コード例 #1
0
    def test_is_correct(self):
        with self.subTest("when higher-scoring team is predicted winner"):
            prediction = Prediction(
                match=self.match,
                ml_model=self.ml_model,
                predicted_winner=self.home_team,
                predicted_margin=50,
            )
            self.assertTrue(prediction.is_correct)

        with self.subTest("when lower-scoring team is predicted winner"):
            prediction = Prediction(
                match=self.match,
                ml_model=self.ml_model,
                predicted_winner=self.away_team,
                predicted_margin=50,
            )
            self.assertFalse(prediction.is_correct)

        with self.subTest("when match is a draw"):
            self.match.teammatch_set.update(score=100)
            prediction = Prediction(
                match=self.match,
                ml_model=self.ml_model,
                predicted_winner=self.away_team,
                predicted_margin=50,
            )

            self.assertTrue(prediction.is_correct)
コード例 #2
0
ファイル: seed_db.py プロジェクト: tipresias/tipresias
    def _make_predictions(self) -> None:
        predictions = self.data_importer.fetch_match_predictions(
            self._year_range, ml_models=[self.ml_model], train_models=True
        )

        for pred in predictions:
            Prediction.update_or_create_from_raw_data(pred)

        if self.verbose == 1:
            print("\nPredictions saved!")
コード例 #3
0
ファイル: tip.py プロジェクト: darrenlawton/tipresias
    def __make_predictions(self, year: int, round_number: int) -> None:
        predictions = self.data_importer.fetch_prediction_data(
            (year, year + 1), round_number=round_number, ml_models=self.ml_models
        )
        home_away_df = pivot_team_matches_to_matches(predictions)

        for pred in home_away_df.to_dict("records"):
            Prediction.update_or_create_from_data(pred)

        if self.verbose == 1:
            print("Predictions saved!\n")
コード例 #4
0
    def test_validation(self):
        with self.subTest("when predicted margin is negative"):
            prediction = Prediction(
                match=self.match,
                ml_model=self.ml_model,
                predicted_winner=self.away_team,
                predicted_margin=-50,
            )

            with self.assertRaises(ValidationError):
                prediction.full_clean()
コード例 #5
0
def main():
    """One-off script to import Footy Tipper predictions to the DB."""
    with open(
        os.path.join(PROJECT_PATH, "data/footy_tipper_predictions_2018.json"),
        "r",
        encoding="utf-8",
    ) as file:
        predictions = json.load(file)

        for pred in predictions:
            Prediction.update_or_create_from_raw_data(pred, future_only=False)
コード例 #6
0
    def __make_predictions(self, year_range: Tuple[int, int]) -> None:
        predictions = self.data_importer.fetch_prediction_data(
            year_range, verbose=self.verbose
        )
        home_away_df = pivot_team_matches_to_matches(predictions)

        for pred in home_away_df.to_dict("records"):
            Prediction.update_or_create_from_data(pred)

        if self.verbose == 1:
            print("\nPredictions saved!")
コード例 #7
0
def update_future_match_predictions(
        predictions: List[CleanPredictionData]) -> None:
    """Update or create prediction records for upcoming matches."""
    future_match_count = Match.objects.filter(
        start_date_time__gt=timezone.now()).count()

    assert future_match_count > 0, (
        "No future matches exist in the DB. Try updating fixture data, "
        "then updating predictions again.")

    for pred in predictions:
        Prediction.update_or_create_from_raw_data(pred, future_only=True)
コード例 #8
0
    def test_clean(self):
        with self.subTest(
                "when predicted margin and win probability are None"):
            prediction = Prediction(
                match=self.match,
                ml_model=self.ml_model,
                predicted_winner=self.away_team,
                predicted_margin=None,
                predicted_win_probability=None,
            )

            with self.assertRaisesMessage(
                    ValidationError,
                    "Prediction must have a predicted_margin or predicted_win_probability.",
            ):
                prediction.clean()

        with self.subTest(
                "when predicted margin and win probability are both numbers"):
            prediction = Prediction(
                match=self.match,
                ml_model=self.ml_model,
                predicted_winner=self.away_team,
                predicted_margin=23,
                predicted_win_probability=0.23,
            )

            with self.assertRaisesMessage(
                    ValidationError,
                    "Prediction cannot have both a predicted_margin and "
                    "predicted_win_probability.",
            ):
                prediction.clean()
コード例 #9
0
ファイル: tip.py プロジェクト: darrenlawton/tipresias
 def __update_predictions_correctness(match: Match) -> None:
     for prediction in match.prediction_set.all():
         prediction.is_correct = Prediction.calculate_whether_correct(
             match, prediction.predicted_winner
         )
         prediction.clean()
         prediction.save()
コード例 #10
0
def main():
    for prediction in Prediction.objects.select_related(
        "match", "predicted_winner"
    ).all():
        prediction.is_correct = Prediction.calculate_whether_correct(
            prediction.match, prediction.predicted_winner
        )
        prediction.save()
コード例 #11
0
ファイル: tip.py プロジェクト: PhillFairclough/tipresias
    def __build_match_prediction(ml_model_record: MLModel,
                                 prediction_data: pd.DataFrame,
                                 match: Match) -> Optional[Prediction]:
        home_team = match.teammatch_set.get(at_home=True).team
        away_team = match.teammatch_set.get(at_home=False).team

        predicted_home_margin = prediction_data.xs(
            home_team.name, level=0)["predicted_margin"].iloc[0]
        predicted_away_margin = prediction_data.xs(
            away_team.name, level=0)["predicted_margin"].iloc[0]

        # predicted_margin is always positive as its always associated with predicted_winner
        predicted_margin = np.mean(
            np.abs([predicted_home_margin, predicted_away_margin]))

        if predicted_home_margin > predicted_away_margin:
            predicted_winner = home_team
        elif predicted_away_margin > predicted_home_margin:
            predicted_winner = away_team
        else:
            raise ValueError(
                "Predicted home and away margins are equal, which is basically impossible, "
                "so figure out what's going on:\n"
                f"home_team = {home_team.name}\n"
                f"away_team = {away_team.name}\n"
                f"data = {prediction_data}")

        prediction_attributes = {"match": match, "ml_model": ml_model_record}

        try:
            prediction = Prediction.objects.get(**prediction_attributes)

            prediction.predicted_margin = predicted_margin
            prediction.predicted_winner = predicted_winner

            prediction.clean_fields()
            prediction.clean()
            prediction.save()

            return None
        except Prediction.DoesNotExist:
            prediction = Prediction(
                predicted_margin=predicted_margin,
                predicted_winner=predicted_winner,
                **prediction_attributes,
            )

            return prediction
コード例 #12
0
    def setUp(self):
        self.maxDiff = None
        self.client = Client(schema)

        home_team = Team(name="Richmond")
        home_team.save()
        away_team = Team(name="Melbourne")
        away_team.save()

        match_datetime = timezone.make_aware(datetime(2018, 5, 5))
        new_match = Match(start_date_time=match_datetime, round_number=5)
        new_match.save()
        match_datetime = timezone.make_aware(datetime(2014, 5, 5))
        old_match = Match(start_date_time=match_datetime, round_number=7)
        old_match.save()

        (TeamMatch(team=home_team, match=new_match, at_home=True,
                   score=150).save())
        (TeamMatch(team=away_team, match=new_match, at_home=False,
                   score=100).save())
        (TeamMatch(team=home_team, match=old_match, at_home=True,
                   score=150).save())
        (TeamMatch(team=away_team, match=old_match, at_home=False,
                   score=100).save())

        ml_model = MLModel(name="test_model")
        ml_model.save()

        new_prediction = Prediction(
            match=new_match,
            ml_model=ml_model,
            predicted_winner=home_team,
            predicted_margin=50,
        )
        new_prediction.save()
        old_prediction = Prediction(
            match=old_match,
            ml_model=ml_model,
            predicted_winner=away_team,
            predicted_margin=50,
        )
        old_prediction.save()
コード例 #13
0
    def test_clean(self):
        with self.subTest("when predicted margin rounds to 0"):
            prediction = Prediction(
                match=self.match,
                ml_model=self.ml_model,
                predicted_winner=self.away_team,
                predicted_margin=0.2,
            )

            prediction.clean()
            self.assertEqual(1, prediction.predicted_margin)

        with self.subTest("when predicted margin is a float"):
            prediction = Prediction(
                match=self.match,
                ml_model=self.ml_model,
                predicted_winner=self.away_team,
                predicted_margin=65.7,
            )

            prediction.clean()
            self.assertEqual(66, prediction.predicted_margin)
コード例 #14
0
    def __build_match_prediction(
        ml_model_record: MLModel, prediction_data: pd.DataFrame, match: Match
    ) -> Prediction:
        home_team = match.teammatch_set.get(at_home=True).team
        away_team = match.teammatch_set.get(at_home=False).team

        match_prediction = prediction_data.loc[
            ([home_team.name, away_team.name], match.year, match.round_number),
            "predicted_margin",
        ]

        predicted_home_margin = match_prediction.loc[home_team.name].iloc[0]
        predicted_away_margin = match_prediction.loc[away_team.name].iloc[0]

        # predicted_margin is always positive as its always associated with predicted_winner
        predicted_margin = match_prediction.abs().mean()

        if predicted_home_margin > predicted_away_margin:
            predicted_winner = home_team
        elif predicted_away_margin > predicted_home_margin:
            predicted_winner = away_team
        else:
            raise ValueError(
                "Predicted home and away margins are equal, which is basically impossible, "
                "so figure out what's going on:\n"
                f"home_team = {home_team.name}\n"
                f"away_team = {away_team.name}\n"
                "data ="
                f"{match_prediction}"
            )

        prediction = Prediction(
            match=match,
            ml_model=ml_model_record,
            predicted_margin=predicted_margin,
            predicted_winner=predicted_winner,
        )

        prediction.clean_fields()
        prediction.clean()

        return prediction
コード例 #15
0
    def test_convert_data_to_record(self):
        data = fake_prediction_data(self.match, ml_model_name=self.ml_model.name)
        home_away_df = pivot_team_matches_to_matches(pd.DataFrame(data))

        self.assertEqual(Prediction.objects.count(), 0)
        Prediction.update_or_create_from_data(home_away_df.to_dict("records")[0])
        self.assertEqual(Prediction.objects.count(), 1)

        with self.subTest("when prediction record already exists"):
            predicted_margin = 100
            home_away_df.loc[:, "home_predicted_margin"] = predicted_margin
            home_away_df.loc[:, "away_predicted_margin"] = -predicted_margin

            Prediction.update_or_create_from_data(home_away_df.to_dict("records")[0])
            self.assertEqual(Prediction.objects.count(), 1)

            prediction = Prediction.objects.first()
            self.assertEqual(prediction.predicted_margin, predicted_margin)

        # Regression tests for bug that caused update_or_create_from_data
        # to select wrong team as predicted_winner when predicted margin
        # was greater than away team's predicted winning margin
        with self.subTest(
            "when predicted margins are skewed with large home losing margin"
        ):
            predicted_winning_margin = 100
            predicted_losing_margin = -200
            home_away_df.loc[:, "home_predicted_margin"] = predicted_losing_margin
            home_away_df.loc[:, "away_predicted_margin"] = predicted_winning_margin

            Prediction.update_or_create_from_data(home_away_df.to_dict("records")[0])
            prediction = Prediction.objects.first()
            self.assertEqual(prediction.predicted_margin, 150)
            self.assertEqual(
                home_away_df["away_team"].iloc[0], prediction.predicted_winner.name
            )

        with self.subTest(
            "when predicted margins are skewed with large away losing margin"
        ):
            predicted_winning_margin = 100
            predicted_losing_margin = -200
            home_away_df.loc[:, "home_predicted_margin"] = predicted_winning_margin
            home_away_df.loc[:, "away_predicted_margin"] = predicted_losing_margin

            Prediction.update_or_create_from_data(home_away_df.to_dict("records")[0])
            prediction = Prediction.objects.first()
            self.assertEqual(prediction.predicted_margin, 150)
            self.assertEqual(
                home_away_df["home_team"].iloc[0], prediction.predicted_winner.name
            )

        with self.subTest("when predicted margins are less than 0.5"):
            predicted_winning_margin = 0.4
            predicted_losing_margin = -0.4
            home_away_df.loc[:, "home_predicted_margin"] = predicted_winning_margin
            home_away_df.loc[:, "away_predicted_margin"] = predicted_losing_margin

            Prediction.update_or_create_from_data(home_away_df.to_dict("records")[0])
            prediction = Prediction.objects.first()
            self.assertEqual(prediction.predicted_margin, 1)
            self.assertEqual(
                home_away_df["home_team"].iloc[0], prediction.predicted_winner.name
            )
コード例 #16
0
    def test_update_or_create_from_raw_data(self):
        data = data_factories.fake_prediction_data(
            self.match, ml_model_name=self.ml_model.name)

        with self.subTest("when future_only is True"):
            with self.subTest("and the match has already been played"):
                self.assertLess(self.match.start_date_time, timezone.now())
                self.assertEqual(Prediction.objects.count(), 0)

                Prediction.update_or_create_from_raw_data(
                    data.to_dict("records")[0], future_only=True)

                # It doesn't create a prediction
                self.assertEqual(Prediction.objects.count(), 0)

            with self.subTest("and the match hasn't been played yet"):
                future_match = Match.objects.create(
                    start_date_time=(timezone.now() + timedelta(days=1)),
                    round_number=5,
                    venue="Corporate Stadium",
                )
                future_home_team = Team.objects.create(name="Collingwood")
                future_away_team = Team.objects.create(name="GWS")

                future_match.teammatch_set.create(team=future_home_team,
                                                  at_home=True,
                                                  score=0)
                future_match.teammatch_set.create(team=future_away_team,
                                                  at_home=False,
                                                  score=0)

                future_data = data_factories.fake_prediction_data(
                    future_match, ml_model_name=self.ml_model.name)

                Prediction.update_or_create_from_raw_data(
                    future_data.to_dict("records")[0], future_only=True)

                # It creates a prediction
                self.assertEqual(Prediction.objects.count(), 1)

        Prediction.objects.all().delete()
        self.assertEqual(Prediction.objects.count(), 0)
        Prediction.update_or_create_from_raw_data(data.to_dict("records")[0])
        self.assertEqual(Prediction.objects.count(), 1)

        prediction = Prediction.objects.first()
        self.assertIsInstance(prediction.predicted_margin, float)
        self.assertIsNone(prediction.predicted_win_probability)

        with self.subTest("when prediction record already exists"):
            predicted_margin = 100
            data.loc[:, "home_predicted_margin"] = predicted_margin
            data.loc[:, "away_predicted_margin"] = -predicted_margin

            Prediction.update_or_create_from_raw_data(
                data.to_dict("records")[0])
            self.assertEqual(Prediction.objects.count(), 1)

            prediction = Prediction.objects.first()
            self.assertEqual(prediction.predicted_margin, predicted_margin)

        # Regression tests for bug that caused update_or_create_from_raw_data
        # to select wrong team as predicted_winner when predicted margin
        # was greater than away team's predicted winning margin
        with self.subTest(
                "when predicted margins are skewed with large home losing margin"
        ):
            predicted_winning_margin = 100
            predicted_losing_margin = -200
            data.loc[:, "home_predicted_margin"] = predicted_losing_margin
            data.loc[:, "away_predicted_margin"] = predicted_winning_margin

            Prediction.update_or_create_from_raw_data(
                data.to_dict("records")[0])
            prediction = Prediction.objects.first()
            self.assertEqual(prediction.predicted_margin, 150)
            self.assertEqual(data["away_team"].iloc[0],
                             prediction.predicted_winner.name)

        with self.subTest(
                "when predicted margins are skewed with large away losing margin"
        ):
            predicted_winning_margin = 100
            predicted_losing_margin = -200
            data.loc[:, "home_predicted_margin"] = predicted_winning_margin
            data.loc[:, "away_predicted_margin"] = predicted_losing_margin

            Prediction.update_or_create_from_raw_data(
                data.to_dict("records")[0])
            prediction = Prediction.objects.first()
            self.assertEqual(prediction.predicted_margin, 150)
            self.assertEqual(data["home_team"].iloc[0],
                             prediction.predicted_winner.name)

        with self.subTest("when predicted margins are less than 0.5"):
            predicted_winning_margin = 0.4
            predicted_losing_margin = -0.4
            data.loc[:, "home_predicted_margin"] = predicted_winning_margin
            data.loc[:, "away_predicted_margin"] = predicted_losing_margin

            Prediction.update_or_create_from_raw_data(
                data.to_dict("records")[0])
            prediction = Prediction.objects.first()
            self.assertEqual(prediction.predicted_margin, 0.4)
            self.assertEqual(data["home_team"].iloc[0],
                             prediction.predicted_winner.name)

        with self.subTest("when predicted margins are both positive"):
            predicted_winning_margin = 20.6
            predicted_losing_margin = 10.6
            data.loc[:, "home_predicted_margin"] = predicted_winning_margin
            data.loc[:, "away_predicted_margin"] = predicted_losing_margin

            Prediction.update_or_create_from_raw_data(
                data.to_dict("records")[0])
            prediction = Prediction.objects.first()
            self.assertEqual(prediction.predicted_margin, 10)
            self.assertEqual(data["home_team"].iloc[0],
                             prediction.predicted_winner.name)

        with self.subTest("when predicted margins are both negative"):
            predicted_winning_margin = -10.6
            predicted_losing_margin = -20.6
            data.loc[:, "home_predicted_margin"] = predicted_winning_margin
            data.loc[:, "away_predicted_margin"] = predicted_losing_margin

            Prediction.update_or_create_from_raw_data(
                data.to_dict("records")[0])
            prediction = Prediction.objects.first()
            self.assertEqual(prediction.predicted_margin, 10)
            self.assertEqual(data["home_team"].iloc[0],
                             prediction.predicted_winner.name)

        with self.subTest("when the calculated predicted_margin rounds up"):
            predicted_winning_margin = 5.8
            predicted_losing_margin = -5.7
            data.loc[:, "home_predicted_margin"] = predicted_winning_margin
            data.loc[:, "away_predicted_margin"] = predicted_losing_margin

            Prediction.update_or_create_from_raw_data(
                data.to_dict("records")[0])
            prediction = Prediction.objects.first()
            self.assertEqual(prediction.predicted_margin, 5.75)
            self.assertEqual(data["home_team"].iloc[0],
                             prediction.predicted_winner.name)

        proba_data = data_factories.fake_prediction_data(
            self.match, ml_model_name=self.ml_model.name, predict_margin=False)

        with self.subTest("when predicting win probability"):
            Prediction.update_or_create_from_raw_data(
                proba_data.to_dict("records")[0])

            prediction = Prediction.objects.first()
            self.assertIsInstance(prediction.predicted_win_probability, float)
            self.assertIsNone(prediction.predicted_margin)

        with self.subTest("when '*_predicted_win_probability' is missing"):
            Prediction.update_or_create_from_raw_data(
                data.drop(
                    [
                        "home_predicted_win_probability",
                        "away_predicted_win_probability",
                    ],
                    axis=1,
                ).to_dict("records")[0])
            self.assertIsNotNone(Prediction.objects.first())

        with self.subTest("when '*_predicted_margin' is missing"):
            Prediction.update_or_create_from_raw_data(
                proba_data.drop(
                    ["home_predicted_margin", "away_predicted_margin"],
                    axis=1).to_dict("records")[0])
            self.assertIsNotNone(Prediction.objects.first())
コード例 #17
0
    def test_update_correctness(self):
        with self.subTest("when higher-scoring team is predicted winner"):
            prediction = Prediction(
                match=self.match,
                ml_model=self.ml_model,
                predicted_winner=self.home_team,
                predicted_margin=50,
            )
            prediction.update_correctness()

            self.assertTrue(prediction.is_correct)

        with self.subTest("when lower-scoring team is predicted winner"):
            prediction = Prediction(
                match=self.match,
                ml_model=self.ml_model,
                predicted_winner=self.away_team,
                predicted_margin=50,
            )
            prediction.update_correctness()

            self.assertFalse(prediction.is_correct)

        with self.subTest("when match is a draw"):
            self.match.teammatch_set.update(score=100)
            prediction = Prediction(
                match=self.match,
                ml_model=self.ml_model,
                predicted_winner=self.away_team,
                predicted_margin=50,
            )
            prediction.update_correctness()

            self.assertTrue(prediction.is_correct)

        with self.subTest("when match hasn't been played yet"):
            match_datetime = timezone.make_aware(datetime.today() +
                                                 timedelta(days=5))
            unplayed_match = Match.objects.create(
                start_date_time=match_datetime,
                round_number=5,
                venue="Corporate Stadium",
            )
            prediction = Prediction(
                match=unplayed_match,
                ml_model=self.ml_model,
                predicted_winner=self.away_team,
                predicted_margin=50,
            )
            prediction.update_correctness()

            self.assertEqual(prediction.is_correct, None)