コード例 #1
0
table_a = pd.DataFrame(data=[
    [
        children_mean, adults_32_mean, adults_48_mean, adults_66_mean,
        adults_plus_mean
    ],
    [
        childrenRev_mean, youngRev_32_mean, adultsRev_48_mean,
        adultsRev_66_mean, adultsRev_plus_mean
    ],
    [
        children_rating, adults_32_rating, adults_48_rating, adults_66_rating,
        adults_plus_rating
    ],
    [
        children_nights, adults_32_nights, adults_48_nights, adults_66_nights,
        adults_plus_nights
    ], [children_wd, adults_32_wd, adults_48_wd, adults_66_wd, adults_plus_wd],
    [children_we, adults_32_we, adults_48_we, adults_66_we, adults_plus_we],
    [
        children_nation_rev, adults_32_nation_rev, adults_48_nation_rev,
        adults_66_nation_rev, adults_plus_nation_rev
    ],
    [
        children_nation_rating, adults_32_nation_rating,
        adults_48_nation_rating, adults_66_nation_rating,
        adults_plus_nation_rating
    ],
    [
        children_nation_upselling, adults_32_nation_upselling,
        adults_48_nation_upselling, adults_66_nation_upselling,
        adults_plus_nation_upselling
    ]
],
                       index=index_age,
                       columns=columns_age)
コード例 #2
0
table_m_s = pd.DataFrame(data=[
    [
        Solo_Travellers_mean, Family_mean, Groups_mean, Couples_mean,
        Business_mean
    ],
    [
        Solo_TravellersRev_mean, FamilyRev_mean, GroupsRev_mean,
        CouplesRev_mean, BusinessRev_mean
    ],
    [
        Solo_Travellers_rating, Family_rating, Groups_rating, Couples_rating,
        Business_rating
    ],
    [
        Solo_Travellers_nights, Family_nights, Groups_nights, Couples_nights,
        Business_nights
    ], [Solo_Travellers_wd, Family_wd, Groups_wd, Couples_wd, Business_wd],
    [Solo_Travellers_we, Family_we, Groups_we, Couples_we, Business_we],
    [
        Solo_Travellers_nation_rev, Family_nation_rev, Groups_nation_rev,
        Couples_nation_rev, Business_nation_rev
    ],
    [
        Solo_Travellers_nation_rating, Family_nation_rating,
        Groups_nation_rating, Couples_nation_rating, Business_nation_rating
    ],
    [
        Solo_Travellers_nation_upselling, Family_nation_upselling,
        Groups_nation_upselling, Couples_nation_upselling,
        Business_nation_upselling
    ]
],
                         index=index_mss,
                         columns=columns_mss)
コード例 #3
0
import plotly.graph_objs as go
from settings import hotel_data, pd

""" CHOROPLETH VALUES """
values_choro = pd.DataFrame(
    hotel_data.groupby('Country')[['ADR Adjusted', 'Customer Satisfaction Rating']].mean()).reset_index().copy()

values_choro_count = pd.DataFrame(
    hotel_data.groupby('Country')[['ADR Adjusted']].count()).reset_index().copy()

values_choro_sum = pd.DataFrame(
    hotel_data.groupby('Country')[['ADR Adjusted']].sum()).reset_index().copy()

values_choro['N° Clients (count)'] = values_choro_count['ADR Adjusted']
values_choro['ADR Adjusted (total sum)'] = values_choro_sum['ADR Adjusted']
values_choro.rename(columns={'ADR Adjusted': 'ADR Adjusted (mean)', 'Customer Satisfaction Rating': 'Customer Satisfaction Rating (mean)'}, inplace=True)


data_map_revenues = [go.Choropleth(
    locations=values_choro['Country'],
    z=values_choro['ADR Adjusted (mean)'],
    locationmode="country names",
    showscale=False,
    colorscale=[
        [0, "rgb(5, 10, 172)"],
        [0.35, "rgb(40, 60, 190)"],
        [0.5, "rgb(70, 100, 245)"],
        [0.6, "rgb(90, 120, 245)"],
        [0.7, "rgb(106, 137, 247)"],
        [1, "rgb(220, 220, 220)"]
    ],
コード例 #4
0
    'Upselling mean', 'Revenues mean', 'Rating mean',
    'Length staying mean (days)', ' - N° Weekdays', ' - N° Weekend days',
    'Nationality highest revenues', 'Nationality highest rating',
    'Nationality highest upselling'
]

table_dc = pd.DataFrame(data=[
    [TATO_mean, direct_mean, corporate_mean, gds_mean],
    [TATORev_mean, directRev_mean, corporateRev_mean, gdsRev_mean],
    [TATO_rating, direct_rating, corporate_rating, gds_rating],
    [TATO_nights, direct_nights, corporate_nights, gds_nights],
    [TATO_wd, direct_wd, corporate_wd, gds_wd],
    [TATO_we, direct_we, corporate_we, gds_we],
    [TATO_nation_rev, direct_nation_rev, corporate_nation_rev, gds_nation_rev],
    [
        TATO_nation_rating, direct_nation_rating, corporate_nation_rating,
        gds_nation_rating
    ],
    [
        TATO_nation_upselling, direct_nation_upselling,
        corporate_nation_upselling, gds_nation_upselling
    ]
],
                        index=index_dc,
                        columns=columns_dc)

table_dchannel = table_dc.reset_index()

table_dchannel1 = go.Table(
    domain=dict(x=[0, 1], y=[0, 0.80]),
    columnwidth=[2, 1, 1, 1],
コード例 #5
0
columns_ct = ['Transient', 'Transient-Party', 'Contract', 'Group']
index_ct = index_age

table_ct = pd.DataFrame(data=[
    [transient_mean, transient_party_mean, contract_mean, group_mean],
    [
        transientRev_mean, transient_partyRev_mean, contractRev_mean,
        groupRev_mean
    ],
    [transient_rating, transient_party_rating, contract_rating, group_rating],
    [transient_nights, transient_party_nights, contract_nights, group_nights],
    [transient_wd, transient_party_wd, contract_wd, group_wd],
    [transient_we, transient_party_we, contract_we, group_we],
    [
        transient_nation_rev, transient_party_nation_rev, contract_nation_rev,
        group_nation_rev
    ],
    [
        transient_nation_rating, transient_party_nation_rating,
        contract_nation_rating, group_nation_rating
    ],
    [
        transient_nation_upselling, transient_party_nation_upselling,
        contract_nation_upselling, group_nation_upselling
    ]
],
                        index=index_ct,
                        columns=columns_ct)

table_customer_type = table_ct.reset_index()