# Display filter design in spectral domain sgwt.view_design(g,t,arange); # Chebyshev polynomial approximation m = 50 # Order of polynomial approximation print 'Computing Chebyshev polynomials of order %d for fast transform' %m c = [] for kernel in g: c.append(sgwt.cheby_coeff(kernel, m, m+1, arange)) # Compute transform of delta at one vertex j_center = 32 - 1 # Vertex to center wavelets to be shown print 'Computing forward transform of delta at vertex %d' % j_center N = L.shape[0] d = sgwt.delta(N, j_center) # forward transform, using chebyshev approximation wp_all = sgwt.cheby_op(d, L, c, arange) ## plt.figure() ## print 'Plotting...' ## for i in range(N_scales + 1): ## plt.subplot(N_scales + 1, 1, i+1) ## plt.plot(wp_all[i]) # Visualize result # Show original point cdict = { # Colormap 'red': ((0., 0., 0.5), (0.5, 0.75, 1.), (1., 1. , 1.)), 'green': ((0., 0., 0.5), (0.5, 0.15, 0.), (1., 0., 0.)),
l_max = sgwt.rough_l_max(L) print 'Measuring the largest eigenvalue, l_max = %.2f' % l_max print 'Designing transform in spectral domain' (g, _, t) = sgwt.filter_design(l_max, N_scales) arange = (0.0, l_max) # Display filter design in spectral domain #sgwt.view_design(g,t,arange); # Chebyshev polynomial approximation m = 50 # Order of polynomial approximation print 'Computing Chebyshev polynomials of order %d for fast transform' % m c = [] for kernel in g: c.append(sgwt.cheby_coeff(kernel, m, m + 1, arange)) # Compute transform of delta at one vertex j_center = 135 # Vertex to center wavelets to be shown print 'Computing forward transform of delta at vertex %d' % j_center d = sgwt.delta(L.shape[0], j_center) # forward transform, using chebyshev approximation wp_all = sgwt.cheby_op(d, L, c, arange) for n in range(N_scales + 1): alpha = wp_all[n].reshape((N, N)) plt.matshow(alpha) plt.colorbar() plt.show()
print 'Measuring the largest eigenvalue, l_max = %.2f' % l_max print 'Designing transform in spectral domain' (g, _, t) = sgwt.filter_design(l_max, N_scales) arange = (0.0, l_max) # Display filter design in spectral domain #sgwt.view_design(g,t,arange); # Chebyshev polynomial approximation m = 50 # Order of polynomial approximation print 'Computing Chebyshev polynomials of order %d for fast transform' %m c = [] for kernel in g: c.append(sgwt.cheby_coeff(kernel, m, m+1, arange)) # Compute transform of delta at one vertex j_center = 135 # Vertex to center wavelets to be shown print 'Computing forward transform of delta at vertex %d' % j_center d = sgwt.delta(L.shape[0], j_center) # forward transform, using chebyshev approximation wp_all = sgwt.cheby_op(d, L, c, arange) for n in range(N_scales + 1): alpha = wp_all[n].reshape((N,N)) plt.matshow(alpha) plt.colorbar() plt.show()