コード例 #1
0
    def __init__(self, reference_system, receptor_atoms=[], ligand_atoms=[]):
        """
        Initialize absolute alchemical intermediate factory with reference system.

        ARGUMENTS

        reference_system (System) - reference system containing receptor and ligand
        ligand_atoms (list) - list of atoms to be designated 'ligand' -- everything else in system is considered the 'environment'
        receptor_atoms (list) - list of atoms to be considered in softening specific 'receptor' degrees of freedom -- shouldn't be the whole receptor, but a subset of atoms in binding site
        
        """

        # Create pyopenmm System object.
        self.reference_system = pyopenmm.System(reference_system)

        # Store copy of atom sets.
        self.receptor_atoms = copy.deepcopy(receptor_atoms)
        self.ligand_atoms = copy.deepcopy(ligand_atoms)
        
        # Store atom sets
        self.ligand_atomset = Set(self.ligand_atoms)
        self.receptor_atomset = Set(self.receptor_atoms)

        # Make sure intersection of ligand and receptor atomsets is null.
        intersection = Set.intersection(self.ligand_atomset, self.receptor_atomset)
        if (len(intersection) > 0):
            raise ParameterException("receptor and ligand atomsets must not overlap.")
        
        return
コード例 #2
0
    def __init__(self, reference_system, receptor_atoms=[], ligand_atoms=[]):
        """
        Initialize absolute alchemical intermediate factory with reference system.

        ARGUMENTS

        reference_system (System) - reference system containing receptor and ligand
        ligand_atoms (list) - list of atoms to be designated 'ligand' -- everything else in system is considered the 'environment'
        receptor_atoms (list) - list of atoms to be considered in softening specific 'receptor' degrees of freedom -- shouldn't be the whole receptor, but a subset of atoms in binding site
        
        """

        # Create pyopenmm System object.
        self.reference_system = pyopenmm.System(reference_system)

        # Store copy of atom sets.
        self.receptor_atoms = copy.deepcopy(receptor_atoms)
        self.ligand_atoms = copy.deepcopy(ligand_atoms)

        # Store atom sets
        self.ligand_atomset = Set(self.ligand_atoms)
        self.receptor_atomset = Set(self.receptor_atoms)

        # Make sure intersection of ligand and receptor atomsets is null.
        intersection = Set.intersection(self.ligand_atomset,
                                        self.receptor_atomset)
        if (len(intersection) > 0):
            raise ParameterException(
                "receptor and ligand atomsets must not overlap.")

        return
コード例 #3
0
ファイル: alchemy.py プロジェクト: danielparton/yank
    def _is_restraint(self, valence_atoms):
        """
        Determine whether specified valence term connects the ligand with its environment.

        Parameters
        ----------
        valence_atoms : list of int
            Atom indices involved in valence term (bond, angle or torsion).
            
        Returns
        -------
        is_restraint : bool
            True if the set of atoms includes at least one ligand atom and at least one non-ligand atom; False otherwise

        Examples
        --------
        
        Various tests for a simple system.
        
        >>> # Create a reference system.
        >>> from repex import testsystems
        >>> alanine_dipeptide = testsystems.AlanineDipeptideImplicit()
        >>> [reference_system, positions] = [alanine_dipeptide.system, alanine_dipeptide.positions]
        >>> # Create a factory.
        >>> factory = AbsoluteAlchemicalFactory(reference_system, ligand_atoms=[0, 1, 2])
        >>> factory._is_restraint([0,1,2])
        False
        >>> factory._is_restraint([1,2,3])
        True
        >>> factory._is_restraint([3,4])
        False
        >>> factory._is_restraint([2,3,4,5])
        True

        """

        valence_atomset = Set(valence_atoms)
        intersection = Set.intersection(valence_atomset, self.ligand_atomset)
        if (len(intersection) >= 1) and (len(intersection) < len(valence_atomset)):
            return True

        return False        
コード例 #4
0
    def _is_restraint(self, valence_atoms):
        """
        Determine whether specified valence term connects the ligand with its environment.

        ARGUMENTS
        
        valence_atoms (list of int) - atom indices involved in valence term (bond, angle or torsion)

        RETURNS

        True if the set of atoms includes at least one ligand atom and at least one non-ligand atom; False otherwise

        EXAMPLES
        
        Various tests.
        
        >>> # Create a reference system.
        >>> import testsystems
        >>> [reference_system, coordinates] = testsystems.AlanineDipeptideImplicit()
        >>> # Create a factory.
        >>> factory = AbsoluteAlchemicalFactory(reference_system, ligand_atoms=[0, 1, 2])
        >>> factory._is_restraint([0,1,2])
        False
        >>> factory._is_restraint([1,2,3])
        True
        >>> factory._is_restraint([3,4])
        False
        >>> factory._is_restraint([2,3,4,5])
        True

        """

        valence_atomset = Set(valence_atoms)
        intersection = Set.intersection(valence_atomset, self.ligand_atomset)
        if (len(intersection) >= 1) and (len(intersection) <
                                         len(valence_atomset)):
            return True

        return False
コード例 #5
0
ファイル: alchemy.py プロジェクト: choderalab/ring-open-fep
    def _is_restraint(self, valence_atoms):
        """
        Determine whether specified valence term connects the ligand with its environment.

        ARGUMENTS
        
        valence_atoms (list of int) - atom indices involved in valence term (bond, angle or torsion)

        RETURNS

        True if the set of atoms includes at least one ligand atom and at least one non-ligand atom; False otherwise

        EXAMPLES
        
        Various tests.
        
        >>> # Create a reference system.
        >>> import testsystems
        >>> [reference_system, coordinates] = testsystems.AlanineDipeptideImplicit()
        >>> # Create a factory.
        >>> factory = AbsoluteAlchemicalFactory(reference_system, alchemical_atoms=[0, 1, 2])
        >>> factory._is_restraint([0,1,2])
        False
        >>> factory._is_restraint([1,2,3])
        True
        >>> factory._is_restraint([3,4])
        False
        >>> factory._is_restraint([2,3,4,5])
        True

        """

        valence_atomset = Set(valence_atoms)
        intersection = Set.intersection(valence_atomset, self.alchemical_atomset)
        if (len(intersection) >= 1) and (len(intersection) < len(valence_atomset)):
            return True

        return False        
コード例 #6
0
ファイル: Mesh.py プロジェクト: cakeisalie/oomphlib_003
    def findNeighbors(self) :
        neighbors = []
        nEdges = 0
        for i in range(self.numElems()) :
            allNeighbors = Set()
            for v in self.elemVerts_[i] :
                allNeighbors = Set.union(allNeighbors, self.vertToElemMap_[v])
            # get rid of self-references
            allNeighbors.discard(i)
            fullNeighbors = []
            for j in allNeighbors :

                numCommonNodes = Set.intersection(self.elemVerts_[i],
                                                  self.elemVerts_[j])
                if len(numCommonNodes) == self.dim_ :
                    fullNeighbors.append(j)
                         
            nEdges = nEdges + len(fullNeighbors)
            neighbors.append(fullNeighbors)

        nEdges = nEdges/2

        return (neighbors, nEdges)
コード例 #7
0
    def findNeighbors(self):
        neighbors = []
        nEdges = 0
        for i in range(self.numElems()):
            allNeighbors = Set()
            for v in self.elemVerts_[i]:
                allNeighbors = Set.union(allNeighbors, self.vertToElemMap_[v])
            # get rid of self-references
            allNeighbors.discard(i)
            fullNeighbors = []
            for j in allNeighbors:

                numCommonNodes = Set.intersection(self.elemVerts_[i],
                                                  self.elemVerts_[j])
                if len(numCommonNodes) == self.dim_:
                    fullNeighbors.append(j)

            nEdges = nEdges + len(fullNeighbors)
            neighbors.append(fullNeighbors)

        nEdges = nEdges / 2

        return (neighbors, nEdges)
コード例 #8
0
def findspikes(xin,
               vin,
               thresh,
               t0=None,
               t1=None,
               dt=1.0,
               mode=None,
               interpolate=False,
               debug=False):
    """ findspikes identifies the times of action potential in the trace v, with the
    times in t. An action potential is simply timed at the first point that exceeds
    the threshold... or is the peak. 
    4/1/11 - added peak mode
    if mode is none or schmitt, we work as in the past.
    if mode is peak, we return the time of the peak of the AP instead
    7/15/11 - added interpolation flag
    if True, the returned time is interpolated, based on a spline fit
    if False, the returned time is just taken as the data time.
    2012/10/9: Removed masked arrays and forced into ndarray from start
    (metaarrays were really slow...) 
    """
    # if debug:
    # # this does not work with pyside...
    #     import matplotlib
    #     matplotlib.use('Qt4Agg')
    #     import pylab
    #     from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
    #     from matplotlib.figure import Figure
    #
    #     #MP.rcParams['interactive'] = False

    st = numpy.array([])
    spk = []
    if xin is None:
        return (st, spk)
    xt = xin.view(numpy.ndarray)
    v = vin.view(numpy.ndarray)
    if t1 is not None and t0 is not None:
        it0 = int(t0 / dt)
        it1 = int(t1 / dt)
        if not isinstance(xin, numpy.ndarray):
            xt = xt[it0:it1]
            v = v[it0:it1]
        else:
            xt = xt[it0:it1]
            v = v[it0:it1]
    # if debug:
    #     f = pylab.figure(1)
    #     print "xt: ", xt
    #     print "v: ", v
    #     pylab.plot(numpy.array(xt), v, 'k-')
    #     pylab.draw()
    #     pylab.show()

    dv = numpy.diff(v, axis=0)  # compute slope
    try:
        dv = numpy.insert(dv, 0, dv[0])
    except:
        pass  # print 'dv: ', dv
    dv /= dt
    st = numpy.array([])
    spk = []
    spv = numpy.where(v > thresh)[0].tolist()  # find points above threshold
    sps = numpy.where(
        dv > 0.0)[0].tolist()  # find points where slope is positive
    sp = list(Set.intersection(
        Set(spv), Set(sps)))  # intersection defines putative spikes
    sp.sort()  # make sure all detected events are in order (sets is unordered)
    sp = tuple(sp)  # convert to tuple
    if sp is ():
        return (st, spk)  # nothing detected
    dx = 1
    mingap = int(0.0005 /
                 dt)  # 0.5 msec between spikes (a little unphysiological...)
    # normal operating mode is fixed voltage threshold
    # for this we need to just get the FIRST positive crossing,
    if mode is 'schmitt':
        sthra = list(numpy.where(numpy.diff(sp) > mingap))
        sthr = [sp[x] for x in sthra[0]]  # bump indices by 1
        #print 'findspikes: sthr: ', len(sthr), sthr
        for k in sthr:
            if k == 0:
                continue
            x = xt[k - 1:k + 1]
            y = v[k - 1:k + 1]
            if interpolate:
                dx = 0
                m = (y[1] - y[0]) / dt  # local slope
                b = y[0] - (x[0] * m)
                s0 = (thresh - b) / m
            else:
                s0 = x[1]
            st = numpy.append(st, x[1])

    elif mode is 'peak':
        pkwidth = 1.0e-3  # in same units as dt  - usually msec
        kpkw = int(pkwidth / dt)
        z = (numpy.array(numpy.where(numpy.diff(spv) > 1)[0]) + 1).tolist()
        z.insert(0, 0)  # first element in spv is needed to get starting AP
        spk = []
        #print 'findspikes peak: ', len(z)
        for k in z:
            zk = spv[k]
            spkp = numpy.argmax(v[zk:zk + kpkw]) + zk  # find the peak position
            x = xt[spkp - 1:spkp + 2]
            y = v[spkp - 1:spkp + 2]
            if interpolate:
                try:
                    # mimic Igor FindPeak routine with B = 1
                    m1 = (y[1] - y[0]) / dt  # local slope to left of peak
                    b1 = y[0] - (x[0] * m1)
                    m2 = (y[2] - y[1]) / dt  # local slope to right of peak
                    b2 = y[1] - (x[1] * m2)
                    mprime = (
                        m2 - m1
                    ) / dt  # find where slope goes to 0 by getting the line
                    bprime = m2 - ((dt / 2.0) * mprime)
                    st = numpy.append(st, -bprime / mprime + x[1])
                    spk.append(spkp)
                except:
                    continue
            else:
                st = numpy.append(st, x[1])  # always save the first one
                spk.append(spkp)
    return (st, spk)
コード例 #9
0
ファイル: meshUtils.py プロジェクト: 00liujj/trilinos
def makeChacoGraphFile(filename) : 
    f = file(filename + '.ele')
    nodeToEleMap = {}
    elemVerts = []
    # read header 
    while 1 :
        line = f.readline()
        if line[0]=='#': continue
        header = line.split()
        nElems = int(header[0])
        d = int(header[1])-1
        break
    # read lines, building elements and the element-to-node map
    while 1:
        line = f.readline()
        if not line : break
        if line[0]=='#': continue
        toks = line.split()
        ele = int(toks[0])
        verts = Set()
        for i in range(d+1) :
            node = int(toks[i+1])
            verts.add(node)
            if nodeToEleMap.has_key(node) :
                nodeToEleMap[node].add(ele)
            else :
                nodeToEleMap[node] = Set()
                nodeToEleMap[node].add(ele)
        elemVerts.append(verts)

    # For each node, assign one of the adjoining elements as its "owner."
    # The node will later be assigned to the same processer as the owner.
    # The choice of owner is arbitrary; here, we simply choose the
    # adjoining element having the largest index.
    #
    # We write the ownership information to a file, with the format:
    # line 1: <num nodes>
    # line 2: <node 1 number> <node 1 owner>
    # etc.
    nodeOwnerFile = file(filename + '.owner', 'w')
    nodeOwnerFile.write('%d\n' % len(nodeToEleMap.keys()))
    for node in nodeToEleMap.keys() :
        owner = max(nodeToEleMap[node])
        nodeOwnerFile.write('%d %d\n' % (node, owner))


    
    
    # determine lists of neighbors for each element
    neighbors = []
    nEdges = 0
    for i in range(nElems) :
        allNeighbors = Set()
        for v in elemVerts[i] :
            allNeighbors = Set.union(allNeighbors, nodeToEleMap[v])
        # get rid of self-references
        allNeighbors.discard(i)
        fullNeighbors = []
        for j in allNeighbors :
            numCommonNodes = Set.intersection(elemVerts[i], elemVerts[j])
            if len(numCommonNodes) == d :
                fullNeighbors.append(j)
                
        nEdges = nEdges + len(fullNeighbors)
        neighbors.append(fullNeighbors)

    nEdges = nEdges/2

    graphFile = file(filename + '.graph', 'w')
    graphFile.write('%d %d\n' % (nElems, nEdges))

    for i in range(nElems) :
        line = ''
        for j in neighbors[i] :
            line = line +  '%d ' % (j+1)
        graphFile.write(line + '\n');
    graphFile.flush()

    return (elemVerts, nodeToEleMap)
コード例 #10
0
ファイル: Utility.py プロジェクト: ablot/acq4
def findspikes(xin, vin, thresh, t0=None, t1= None, dt=1.0, mode=None, interpolate=False, debug=False):
    """ findspikes identifies the times of action potential in the trace v, with the
    times in t. An action potential is simply timed at the first point that exceeds
    the threshold... or is the peak. 
    4/1/11 - added peak mode
    if mode is none or schmitt, we work as in the past.
    if mode is peak, we return the time of the peak of the AP instead
    7/15/11 - added interpolation flag
    if True, the returned time is interpolated, based on a spline fit
    if False, the returned time is just taken as the data time.
    2012/10/9: Removed masked arrays and forced into ndarray from start
    (metaarrays were really slow...) 
    """
    # if debug:
    # # this does not work with pyside...
    #     import matplotlib
    #     matplotlib.use('Qt4Agg')
    #     import pylab
    #     from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
    #     from matplotlib.figure import Figure
    #     
    #     #MP.rcParams['interactive'] = False
        
    st=numpy.array([])
    spk = []
    if xin is None:
        return(st, spk)
    xt = xin.view(numpy.ndarray)
    v = vin.view(numpy.ndarray)
    if t1 is not None and t0 is not None:
        it0 = int(t0/dt)
        it1 = int(t1/dt)
        if not isinstance(xin, numpy.ndarray):
            xt = xt[it0:it1]
            v = v[it0:it1]
        else:
            xt = xt[it0:it1]
            v = v[it0:it1]
    # if debug:
    #     f = pylab.figure(1)
    #     print "xt: ", xt
    #     print "v: ", v
    #     pylab.plot(numpy.array(xt), v, 'k-')
    #     pylab.draw()
    #     pylab.show()

    dv = numpy.diff(v, axis=0) # compute slope
    dv /= dt
    st=numpy.array([])
    spk = []
    spv = numpy.where(v > thresh)[0].tolist() # find points above threshold
    sps = numpy.where(dv > 0.0)[0].tolist() # find points where slope is positive
    sp = list(Set.intersection(Set(spv),Set(sps))) # intersection defines putative spikes
    sp.sort() # make sure all detected events are in order (sets is unordered)
    sp = tuple(sp) # convert to tuple
    if sp is ():
        return(st, spk) # nothing detected
    dx = 1
    mingap = int(0.0005/dt) # 0.5 msec between spikes (a little unphysiological...)
    # normal operating mode is fixed voltage threshold
    # for this we need to just get the FIRST positive crossing,
    if mode is 'schmitt':
        sthra = list(numpy.where(numpy.diff(sp) > mingap))
        sthr = [sp[x] for x in sthra[0]] # bump indices by 1
        for k in sthr:
            x = xt[k-1:k+1]
            y = v[k-1:k+1]
            if interpolate:
                dx = 0
                m = (y[1]-y[0])/dt # local slope
                b = y[0]-(x[0]*m)
                s0 = (thresh-b)/m
            else:
                s0 = x[1]
            st = numpy.append(st, x[1])

    elif mode is 'peak':
        pkwidth = 1.0e-3 # in same units as dt  - usually msec
        kpkw = int(pkwidth/dt)
        z = (numpy.array(numpy.where(numpy.diff(spv) > 1)[0])+1).tolist()
        z.insert(0, 0) # first element in spv is needed to get starting AP
        spk = []
        for k in z:
            zk = spv[k]
            spkp = numpy.argmax(v[zk:zk+kpkw])+zk # find the peak position
            x = xt[spkp-1:spkp+2]
            y = v[spkp-1:spkp+2]
            if interpolate:
                try:
                    # mimic Igor FindPeak routine with B = 1
                    m1 = (y[1]-y[0])/dt # local slope to left of peak
                    b1 = y[0]-(x[0]*m1)
                    m2 = (y[2]-y[1])/dt # local slope to right of peak
                    b2 = y[1]-(x[1]*m2)
                    mprime = (m2-m1)/dt # find where slope goes to 0 by getting the line
                    bprime = m2-((dt/2.0)*mprime)
                    st = numpy.append(st, -bprime/mprime+x[1])
                    spk.append(spkp)
                except:
                    continue
            else:
                st = numpy.append(st, x[1]) # always save the first one
                spk.append(spkp)
    return(st, spk)
コード例 #11
0
def makeChacoGraphFile(filename):
    f = file(filename + '.ele')
    nodeToEleMap = {}
    elemVerts = []
    # read header
    while 1:
        line = f.readline()
        if line[0] == '#': continue
        header = line.split()
        nElems = int(header[0])
        d = int(header[1]) - 1
        break
    # read lines, building elements and the element-to-node map
    while 1:
        line = f.readline()
        if not line: break
        if line[0] == '#': continue
        toks = line.split()
        ele = int(toks[0])
        verts = Set()
        for i in range(d + 1):
            node = int(toks[i + 1])
            verts.add(node)
            if nodeToEleMap.has_key(node):
                nodeToEleMap[node].add(ele)
            else:
                nodeToEleMap[node] = Set()
                nodeToEleMap[node].add(ele)
        elemVerts.append(verts)

    # For each node, assign one of the adjoining elements as its "owner."
    # The node will later be assigned to the same processer as the owner.
    # The choice of owner is arbitrary; here, we simply choose the
    # adjoining element having the largest index.
    #
    # We write the ownership information to a file, with the format:
    # line 1: <num nodes>
    # line 2: <node 1 number> <node 1 owner>
    # etc.
    nodeOwnerFile = file(filename + '.owner', 'w')
    nodeOwnerFile.write('%d\n' % len(nodeToEleMap.keys()))
    for node in nodeToEleMap.keys():
        owner = max(nodeToEleMap[node])
        nodeOwnerFile.write('%d %d\n' % (node, owner))

    # determine lists of neighbors for each element
    neighbors = []
    nEdges = 0
    for i in range(nElems):
        allNeighbors = Set()
        for v in elemVerts[i]:
            allNeighbors = Set.union(allNeighbors, nodeToEleMap[v])
        # get rid of self-references
        allNeighbors.discard(i)
        fullNeighbors = []
        for j in allNeighbors:
            numCommonNodes = Set.intersection(elemVerts[i], elemVerts[j])
            if len(numCommonNodes) == d:
                fullNeighbors.append(j)

        nEdges = nEdges + len(fullNeighbors)
        neighbors.append(fullNeighbors)

    nEdges = nEdges / 2

    graphFile = file(filename + '.graph', 'w')
    graphFile.write('%d %d\n' % (nElems, nEdges))

    for i in range(nElems):
        line = ''
        for j in neighbors[i]:
            line = line + '%d ' % (j + 1)
        graphFile.write(line + '\n')
    graphFile.flush()

    return (elemVerts, nodeToEleMap)