def test_submission(self): train_data = extract_features(load_adult_train_data()) valid_data = extract_features(load_adult_valid_data()) model = submission(train_data) predictions = [predict(model, p) for p in train_data] print print print "Training Accuracy:", accuracy(train_data, predictions) predictions = [predict(model, p) for p in valid_data] print "Validation Accuracy:", accuracy(valid_data, predictions) print
def test_submission(self): train_data = extract_features(load_adult_train_data()) valid_data = extract_features(load_adult_valid_data()) model = submission(train_data) predictions = [predict(model, p) for p in train_data] print() print() print("Training Accuracy:", accuracy(train_data, predictions)) predictions = [predict(model, p) for p in valid_data] print("Validation Accuracy:", accuracy(valid_data, predictions)) print()
def test_submission(self): """Overall test. """ train_data = extract_features(load_adult_train_data()) valid_data = extract_features(load_adult_valid_data()) model = submission(train_data) predictions = [predict(model, p) for p in train_data] print("Training Accuracy: {0}".format( accuracy(train_data, predictions))) predictions = [predict(model, p) for p in valid_data] print("Validation Accuracy: {0}".format( accuracy(valid_data, predictions)))
def test_submission(): valid_data = test_data model = submission(train_data) predictions = [predict(model, p) for p in train_data] print print # print predictions train_accuracy = accuracy(train_data, predictions) print "Training Accuracy:", train_accuracy # print train_data predictions = [predict(model, p) for p in valid_data] valid_accuracy = accuracy(valid_data, predictions) print "Validation Accuracy:", valid_accuracy print return train_accuracy, valid_accuracy
def test_neural_net(self): print "Testing neural net.." print #getting data using 80% of data as training. #If you want to test soething other than 3 vs 5, just change the input to loadmnist. #For example, loadmnist(1, 7) data = loadmnist(3, 5) train_data = data[:int(len(data)*0.8)] validation_data =data[int(len(data)*0.8):] #train the model m = neural_net(train_data) #evaluate predictions = [m.predict(p) for p in train_data] print "Training Accuracy:", accuracy(train_data, predictions) predictions = [m.predict(p) for p in validation_data] print "Validation Accuracy:", accuracy(validation_data, predictions)
def test_accuracy(self): data = extract_features(load_adult_train_data()) a = accuracy(data, [0.4]*len(data)) self.assertAlmostEqual(a, 0.751077514754)
def test_accuracy(self): data = extract_features(load_adult_train_data()) a = accuracy(data, [0]*len(data)) self.assertAlmostEqual(a, 0.751077514754)
def test_accuracy(self): data = [dict([('label',np.matrix([1]))]) for i in range(25)]+[dict([('label',np.matrix([0]))]) for i in range(75)] a = accuracy(data, [np.matrix([0]) for i in range(len(data))]) self.assertAlmostEqual(a, 0.75)
max_num_faces = max(max_num_faces, len(item_dict)) # predict for result of one picture predictions = [] for i in range(0, len(item_dict)): face = {} face["faceRectangle"] = item_dict[i]["faceRectangle"] face["result"] = (predict( model, extract_features_single_point(item_dict[i]["scores"])) >= 0.5) predictions.append(face) predictions_all.append(predictions) print max_num_faces return predictions_all, max_num_faces if __name__ == "__main__": # prepare the model train_data = extract_features(load_adult_train_data()) model = submission(train_data) print model predictions = [predict(model, p) for p in train_data] print print print "Training Accuracy:", accuracy(train_data, predictions) app.run(host='ec2-52-206-17-234.compute-1.amazonaws.com', port=8000, threaded=True)
def test_accuracy(): data = train_data a = accuracy(data, [0] * len(data))
def test_accuracy(self): """Tests the accuracy calculation. """ data = extract_features(load_adult_train_data()) a = accuracy(data, [0] * len(data)) self.assertAlmostEqual(a, 0.7636129)