def exec(self, task_input, task_output): self._prep_dir(task_input["model_loc"]) model_path = os.path_join(task_input["model_loc"], f'model-{task_input["inputs"]}') if not task_input["model_override"] and os.is_dir(model_path): #TODO implement a dynamic "path increment" model-name save functionality pass task_output["model"].save(model_path)
def exec(self, task_input, task_output): ressources, training_data, backup = self._setup(task_output) with open(training_data, 'w') as training: if backup is not None and os.is_path_file(backup): self._merge_training(training, backup) else: headders = self._get_headders(task_output["readings"]) training.write(headders) for split_folder in ressources: split_dir = os.path_join(task_output["res_loc"], split_folder) if os.is_path_file(split_dir) and not os.is_dir(split_dir): continue self.append_training_set(training, split_dir, os.dir_res_list(split_dir)) os.remove_dir(split_dir)