コード例 #1
0
    def getStrike(self):
        """
        Return strike angle. If rupture consists of multiple quadrilaterals,
        the average strike angle, weighted by quad length, is returned.
        Note: for ruptures with quads where the strike angle changes by 180 deg
        due to reverses in dip direction are problematic and not handeled well
        by this algorithm.

        Returns:
            float: Strike angle in degrees.

        """
        nq = len(self._quadrilaterals)
        strikes = np.zeros(nq)
        lengths = np.zeros(nq)
        for i in range(nq):
            P0 = self._quadrilaterals[i][0]
            P1 = self._quadrilaterals[i][1]
            strikes[i] = P0.azimuth(P1)
            lengths[i] = utils.get_quad_length(self._quadrilaterals[i])
        x = np.sin(np.radians(strikes))
        y = np.cos(np.radians(strikes))
        xbar = np.sum(x * lengths) / np.sum(lengths)
        ybar = np.sum(y * lengths) / np.sum(lengths)
        return np.degrees(np.arctan2(xbar, ybar))
コード例 #2
0
    def getLength(self):
        """
        Compute length of rupture based on top edge in km.

        Returns:
            float: Length of rupture (km).

        """
        flength = 0
        for quad in self._quadrilaterals:
            flength = flength + utils.get_quad_length(quad)
        return flength
コード例 #3
0
    def getArea(self):
        """
        Compute area of rupture.

        Returns:
            float: Rupture area in square km.

        """
        asum = 0.0
        for quad in self._quadrilaterals:
            width = utils.get_quad_width(quad)
            length = utils.get_quad_length(quad)
            asum = asum + width * length
        return asum
コード例 #4
0
ファイル: gc2.py プロジェクト: ynthdhj/shakemap
def _computeGC2(rupture, lon, lat, depth):
    """
    Method for computing GC2 from a ShakeMap Rupture instance.

    Args:
        rupture (Rupture): ShakeMap rupture object.
        lon (array): Numpy array of site longitudes.
        lat (array): Numpy array of site latitudes.
        depth (array): Numpy array of site depths.

    Returns:
        dict: Dictionary of GC2 distances. Keys include "T", "U", "rx"
            "ry", "ry0".
    """

    quadlist = rupture.getQuadrilaterals()
    quadgc2 = copy.deepcopy(quadlist)

    oldshape = lon.shape

    if len(oldshape) == 2:
        newshape = (oldshape[0] * oldshape[1], 1)
    else:
        newshape = (oldshape[0], 1)

    # -------------------------------------------------------------------------
    # Define a projection that spans sites and rupture
    # -------------------------------------------------------------------------

    all_lat = np.append(lat, rupture.lats)
    all_lon = np.append(lon, rupture.lons)

    west = np.nanmin(all_lon)
    east = np.nanmax(all_lon)
    south = np.nanmin(all_lat)
    north = np.nanmax(all_lat)
    proj = get_orthographic_projection(west, east, north, south)

    totweight = np.zeros(newshape, dtype=lon.dtype)
    GC2T = np.zeros(newshape, dtype=lon.dtype)
    GC2U = np.zeros(newshape, dtype=lon.dtype)

    # -------------------------------------------------------------------------
    # First sort out strike discordance and nominal strike prior to
    # starting the loop if there is more than one group/trace.
    # -------------------------------------------------------------------------
    group_ind = rupture._getGroupIndex()

    # Need group_ind as numpy array for sensible indexing...
    group_ind_np = np.array(group_ind)
    uind = np.unique(group_ind_np)
    n_groups = len(uind)

    if n_groups > 1:
        # ---------------------------------------------------------------------
        # The first thing we need to worry about is finding the coordinate
        # shift. U's origin is "selected from the two endpoints most
        # distant from each other."
        # ---------------------------------------------------------------------

        # Need to get index of first and last quad
        # for each segment
        iq0 = np.zeros(n_groups, dtype='int16')
        iq1 = np.zeros(n_groups, dtype='int16')
        for k in uind:
            ii = [i for i, j in enumerate(group_ind) if j == uind[k]]
            iq0[k] = int(np.min(ii))
            iq1[k] = int(np.max(ii))

        # ---------------------------------------------------------------------
        # This is an iterator for each possible combination of traces
        # including trace orientations (i.e., flipped).
        # ---------------------------------------------------------------------

        it_seg = it.product(it.combinations(uind, 2),
                            it.product([0, 1], [0, 1]))

        # Placeholder for the trace pair/orientation that gives the
        # largest distance.
        dist_save = 0

        for k in it_seg:
            s0ind = k[0][0]
            s1ind = k[0][1]
            p0ind = k[1][0]
            p1ind = k[1][1]
            if p0ind == 0:
                P0 = quadlist[iq0[s0ind]][0]
            else:
                P0 = quadlist[iq1[s0ind]][1]
            if p1ind == 0:
                P1 = quadlist[iq1[s1ind]][0]
            else:
                P1 = quadlist[iq0[s1ind]][1]

            dist = geodetic.distance(P0.longitude, P0.latitude, 0.0,
                                     P1.longitude, P1.latitude, 0.0)
            if dist > dist_save:
                dist_save = dist
                A0 = P0
                A1 = P1

        # ---------------------------------------------------------------------
        # A0 and A1 are the furthest two segment endpoints, but we still
        # need to sort out which one is the "origin".
        # ---------------------------------------------------------------------

        # This goofy while-loop is to adjust the side of the rupture where the
        # origin is located
        dummy = -1
        while dummy < 0:
            A0.depth = 0
            A1.depth = 0
            p_origin = Vector.fromPoint(A0)
            a0 = Vector.fromPoint(A0)
            a1 = Vector.fromPoint(A1)
            ahat = (a1 - a0).norm()

            # Loop over traces
            e_j = np.zeros(n_groups)
            b_prime = [None] * n_groups
            for j in range(n_groups):
                P0 = quadlist[iq0[j]][0]
                P1 = quadlist[iq1[j]][1]
                P0.depth = 0
                P1.depth = 0
                p0 = Vector.fromPoint(P0)
                p1 = Vector.fromPoint(P1)
                b_prime[j] = p1 - p0
                e_j[j] = ahat.dot(b_prime[j])
            E = np.sum(e_j)

            # List of discordancy
            dc = [np.sign(a) * np.sign(E) for a in e_j]
            b = Vector(0, 0, 0)
            for j in range(n_groups):
                b.x = b.x + b_prime[j].x * dc[j]
                b.y = b.y + b_prime[j].y * dc[j]
                b.z = b.z + b_prime[j].z * dc[j]
            bhat = b.norm()
            dummy = bhat.dot(ahat)
            if dummy < 0:
                tmpA0 = copy.deepcopy(A0)
                tmpA1 = copy.deepcopy(A1)
                A0 = tmpA1
                A1 = tmpA0

        # ---------------------------------------------------------------------
        # To fix discordancy, need to flip quads and rearrange
        # the order of quadgc2
        # ---------------------------------------------------------------------

        # 1) flip quads
        for i in range(len(quadgc2)):
            if dc[group_ind[i]] < 0:
                quadgc2[i] = reverse_quad(quadgc2[i])

        # 2) rearrange quadlist order
        qind = np.arange(len(quadgc2))
        for i in range(n_groups):
            qsel = qind[group_ind_np == uind[i]]
            if dc[i] < 0:
                qrev = qsel[::-1]
                qind[group_ind_np == uind[i]] = qrev

        quadgc2old = copy.deepcopy(quadgc2)
        for i in range(len(qind)):
            quadgc2[i] = quadgc2old[qind[i]]

        # End of if-statement for adjusting group discordancy

    s_i = 0.0
    l_i = np.zeros(len(quadgc2))

    for i in range(len(quadgc2)):
        G0, G1, G2, G3 = quadgc2[i]

        # Compute u_i and t_i for this quad
        t_i = __calc_t_i(G0, G1, lat, lon, proj)
        u_i = __calc_u_i(G0, G1, lat, lon, proj)

        # Quad length (top edge)
        l_i[i] = get_quad_length(quadgc2[i])

        # ---------------------------------------------------------------------
        # Weight of segment, three cases
        # ---------------------------------------------------------------------

        # Case 3: t_i == 0 and 0 <= u_i <= l_i
        w_i = np.zeros_like(t_i)

        # Case 1:
        ix = t_i != 0
        w_i[ix] = (1.0 / t_i[ix]) * (np.arctan((l_i[i] -
                  u_i[ix]) / t_i[ix]) - np.arctan(-u_i[ix] / t_i[ix]))

        # Case 2:
        ix = (t_i == 0) & ((u_i < 0) | (u_i > l_i[i]))
        w_i[ix] = 1 / (u_i[ix] - l_i[i]) - 1 / u_i[ix]

        totweight = totweight + w_i
        GC2T = GC2T + w_i * t_i

        if n_groups == 1:
            GC2U = GC2U + w_i * (u_i + s_i)
        else:
            if i == 0:
                qind = np.array(range(len(quadgc2)))
                l_kj = 0
                s_ij_1 = 0
            else:
                l_kj = l_i[(group_ind_np == group_ind_np[i]) & (qind < i)]
                s_ij_1 = np.sum(l_kj)

            # First endpoint in the current 'group' (or 'trace' in GC2 terms)
            p1 = Vector.fromPoint(quadgc2[iq0[group_ind[i]]][0])
            s_ij_2 = (p1 - p_origin).dot(np.sign(E) * ahat) / 1000.0

            # Above is GC2N, for GC2T use:
            # s_ij_2 = (p1 - p_origin).dot(bhat) / 1000.0

            s_ij = s_ij_1 + s_ij_2
            GC2U = GC2U + w_i * (u_i + s_ij)

        s_i = s_i + l_i[i]

    GC2T = GC2T / totweight
    GC2U = GC2U / totweight

    # Dictionary for holding the distances
    distdict = dict()

    distdict['T'] = copy.deepcopy(GC2T).reshape(oldshape)
    distdict['U'] = copy.deepcopy(GC2U).reshape(oldshape)

    # Take care of Rx
    Rx = copy.deepcopy(GC2T)  # preserve sign (no absolute value)
    Rx = Rx.reshape(oldshape)
    distdict['rx'] = Rx

    # Ry
    Ry = GC2U - s_i / 2.0
    Ry = Ry.reshape(oldshape)
    distdict['ry'] = Ry

    # Ry0
    Ry0 = np.zeros_like(GC2U)
    ix = GC2U < 0
    Ry0[ix] = np.abs(GC2U[ix])
    if n_groups > 1:
        s_i = s_ij + l_i[-1]
    ix = GC2U > s_i
    Ry0[ix] = GC2U[ix] - s_i
    Ry0 = Ry0.reshape(oldshape)
    distdict['ry0'] = Ry0

    return distdict
コード例 #5
0
def _computeGC2(rupture, lon, lat, depth):
    """
    Method for computing GC2 from a ShakeMap Rupture instance.

    Args:
        rupture (Rupture): ShakeMap rupture object.
        lon (array): Numpy array of site longitudes.
        lat (array): Numpy array of site latitudes.
        depth (array): Numpy array of site depths.

    Returns:
        dict: Dictionary of GC2 distances. Keys include "T", "U", "rx"
            "ry", "ry0".
    """

    quadlist = rupture.getQuadrilaterals()
    quadgc2 = copy.deepcopy(quadlist)

    oldshape = lon.shape

    if len(oldshape) == 2:
        newshape = (oldshape[0] * oldshape[1], 1)
    else:
        newshape = (oldshape[0], 1)

    # -------------------------------------------------------------------------
    # Define a projection that spans sites and rupture
    # -------------------------------------------------------------------------

    all_lat = np.append(lat, rupture.lats)
    all_lon = np.append(lon, rupture.lons)

    west = np.nanmin(all_lon)
    east = np.nanmax(all_lon)
    south = np.nanmin(all_lat)
    north = np.nanmax(all_lat)
    proj = OrthographicProjection(west, east, north, south)

    totweight = np.zeros(newshape, dtype=lon.dtype)
    GC2T = np.zeros(newshape, dtype=lon.dtype)
    GC2U = np.zeros(newshape, dtype=lon.dtype)

    # -------------------------------------------------------------------------
    # First sort out strike discordance and nominal strike prior to
    # starting the loop if there is more than one group/trace.
    # -------------------------------------------------------------------------
    group_ind = rupture._getGroupIndex()

    # Need group_ind as numpy array for sensible indexing...
    group_ind_np = np.array(group_ind)
    uind = np.unique(group_ind_np)
    n_groups = len(uind)

    if n_groups > 1:
        # ---------------------------------------------------------------------
        # The first thing we need to worry about is finding the coordinate
        # shift. U's origin is "selected from the two endpoints most
        # distant from each other."
        # ---------------------------------------------------------------------

        # Need to get index of first and last quad
        # for each segment
        iq0 = np.zeros(n_groups, dtype='int16')
        iq1 = np.zeros(n_groups, dtype='int16')
        for k in uind:
            ii = [i for i, j in enumerate(group_ind) if j == uind[k]]
            iq0[k] = int(np.min(ii))
            iq1[k] = int(np.max(ii))

        # ---------------------------------------------------------------------
        # This is an iterator for each possible combination of traces
        # including trace orientations (i.e., flipped).
        # ---------------------------------------------------------------------

        it_seg = it.product(it.combinations(uind, 2), it.product([0, 1],
                                                                 [0, 1]))

        # Placeholder for the trace pair/orientation that gives the
        # largest distance.
        dist_save = 0

        for k in it_seg:
            s0ind = k[0][0]
            s1ind = k[0][1]
            p0ind = k[1][0]
            p1ind = k[1][1]
            if p0ind == 0:
                P0 = quadlist[iq0[s0ind]][0]
            else:
                P0 = quadlist[iq1[s0ind]][1]
            if p1ind == 0:
                P1 = quadlist[iq1[s1ind]][0]
            else:
                P1 = quadlist[iq0[s1ind]][1]

            dist = geodetic.distance(P0.longitude, P0.latitude, 0.0,
                                     P1.longitude, P1.latitude, 0.0)
            if dist > dist_save:
                dist_save = dist
                A0 = P0
                A1 = P1

        # ---------------------------------------------------------------------
        # A0 and A1 are the furthest two segment endpoints, but we still
        # need to sort out which one is the "origin".
        # ---------------------------------------------------------------------

        # This goofy while-loop is to adjust the side of the rupture where the
        # origin is located
        dummy = -1
        while dummy < 0:
            A0.depth = 0
            A1.depth = 0
            p_origin = Vector.fromPoint(A0)
            a0 = Vector.fromPoint(A0)
            a1 = Vector.fromPoint(A1)
            ahat = (a1 - a0).norm()

            # Loop over traces
            e_j = np.zeros(n_groups)
            b_prime = [None] * n_groups
            for j in range(n_groups):
                P0 = quadlist[iq0[j]][0]
                P1 = quadlist[iq1[j]][1]
                P0.depth = 0
                P1.depth = 0
                p0 = Vector.fromPoint(P0)
                p1 = Vector.fromPoint(P1)
                b_prime[j] = p1 - p0
                e_j[j] = ahat.dot(b_prime[j])
            E = np.sum(e_j)

            # List of discordancy
            dc = [np.sign(a) * np.sign(E) for a in e_j]
            b = Vector(0, 0, 0)
            for j in range(n_groups):
                b.x = b.x + b_prime[j].x * dc[j]
                b.y = b.y + b_prime[j].y * dc[j]
                b.z = b.z + b_prime[j].z * dc[j]
            bhat = b.norm()
            dummy = bhat.dot(ahat)
            if dummy < 0:
                tmpA0 = copy.deepcopy(A0)
                A0 = copy.deepcopy(A1)
                A1 = tmpA0

        # ---------------------------------------------------------------------
        # To fix discordancy, need to flip quads and rearrange
        # the order of quadgc2
        # ---------------------------------------------------------------------

        # 1) flip quads
        for i in range(len(quadgc2)):
            if dc[group_ind[i]] < 0:
                quadgc2[i] = reverse_quad(quadgc2[i])

        # 2) rearrange quadlist order
        qind = np.arange(len(quadgc2))
        for i in range(n_groups):
            qsel = qind[group_ind_np == uind[i]]
            if dc[i] < 0:
                qrev = qsel[::-1]
                qind[group_ind_np == uind[i]] = qrev

        quadgc2old = copy.deepcopy(quadgc2)
        for i in range(len(qind)):
            quadgc2[i] = quadgc2old[qind[i]]

        # End of if-statement for adjusting group discordancy

    s_i = 0.0
    l_i = np.zeros(len(quadgc2))

    for i in range(len(quadgc2)):
        G0, G1, G2, G3 = quadgc2[i]

        # Compute u_i and t_i for this quad
        t_i = __calc_t_i(G0, G1, lat, lon, proj)
        u_i = __calc_u_i(G0, G1, lat, lon, proj)

        # Quad length (top edge)
        l_i[i] = get_quad_length(quadgc2[i])

        # ---------------------------------------------------------------------
        # Weight of segment, three cases
        # ---------------------------------------------------------------------

        # Case 3: t_i == 0 and 0 <= u_i <= l_i
        w_i = np.zeros_like(t_i)

        # Case 1:
        ix = t_i != 0
        w_i[ix] = (1.0 / t_i[ix]) * (np.arctan(
            (l_i[i] - u_i[ix]) / t_i[ix]) - np.arctan(-u_i[ix] / t_i[ix]))

        # Case 2:
        ix = (t_i == 0) & ((u_i < 0) | (u_i > l_i[i]))
        w_i[ix] = 1 / (u_i[ix] - l_i[i]) - 1 / u_i[ix]

        totweight = totweight + w_i
        GC2T = GC2T + w_i * t_i

        if n_groups == 1:
            GC2U = GC2U + w_i * (u_i + s_i)
        else:
            if i == 0:
                qind = np.array(range(len(quadgc2)))
                l_kj = 0
                s_ij_1 = 0
            else:
                l_kj = l_i[(group_ind_np == group_ind_np[i]) & (qind < i)]
                s_ij_1 = np.sum(l_kj)

            # First endpoint in the current 'group' (or 'trace' in GC2 terms)
            p1 = Vector.fromPoint(quadgc2[iq0[group_ind[i]]][0])
            s_ij_2 = (p1 - p_origin).dot(np.sign(E) * ahat) / 1000.0

            # Above is GC2N, for GC2T use:
            # s_ij_2 = (p1 - p_origin).dot(bhat) / 1000.0

            s_ij = s_ij_1 + s_ij_2
            GC2U = GC2U + w_i * (u_i + s_ij)

        s_i = s_i + l_i[i]

    GC2T = GC2T / totweight
    GC2U = GC2U / totweight

    # Dictionary for holding the distances
    distdict = dict()

    distdict['T'] = copy.deepcopy(GC2T).reshape(oldshape)
    distdict['U'] = copy.deepcopy(GC2U).reshape(oldshape)

    # Take care of Rx
    Rx = copy.deepcopy(GC2T)  # preserve sign (no absolute value)
    Rx = Rx.reshape(oldshape)
    distdict['rx'] = Rx

    # Ry
    Ry = GC2U - s_i / 2.0
    Ry = Ry.reshape(oldshape)
    distdict['ry'] = Ry

    # Ry0
    Ry0 = np.zeros_like(GC2U)
    ix = GC2U < 0
    Ry0[ix] = np.abs(GC2U[ix])
    if n_groups > 1:
        s_i = s_ij + l_i[-1]
    ix = GC2U > s_i
    Ry0[ix] = GC2U[ix] - s_i
    Ry0 = Ry0.reshape(oldshape)
    distdict['ry0'] = Ry0

    return distdict