def __init__(self): settings.init_settings() time.sleep(5) self.drivers = settings.get_drivers() self.case_list = settings.get_case_list() self.drivers_users = generate_users(self.drivers) self.lock = Lock()
def run_migrations_offline(): """Run migrations in 'offline' mode. This configures the context with just a URL and not an Engine, though an Engine is acceptable here as well. By skipping the Engine creation we don't even need a DBAPI to be available. Calls to context.execute() here emit the given string to the script output. """ # postgresql://postgres:postgres@localhost/oracles_vision # url = context_config.get_main_option("sqlalchemy.url") init_settings() url = 'postgresql://%s:%s@%s/%s' % (config.get( 'DB', 'user'), config.get('DB', 'password'), config.get( 'DB', 'host'), config.get('DB', 'database')) context.configure(url=url, target_metadata=target_metadata, literal_binds=True) with context.begin_transaction(): context.run_migrations()
def __init__(self): gedit.Plugin.__init__(self) self._instances = {} self._data_dir = self.get_data_dir() settings.init_settings(self._data_dir)
def __init__(self): settings.init_settings() time.sleep(5) self.drivers = settings.get_drivers() self.case_list = settings.get_case_list() self.login_users = settings.get_user_table() self.sign_users = settings.get_email_sign_table() # self.lock = Lock() self.driver_queue = Queue() self.thread_pool = ThreadPoolExecutor(max_workers=len(self.drivers))
# Train the Style Transfer Net from __future__ import print_function import numpy as np import tensorflow as tf import os import settings data_set = "imagenet" #"imagenet" data_set_name = "imagenet_shallowest" settings.init_settings(data_set_name, suffix="_attack") logger = settings.logger from imagenetmod.interface import build_imagenet_model, imagenet, restore_parameter from style_transfer_net import StyleTransferNet, StyleTransferNet_adv from utils import get_train_images from cifar10_class import Model import cifar10_input from PIL import Image from adaptive_instance_norm import normalize STYLE_LAYERS = settings.config["STYLE_LAYERS"] # (height, width, color_channels) TRAINING_IMAGE_SHAPE = settings.config["IMAGE_SHAPE"] EPOCHS = 4 EPSILON = 1e-5 BATCH_SIZE = settings.config["BATCH_SIZE"] if data_set == "cifar10":
import os, sys, torch import numpy as np from torch.autograd import Variable from dataset import * import settings, log import torch.nn as nn, torch.utils.data as data import torch.optim as optim from utils import * from tqdm import tqdm from model import resnet6 force_new_model = True pretrained_model = None # init the settings settings.init_settings(force_new_model, pretrained_model) # init the log log.init_logger(tensorboard=False) def show_images(img): show_image(img[:, :, 0]) show_image(img[:, :, 1]) def train(model, train_data, criterion, optimizer, epoch): total_train_images = len(train_data) # print(total_train_images) if opt["useGPU"]: model = model.cuda()
from settings import Settings, init_settings from word import * app_ver = 'wordman test 1.0.1' ###### 프로그램 초기화 및 설정 시작 ###### setup.init() logging.info(app_ver) config = load_config() settings = init_settings(config['db']) words = init_words(config['db']) examples = init_examples(config['db']) synonyms = init_synonyms(config['db']) antonyms = init_antonyms(config['db']) my_key = settings.get_or_input('secret_key', 'your secret key') logging.debug('secret key = ' + my_key) my_port = settings.get_or_input('http_port', 'your http port', type(0)) logging.debug('http port = ' + my_port) # Start HTTP Server app = Flask(__name__, template_folder = './themes') Reggie(app)
# Train the Style Transfer Net from __future__ import print_function import numpy as np import tensorflow as tf import os import settings data_set = "imagenet" #cifar10" # "imagenet" settings.init_settings("imagenet_shallow") from adaptive_instance_norm import normalize from PIL import Image import cifar10_input from cifar10_class import Model from utils import get_train_images from style_transfer_net import StyleTransferNet, StyleTransferNet_adv from imagenetmod.interface import build_imagenet_model, imagenet, restore_parameter STYLE_LAYERS = settings.config["STYLE_LAYERS"] # (height, width, color_channels) TRAINING_IMAGE_SHAPE = settings.config["IMAGE_SHAPE"] EPOCHS = 4 EPSILON = 1e-5 BATCH_SIZE = settings.config["BATCH_SIZE"] if data_set == "cifar10": LEARNING_RATE = 1e-1 LR_DECAY_RATE = 1e-4 # 5e-5
import os, sys, torch import numpy as np from torch.autograd import Variable from dataset import * import settings, log import torch.nn as nn, torch.utils.data as data import torch.optim as optim from utils import * from tqdm import tqdm from model import resnet6 import scipy.io as sio pretrained_model = "../scratch/sysu_mm01/deepzeropadding-14May2019-125214_deep-zero-padding/deep_zero_model#156.pth" # init the settings settings.init_settings(False, pretrained_model) # init the log log.init_logger(tensorboard=False, prepend_text="test_") def get_max_test_id(test_ids): int_test_ids = [int(ID) for ID in test_ids] return np.max(int_test_ids) def prepare_empty_matfile_config(max_test_id): cam_features = np.empty(max_test_id, dtype=object) for i in range(len(cam_features)): cam_features[i] = [] return cam_features
''' Created on 2018年7月20日 @author: cloud ''' from helper import elements import time, logging import settings import unittest import cases from cases import match from concurrent.futures import ThreadPoolExecutor, wait from threading import Thread logger = logging.getLogger() settings.init_settings() drivers = settings.get_drivers() time.sleep(3) driver = drivers[0] data = {} # elements.GenderFilterMatchButton(driver).click() # time.sleep(2) # driver.find_elements_by_android_uiautomator("new UiSelector().text(\"Purchase\")") # a=driver.find_element_by_id("com.videochat.livu:id/view_title").find_element_by_xpath("android.widget.TextView[@text='Purchase']") # print(a) # print(elements.RechargeButton(driver).element.text) # elements.RechargeButton(driver).click() # driver.back() # driver.back() # driver.back() # elements.MatchHistoryButton(driver).click()