コード例 #1
0
ファイル: variables.py プロジェクト: aktech/sgkit
    def _check_field(
        cls,
        xr_dataset: xr.Dataset,
        field_spec: Spec,
        field: Hashable,
        add_comment_attr: bool = False,
    ) -> None:
        from sgkit.utils import check_array_like

        assert isinstance(
            field_spec, ArrayLikeSpec
        ), "ArrayLikeSpec is the only currently supported variable spec"

        try:
            arr = xr_dataset[field]
            try:
                check_array_like(arr,
                                 kind=field_spec.kind,
                                 ndim=field_spec.ndim)
                if add_comment_attr and field_spec.__doc__ is not None:
                    arr.attrs["comment"] = field_spec.__doc__.strip()
            except (TypeError, ValueError) as e:
                raise ValueError(
                    f"{field} does not match the spec, see the error above for more detail"
                ) from e
        except KeyError:
            raise ValueError(f"{field} not present in {xr_dataset}")
コード例 #2
0
    def _check_field(cls, xr_dataset: xr.Dataset, field_spec: Spec,
                     field: Hashable) -> None:
        from sgkit.utils import check_array_like

        assert isinstance(
            field_spec, ArrayLikeSpec
        ), "ArrayLikeSpec is the only currently supported variable spec"

        if field not in xr_dataset:
            raise ValueError(f"{field} not present in {xr_dataset}")
        try:
            check_array_like(xr_dataset[field],
                             kind=field_spec.kind,
                             ndim=field_spec.ndim)
        except (TypeError, ValueError) as e:
            raise ValueError(
                f"{field} does not match the spec, see the error above for more detail"
            ) from e
コード例 #3
0
def test_check_array_like():
    with pytest.raises(TypeError,
                       match=r"Not an array. Missing attribute 'ndim'"):
        check_array_like("foo")
    a = np.arange(100, dtype="i4")
    with pytest.raises(TypeError,
                       match=r"Array dtype \(int32\) does not match int64"):
        check_array_like(a, dtype="i8")
    with pytest.raises(
            TypeError,
            match=
            r"Array dtype \(int32\) does not match one of (\{dtype\('int8'\), dtype\('int16'\)\}|\{dtype\('int16'\), dtype\('int8'\)\})",
    ):
        check_array_like(a, dtype={"i1", "i2"})
    with pytest.raises(TypeError,
                       match=r"Array dtype kind \(i\) does not match f"):
        check_array_like(a, kind="f")
    with pytest.raises(
            TypeError,
            match=
            r"Array dtype kind \(i\) does not match one of (\{'f', 'S'\}|\{'S', 'f'\})",
    ):
        check_array_like(a, kind={"f", "S"})
    with pytest.raises(ValueError,
                       match=r"Number of dimensions \(1\) does not match 2"):
        check_array_like(a, ndim=2)
    with pytest.raises(
            ValueError,
            match=
            r"Number of dimensions \(1\) does not match one of (\{2, 3\}|\{3, 2\})",
    ):
        check_array_like(a, ndim={2, 3})
コード例 #4
0
ファイル: test_utils.py プロジェクト: daletovar/sgkit
def test_check_array_like():
    with pytest.raises(TypeError):
        check_array_like("foo")
    a = np.arange(100, dtype="i4")
    with pytest.raises(TypeError):
        check_array_like(a, dtype="i8")
    with pytest.raises(TypeError):
        check_array_like(a, dtype={"i1", "i2"})
    with pytest.raises(TypeError):
        check_array_like(a, kind="f")
    with pytest.raises(ValueError):
        check_array_like(a, ndim=2)
    with pytest.raises(ValueError):
        check_array_like(a, ndim={2, 3})