コード例 #1
0
 def _to_s(self, part):
     """
     Returns a function which gives the coefficient of a partition in
     the Schur expansion of self(part).
     
     EXAMPLES::
     
         sage: Ht = MacdonaldPolynomialsHt(QQ)
         sage: f21 = Ht._to_s(Partition([2,1]))
         sage: [f21(part) for part in Partitions(3)]
         [1, q + t, q*t]
         sage: f22 = Ht._to_s(Partition([2,2]))
         sage: [f22(part) for part in Partitions(4)]
         [1, q*t + q + t, q^2 + t^2, q^2*t + q*t^2 + q*t, q^2*t^2]
     """
     q, t = QQqt.gens()
     s = sfa.SFASchur(QQqt)
     J = MacdonaldPolynomialsJ(QQ)
     res = 0
     for p in sage.combinat.partition.Partitions(sum(part)):
         res += (J(part).scalar_t(s(p), t)) * s(p)
     res = res.map_coefficients(lambda c: c.subs(t=1 / t))
     res *= t**part.weighted_size()
     f = lambda part2: res.coefficient(part2)
     return f
コード例 #2
0
    def scalar(self, x):
        """
        Returns standard scalar product between self and s.
        
        This is the default implementation that converts both self and x
        into Schur functions and performs the scalar product that basis.
        
        EXAMPLES::
        
            sage: HLP  = HallLittlewoodP(QQ)
            sage: HLQ  = HallLittlewoodQ(QQ)
            sage: HLQp = HallLittlewoodQp(QQ)
            sage: HLP([2]).scalar(HLQp([2]))
            1
            sage: HLP([2]).scalar(HLQp([1,1]))
            0
        """
        sp = self.parent()
        xp = x.parent()
        BR = sp.base_ring()

        s = sfa.SFASchur(BR)
        s_self = s(self)
        s_x = s(x)
        return s_self.scalar(s_x)
コード例 #3
0
    def __init__(self, R, t=None):
        """
        TESTS::
        
            sage: HallLittlewoodP(QQ)
            Hall-Littlewood polynomials in the P basis over Fraction Field of Univariate Polynomial Ring in t over Rational Field
            sage: HallLittlewoodP(QQ,t=2)
            Hall-Littlewood polynomials in the P basis with t=2 over Rational Field
        """
        if t is None:
            R = R['t'].fraction_field()
            self.t = R.gen()
        elif t not in R:
            raise ValueError, "t (=%s) must be in R (=%s)" % (t, R)
        else:
            self.t = R(t)
            self._name += " with t=%s" % self.t

        sfa.SymmetricFunctionAlgebra_generic.__init__(self, R)

        #        print self, self._s
        # This coercion is broken: HLP = HallLittlewoodP(QQ); HLP(HLP._s[1])

        # Bases defined by orthotriangularity should inherit from some
        # common category BasesByOrthotriangularity (shared with Jack, HL, orthotriang, Mcdo)
        if hasattr(self, "_s_cache"):
            self._s = sfa.SFASchur(R)
            # temporary until Hom(GradedHopfAlgebrasWithBasis work better)
            category = sage.categories.all.ModulesWithBasis(self.base_ring())
            self.register_coercion(
                SetMorphism(Hom(self._s, self, category), self._s_to_self))
            self._s.register_coercion(
                SetMorphism(Hom(self, self._s, category), self._self_to_s))
コード例 #4
0
    def __init__(self, R, q=None, t=None):
        """
        EXAMPLES::
        
            sage: MacdonaldPolynomialsP(QQ)
            Macdonald polynomials in the P basis over Fraction Field of Multivariate Polynomial Ring in q, t over Rational Field
            sage: MacdonaldPolynomialsP(QQ,t=2)
            Macdonald polynomials in the P basis with t=2 over Fraction Field of Univariate Polynomial Ring in q over Rational Field
            sage: MacdonaldPolynomialsP(QQ,q=2)
            Macdonald polynomials in the P basis with q=2 over Fraction Field of Univariate Polynomial Ring in t over Rational Field
            sage: MacdonaldPolynomialsP(QQ,q=2,t=2)
            Macdonald polynomials in the P basis with q=2 and t=2 over Rational Field
        """
        #Neither q nor t are specified
        if t is None and q is None:
            R = R['q,t'].fraction_field()
            self.q, self.t = R.gens()
        elif t is not None and q is None:
            if t not in R:
                raise ValueError, "t (=%s) must be in R (=%s)" % (t, R)
            self.t = R(t)
            self._name += " with t=%s" % self.t

            R = R['q'].fraction_field()
            self.q = R.gen()

        elif t is None and q is not None:
            if q not in R:
                raise ValueError, "q (=%s) must be in R (=%s)" % (q, R)
            self.q = R(q)
            self._name += " with q=%s" % self.q

            R = R['t'].fraction_field()
            self.t = R.gen()
        else:
            if t not in R or q not in R:
                raise ValueError
            self.q = R(q)
            self.t = R(t)
            self._name += " with q=%s and t=%s" % (self.q, self.t)

        sfa.SymmetricFunctionAlgebra_generic.__init__(self, R)

        # Bases defined by orthotriangularity should inherit from some
        # common category BasesByOrthotriangularity (shared with Jack, HL, orthotriang, Mcdo)
        if hasattr(self, "_s_cache"):
            self._s = sfa.SFASchur(R)
            # temporary until Hom(GradedHopfAlgebrasWithBasis work better)
            category = sage.categories.all.ModulesWithBasis(self.base_ring())
            self.register_coercion(
                SetMorphism(Hom(self._s, self, category), self._s_to_self))
            self._s.register_coercion(
                SetMorphism(Hom(self, self._s, category), self._self_to_s))
コード例 #5
0
def qt_kostka(lam, mu):
    """
    Returns the `K_{\lambda\mu}(q,t)` by computing the change
    of basis from the Macdonald H basis to the Schurs.
    
    EXAMPLES::
    
        sage: from sage.combinat.sf.macdonald import qt_kostka
        sage: qt_kostka([2,1,1],[1,1,1,1])
        t^3 + t^2 + t
        sage: qt_kostka([1,1,1,1],[2,1,1])
        q
        sage: qt_kostka([1,1,1,1],[3,1])
        q^3
        sage: qt_kostka([1,1,1,1],[1,1,1,1])
        1
        sage: qt_kostka([2,1,1],[2,2])
        q^2*t + q*t + q
        sage: qt_kostka([2,2],[2,2])
        q^2*t^2 + 1
        sage: qt_kostka([4],[3,1])
        t
        sage: qt_kostka([2,2],[3,1])
        q^2*t + q
        sage: qt_kostka([3,1],[2,1,1])
        q*t^3 + t^2 + t
        sage: qt_kostka([2,1,1],[2,1,1])
        q*t^2 + q*t + 1
        sage: qt_kostka([2,1],[1,1,1,1])
        0
    """
    lam = sage.combinat.partition.Partition(lam)
    mu = sage.combinat.partition.Partition(mu)
    R = QQ['q,t']

    if lam.size() != mu.size():
        return R(0)

    if (lam, mu) in _qt_kostka_cache:
        return _qt_kostka_cache[(lam, mu)]

    H = MacdonaldPolynomialsH(QQ)
    s = sfa.SFASchur(H.base_ring())

    parts = sage.combinat.partition.Partitions(mu.size())

    for p2 in parts:
        res = s(H(p2))
        for p1 in parts:
            _qt_kostka_cache[(p1, p2)] = R(res.coefficient(p1).numerator())

    return _qt_kostka_cache[(lam, mu)]
コード例 #6
0
    def __init__(self, R, q=None, t=None):
        """
        TESTS::
        
            sage: S = MacdonaldPolynomialsS(QQ)
            sage: S == loads(dumps(S))
            True
        """
        self._name = "Macdonald polynomials in the S basis"
        self._prefix = "McdS"
        MacdonaldPolynomials_generic.__init__(self, R, q, t)

        self._s = sfa.SFASchur(self.base_ring())
        self._self_to_s_cache = S_to_s_cache
        self._s_to_self_cache = s_to_S_cache

        _set_cache(cache_s, self)
コード例 #7
0
    def __init__(self, R, q=None, t=None):
        """
        TESTS::
        
            sage: Ht = MacdonaldPolynomialsHt(QQ)
            sage: Ht == loads(dumps(Ht))
            True
        """
        self._name = "Macdonald polynomials in the Ht basis"
        self._prefix = "McdHt"
        MacdonaldPolynomials_generic.__init__(self, R, q, t)

        self._s = sfa.SFASchur(self.base_ring())
        self._self_to_s_cache = ht_to_s_cache
        self._s_to_self_cache = s_to_ht_cache
        self._J = MacdonaldPolynomialsJ(self.base_ring(), self.q, self.t)

        _set_cache(cache_ht, self)
コード例 #8
0
 def _to_s(self, part):
     """
     Returns a function which gives the coefficient of a partition in
     the Schur expansion of self(part).
     
     EXAMPLES::
     
         sage: H = MacdonaldPolynomialsH(QQ)
         sage: f21 = H._to_s(Partition([2,1]))
         sage: [f21(part) for part in Partitions(3)]
         [t, q*t + 1, q]
     """
     q, t = QQqt.gens()
     s = sfa.SFASchur(QQqt)
     res = s(self._Ht(part)).map_coefficients(lambda c: c.subs(t=1 / t))
     res *= t**part.weighted_size()
     f = lambda part2: res.coefficient(part2)
     return f
コード例 #9
0
    def __init__(self, R, k, t=None):
        """
        EXAMPLES::
        
            sage: kSchurFunctions(QQ, 3).base_ring()
            Univariate Polynomial Ring in t over Rational Field
            sage: kSchurFunctions(QQ, 3, t=1).base_ring()
            Rational Field
            sage: ks3 = kSchurFunctions(QQ, 3)
            sage: ks3 == loads(dumps(ks3))
            True
        """
        self.k = k
        self._name = "k-Schur Functions at level %s"%k
        self._prefix = "ks%s"%k
        self._element_class = kSchurFunctions_t.Element
    
        if t is None:
            R = R['t']
            self.t = R.gen()
        elif t not in R:
            raise ValueError, "t (=%s) must be in R (=%s)"%(t,R)
        else:
            self.t = R(t)
            if str(t) != 't':
                self._name += " with t=%s"%self.t
            
        self._s_to_self_cache = s_to_k_cache.get(k, {})
        self._self_to_s_cache = k_to_s_cache.get(k, {})

        # This is an abuse, since kschur functions do not form a basis of Sym
        sfa.SymmetricFunctionAlgebra_generic.__init__(self, R)
        # so we need to take some counter measures
        self._basis_keys = sage.combinat.partition.Partitions(NonNegativeIntegers(), max_part=k)

        self._s = sfa.SFASchur(self.base_ring())
        # temporary until Hom(GradedHopfAlgebrasWithBasis work better)
        category = sage.categories.all.ModulesWithBasis(self.base_ring())
        # This really should be a conversion, not a coercion (it can fail)
        self   .register_coercion(SetMorphism(Hom(self._s, self, category), self._s_to_self))
        self._s.register_coercion(SetMorphism(Hom(self, self._s, category), self._self_to_s))
コード例 #10
0
 def expand(self, n, alphabet='x'):
     """
     Expands the symmetric function as a symmetric polynomial in `n`
     variables.
     
     EXAMPLES::
     
         sage: HLP  = HallLittlewoodP(QQ)
         sage: HLQ  = HallLittlewoodQ(QQ)
         sage: HLQp = HallLittlewoodQp(QQ)
         sage: HLP([2]).expand(2)
         x0^2 + (-t + 1)*x0*x1 + x1^2
         sage: HLQ([2]).expand(2)
         (-t + 1)*x0^2 + (t^2 - 2*t + 1)*x0*x1 + (-t + 1)*x1^2
         sage: HLQp([2]).expand(2)
         x0^2 + x0*x1 + x1^2
     """
     sp = self.parent()
     BR = sp.base_ring()
     s = sfa.SFASchur(BR)
     return s(self).expand(n, alphabet=alphabet)
コード例 #11
0
 def _to_s(self, part):
     """
     Returns a function which gives the coefficient of a partition in
     the Schur expansion of self(part).
     
     EXAMPLES::
     
         sage: S = MacdonaldPolynomialsS(QQ)
         sage: S2 = S._to_s(Partition([2]))
         sage: S2(Partition([2]))
         -t + 1
         sage: S2(Partition([1,1]))
         t^2 - t
     """
     #Covert to the power sum
     p = sfa.SFAPower(QQqt)
     s = sfa.SFASchur(QQqt)
     p_x = p(s(part))
     t = self.t
     f = lambda m, c: (m, c * prod([(1 - t**k) for k in m]))
     res = s(p_x.map_item(f))
     f = lambda part2: res.coefficient(part2)
     return f