalize`
        Custom normalizer for this plot.
        If an instance of :py:class:`matplotlib.colors.Normalize`,
    normalizer: callable or :py:class:`matplotlib.colors.Normalize`
        Custom normalizer for this plot.
        If an instance of :py:class:`matplotlib.colors.Normalize`,
        use directly.  Otherwise, assume a callable object and call as
        ``norm = normalizer(data, xticks, yticks)``
    cbarLabel: None or str
        Label to apply to colorbar
    {kwargs} :py:func:`matplotlib.pyplot.pcolormesh` or
        :func:`matplotlib.pyplot.imshow` if ``xticks`` and ``yticks``
        are ``None``

    Returns
    -------
    {rax}

    Raises
    ------
    ValueError:
        If ``logColor`` and data contains negative quantities
    TypeError:
        If only one of ``xticks`` or ``yticks`` is ``None``.

    Examples
    --------
    .. plot::
        :include-source:

        >>> from serpentTools.plot import cartMeshPlot
        >>> from numpy import arange
        >>> data = arange(100).reshape(10, 10)
        >>> x = y = arange(11)
        >>> cartMeshPlot(data, x, y, cbarLabel='Demo')

    .. plot::
        :include-source:

        >>> from serpentTools.plot import cartMeshPlot
        >>> from numpy import  eye
        >>> data = eye(10)
        >>> for indx in range(10):
        ...     data[indx] *= indx
        >>> cartMeshPlot(data, logColor=True)

    All values less than or equal to zero are excluded from the
    color normalization. The ``logColor`` argument works well for
    plotting sparse matrices, as the zero-valued indices can be
    identified without obscuring the trends presented in the
    non-zero data.

    See Also
    --------
    * :func:`matplotlib.pyplot.pcolormesh`
    * :func:`matplotlib.pyplot.imshow`
    * :class:`matplotlib.colors.Normalize`

    """
    assert len(data.shape) == 2, 'Mesh plot requires 2D data, ' \
                                 'not {}'.format(data.shape)
    if ((xticks is None and yticks is not None)
            or (xticks is None and yticks is not None)):
        raise TypeError("Both X and Y must be None, or not None.")

    if kwargs.get('logScale', None) is not None:
        warning("Passing logScale is no longer supported. "
                "Use logColor instead.")
        logColor = bool(logColor or kwargs['logScale'])

    if logColor and data.min() < 0:
        raise ValueError("Will not apply log normalization to data with "
                         "negative elements")
    norm = normalizerFactory(data, normalizer, logColor, xticks, yticks)

    # make the plot
    ax = ax or pyplot.gca()
    if xticks is None:
        mappable = ax.imshow(data, cmap=cmap, norm=norm)
    else:
        X, Y = meshgrid(xticks, yticks)
        mappable = ax.pcolormesh(X, Y, data, cmap=cmap, norm=norm, **kwargs)
    addColorbar(ax, mappable, norm, cbarLabel)

    return ax
コード例 #6
0
    def hexPlot(self,
                what='tallies',
                fixed=None,
                ax=None,
                cmap=None,
                logColor=False,
                xlabel=None,
                ylabel=None,
                logx=False,
                logy=False,
                loglog=False,
                title=None,
                normalizer=None,
                cbarLabel=None,
                borderpad=2.5,
                **kwargs):
        """
        Create and return a hexagonal mesh plot.

        Parameters
        ----------
        what: {'tallies', 'errors', 'scores'}
            Quantity to plot
        fixed: None or dict
            Dictionary of slicing arguments to pass to :meth:`slice`
        {ax}
        {cmap}
        {logColor}
        {xlabel}
        {ylabel}
        {logx}
        {logy}
        {loglog}
        {title}
        borderpad: int or float
            Percentage of total plot to apply as a border. A value of
            zero means that the extreme edges of the hexagons will touch
            the x and y axis.
        {kwargs} :class:`matplotlib.patches.RegularPolygon`

        Raises
        ------
        AttributeError
            If :attr:`pitch` and :attr:`hexType` are not set.
        """
        borderpad = max(0, float(borderpad))
        if fixed and ('xcoord' in fixed or 'ycoord' in fixed):
            raise KeyError("Refusing to restrict along one of the hexagonal "
                           "dimensions {x/y}coord")
        for attr in {'pitch', 'hexType'}:
            if getattr(self, attr) is None:
                raise AttributeError("{} is not set.".format(attr))

        for key in {'color', 'fc', 'facecolor', 'orientation'}:
            checkClearKwargs(key, 'hexPlot', **kwargs)
        ec = kwargs.get('ec', None) or kwargs.get('edgecolor', None)
        if ec is None:
            ec = 'k'
        kwargs['ec'] = kwargs['edgecolor'] = ec
        if 'figure' in kwargs and kwargs['figure'] is not None:
            fig = kwargs['figure']
            if not isinstance(fig, Figure):
                raise TypeError(
                    "Expected 'figure' to be of type Figure, is {}".format(
                        type(fig)))
            if len(fig.axes) != 1 and not ax:
                raise TypeError("Don't know where to place the figure since"
                                "'figure' argument has multiple axes.")
            if ax and fig.axes and ax not in fig.axes:
                raise IndexError("Passed argument for 'figure' and 'ax', "
                                 "but ax is not attached to figure.")
            ax = ax or (fig.axes[0] if fig.axes else axes())
        alpha = kwargs.get('alpha', None)

        ny = len(self.indexes['ycoord'])
        nx = len(self.indexes['xcoord'])
        data = self.slice(fixed, what)
        if data.shape != (ny, nx):
            raise IndexError("Constrained data does not agree with hexagonal "
                             "grid structure. Coordinate grid: {}. "
                             "Constrained shape: {}".format((ny, nx),
                                                            data.shape))
        nItems = ny * nx
        patches = empty(nItems, dtype=object)
        values = empty(nItems)
        coords = self.grids['COORD']

        ax = ax or axes()
        pos = 0
        xmax, ymax = [
            -inf,
        ] * 2
        xmin, ymin = [
            inf,
        ] * 2
        radius = self.pitch / sqrt(3)

        for xy, val in zip(coords, data.flat):
            values[pos] = val
            h = RegularPolygon(xy, 6, radius, self.__hexRot, **kwargs)
            verts = h.get_verts()
            vmins = verts.min(0)
            vmaxs = verts.max(0)
            xmax = max(xmax, vmaxs[0])
            xmin = min(xmin, vmins[0])
            ymax = max(ymax, vmaxs[1])
            ymin = min(ymin, vmins[1])
            patches[pos] = h
            pos += 1
        normalizer = normalizerFactory(values, normalizer, logColor,
                                       coords[:, 0], coords[:, 1])
        pc = PatchCollection(patches, cmap=cmap, alpha=alpha)
        pc.set_array(values)
        pc.set_norm(normalizer)
        ax.add_collection(pc)

        addColorbar(ax, pc, None, cbarLabel)

        formatPlot(
            ax,
            loglog=loglog,
            logx=logx,
            logy=logy,
            xlabel=xlabel or "X [cm]",
            ylabel=ylabel or "Y [cm]",
            title=title,
        )
        setAx_xlims(ax, xmin, xmax, pad=borderpad)
        setAx_ylims(ax, ymin, ymax, pad=borderpad)

        return ax