コード例 #1
0
def get_rel_score(args, t, loader, model):
    float_dtype = torch.FloatTensor
    long_dtype = torch.LongTensor
    num_samples = 0
    all_losses = defaultdict(list)
    total_iou = 0
    total_boxes = 0
    rel_score = 0

    with torch.no_grad():
        o_start = o_end = 0
        t_start = t_end = 0
        last_o_idx = last_t_idx = 0

        b = 0
        total_boxes = 0
        total_iou = 0
        for batch in loader:
            batch = [tensor.cuda() for tensor in batch]
            #batch = [tensor for tensor in batch]
            masks = None
            if len(batch) == 6:
                imgs, objs, boxes, triples, obj_to_img, triple_to_img = batch
            elif len(batch) == 8:
                imgs, objs, boxes, masks, triples, obj_to_img, triple_to_img, triplet_masks = batch
            #elif len(batch) == 7:
            #  imgs, objs, boxes, masks, triples, obj_to_img, triple_to_img = batch
            predicates = triples[:, 1]

            objs = objs.detach()
            triples = triples.detach()
            # Run the model as it has been run during training
            model_masks = masks
            model_out = model(objs,
                              triples,
                              obj_to_img,
                              boxes_gt=boxes,
                              masks_gt=model_masks)
            # imgs_pred, boxes_pred, masks_pred, predicate_scores = model_out
            imgs_pred, boxes_pred, masks_pred, objs_vec, layout, layout_boxes, layout_masks, obj_to_img, sg_context_pred, sg_context_pred_d, predicate_scores, obj_embeddings, pred_embeddings, triple_boxes_pred, triple_boxes_gt, triplet_masks_pred = model_out

            num_samples += imgs.size(0)
            if num_samples >= args.num_val_samples:
                break

            rel_score += relation_score(boxes_pred, boxes, masks_pred, masks,
                                        model.vocab)
            b += 1
            total_iou += jaccard(boxes_pred, boxes)
            total_boxes += boxes_pred.size(0)

        rel_score = rel_score / b
        avg_iou = total_iou / total_boxes
        return rel_score, avg_iou
コード例 #2
0
def get_rel_score(args, t, loader, model):
    float_dtype = torch.FloatTensor
    long_dtype = torch.LongTensor
    num_samples = 0
    all_losses = defaultdict(list)
    total_iou = 0
    total_boxes = 0

    ###################
    if not os.path.isdir(args.output_dir):
        os.mkdir(args.output_dir)
        print('Created %s' % args.output_dir)

    img_dir = args.output_dir + '/img_dir'

    if not os.path.isdir(img_dir):
        os.mkdir(img_dir)
        print('Created %s' % img_dir)
    ##################
    rel_score = 0
    with torch.no_grad():
        o_start = o_end = 0
        t_start = t_end = 0
        last_o_idx = last_t_idx = 0

        b = 0
        total_boxes = 0
        total_iou = 0
        for batch in loader:
            #batch = [tensor.cuda() for tensor in batch]
            batch = [tensor for tensor in batch]
            masks = None
            if len(batch) == 6:
                imgs, objs, boxes, triples, obj_to_img, triple_to_img = batch
            elif len(batch) == 7:
                imgs, objs, boxes, masks, triples, obj_to_img, triple_to_img = batch
            predicates = triples[:, 1]

            objs = objs.detach()
            triples = triples.detach()
            # Run the model as it has been run during training
            model_masks = masks
            model_out = model(objs,
                              triples,
                              obj_to_img,
                              boxes_gt=boxes,
                              masks_gt=model_masks)
            # imgs_pred, boxes_pred, masks_pred, predicate_scores = model_out
            imgs_pred, boxes_pred, masks_pred, objs_vec, layout, layout_boxes, layout_masks, obj_to_img, sg_context_pred, sg_context_pred_d, predicate_scores = model_out

            num_samples += imgs.size(0)
            if num_samples >= args.num_val_samples:
                break

            rel_score += relation_score(boxes_pred, boxes, masks_pred, masks,
                                        model.vocab)
            b += 1

            total_iou += jaccard(boxes_pred, boxes)
            total_boxes += boxes_pred.size(0)

        print(b)
        print(total_boxes)

        rel_score = rel_score / b
        avg_iou = total_iou / total_boxes

        # print('rel score:' rel_score)
        # print('avg iou:' avg_iou)

        return rel_score, avg_iou
コード例 #3
0
def get_rel_score(args, t, loader, model):
    float_dtype = torch.FloatTensor
    long_dtype = torch.LongTensor
    num_samples = 0
    all_losses = defaultdict(list)
    total_iou = 0
    total_boxes = 0

    ###################
    if not os.path.isdir(args.output_dir):
        os.mkdir(args.output_dir)
        print('Created %s' % args.output_dir)

    img_dir = args.output_dir + '/img_dir'

    if not os.path.isdir(img_dir):
        os.mkdir(img_dir)
        print('Created %s' % img_dir)
    ##################
    rel_score = 0
    with torch.no_grad():
        o_start = o_end = 0
        t_start = t_end = 0
        last_o_idx = last_t_idx = 0

        b = 0
        total_boxes = 0
        total_iou = 0
        for batch in loader:
            batch = [tensor.cuda() for tensor in batch]
            #batch = [tensor for tensor in batch]
            masks = None
            if len(batch) == 6:
                imgs, objs, boxes, triples, obj_to_img, triple_to_img = batch
            elif len(batch) == 10:
                imgs, objs, boxes, masks, triples, obj_to_img, triple_to_img, triplet_masks, triplet_contours, contours = batch
            #elif len(batch) == 8:
            #  imgs, objs, boxes, masks, triples, obj_to_img, triple_to_img, triplet_masks = batch
            #elif len(batch) == 7:
            #  imgs, objs, boxes, masks, triples, obj_to_img, triple_to_img = batch
            predicates = triples[:, 1]

            objs = objs.detach()
            triples = triples.detach()
            # Run the model as it has been run during training
            model_masks = masks
            model_out = model(objs,
                              triples,
                              obj_to_img,
                              boxes_gt=boxes,
                              masks_gt=model_masks)
            # imgs_pred, boxes_pred, masks_pred, predicate_scores = model_out
            #imgs_pred, boxes_pred, masks_pred, objs_vec, layout, layout_boxes, layout_masks, obj_to_img, sg_context_pred, sg_context_pred_d, predicate_scores, obj_embeddings, pred_embeddings, triple_boxes_pred, triple_boxes_gt = model_out
            #imgs_pred, boxes_pred, masks_pred, objs_vec, layout, layout_boxes, layout_masks, obj_to_img, sg_context_pred, sg_context_pred_d, predicate_scores, obj_embeddings, pred_embeddings, triple_boxes_pred, triple_boxes_gt, triplet_masks_pred = model_out
            imgs_pred, boxes_pred, masks_pred, objs_vec, layout, layout_boxes, layout_masks, obj_to_img, sg_context_pred, sg_context_pred_d, predicate_scores, obj_embeddings, pred_embeddings, triple_boxes_pred, triple_boxes_gt, triplet_masks_pred, triplet_contour_pred, contours_pred = model_out

            num_samples += imgs.size(0)
            if num_samples >= args.num_val_samples:
                break

            # if obj contours are predicted, derive bounding box from these;
            # if GT boxes are passed in, layout_masks are GT boxes
            if contours_pred is not None and boxes_pred is None:
                boxes_gt = boxes
                # get min-max bboxes, contour mean (not bbox mean), contour std dev (e.g. use predicted bboxes to estimate centers)
                boxes_pred, mean_pts_pred, std_pts_pred = min_max_bbox_fr_contours(
                    contours_pred)  # predicted
                #boxes, mean_pts, std_pts = min_max_bbox_fr_contours(contours) # GT

                # use geom center contour of contour to calculate relations score
                # (can't calculate geometric center of contour in sg2im.data.utils.determine_box_relation()
                #boxes_pred_mn = torch.cat([mean_pts_pred, mean_pts_pred], dim=1)
                #boxes_mn = torch.cat([mean_pts, mean_pts], dim=1)
                #pdb.set_trace()

                if 0:
                    # visualize first contour of each batch
                    import matplotlib.pyplot as plt
                    cc = contours.clone().view(-1, 12, 2)
                    cp = contours_pred.view(-1, 12, 2).clone().detach()
                    cp = cp.cpu().numpy()
                    #bb = new_boxes[0].view(2,2)
                    bb = boxes[0].view(2, 2)
                    bbp = boxes_pred.clone().detach()
                    #bbp = new_boxes_pred.clone().detach()
                    bbp = bbp[0].view(2, 2)
                    fig, ax = plt.subplots()
                    #ax.imshow(masks[0])
                    # without mask, origin will be LLHC
                    ax.scatter(cc[0, :, 0], cc[0, :, 1], linewidth=0.5)
                    ax.scatter(cp[0, :, 0], cp[0, :, 1], linewidth=0.5)
                    ax.scatter(bb[:, 0], bb[:, 1], linewidth=1.0, marker="x")
                    ax.scatter(bbp[:, 0], bbp[:, 1], linewidth=1.0, marker="x")
                    plt.show()
                    #pdb.set_trace()

            # use geometric center of contour l/r/t/b spatial relationships; use min-max box for surrounding/in
            #rel_score += relation_score_cont(boxes_pred_mn, boxes_mn, masks_pred, masks, boxes_pred, boxes, model.vocab) # no mask, faske boxes
            rel_score += relation_score(boxes_pred, boxes, masks_pred, masks,
                                        model.vocab)
            b += 1

            #total_iou += jaccard(new_boxes_pred, boxes)
            total_iou += jaccard(boxes_pred, boxes)
            total_boxes += boxes_pred.size(0)

        rel_score = rel_score / b
        avg_iou = total_iou / total_boxes

        # print('rel score:' rel_score)
        # print('avg iou:' avg_iou)
        return rel_score, avg_iou