コード例 #1
0
 def evaluateEra(self):
     """
     "Era selection"
     """
     self._logger.info(self.__class__.__name__ + '::' + sys._getframe().f_code.co_name)
     if "2018" in self._era_name:
         from shape_producer.era import Run2018 as Run2018
         self.era = Run2018(self._datasets)
     elif "2017" in self._era_name:
         from shape_producer.era import Run2017ReReco31Mar as Run2017
         self.era = Run2017(self._datasets)
     else:
         self.logger.critical("Era {} is not implemented.".format(self.era))
         raise Exception
コード例 #2
0
def main(args):
    # Container for all distributions to be drawn
    logger.info("Set up shape variations.")
    systematics = Systematics(
        "fake-factor-application/{}_ff_yields.root".format(args.tag),
        num_threads=args.num_threads)

    # Era selection
    if "2018" in args.era:
        from shape_producer.estimation_methods_2018 import DataEstimation, ZTTEstimation, ZTTEmbeddedEstimation, ZLEstimation, ZJEstimation, TTLEstimation, TTJEstimation, TTTEstimation, VVLEstimation, VVTEstimation, VVJEstimation, WEstimation
        from shape_producer.era import Run2018
        era = Run2018(args.datasets)
    else:
        logger.critical("Era {} is not implemented.".format(args.era))
        raise Exception

    # Channels and processes
    # yapf: disable
    directory = args.directory
    et_friend_directory = args.et_friend_directory
    mt_friend_directory = args.mt_friend_directory
    tt_friend_directory = args.tt_friend_directory

    mt = MTSM2018()
    mt.cuts.remove("tau_iso")
    mt.cuts.add(Cut("(byTightIsolationMVArun2017v2DBoldDMwLT2017_2<0.5&&byVLooseIsolationMVArun2017v2DBoldDMwLT2017_2>0.5)", "tau_anti_iso"))
    mt_processes = {
        "data"  : Process("data_obs", DataEstimation      (era, directory, mt, friend_directory=mt_friend_directory)),
        "EMB"   : Process("EMB",      ZTTEmbeddedEstimation(era, directory, mt, friend_directory=mt_friend_directory)),
        "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "ZJ"    : Process("ZJ",       ZJEstimation        (era, directory, mt, friend_directory=mt_friend_directory)),
        "ZL"    : Process("ZL",       ZLEstimation        (era, directory, mt, friend_directory=mt_friend_directory)),
        "TTT"   : Process("TTT",      TTTEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "TTJ"   : Process("TTJ",      TTJEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "TTL"   : Process("TTL",      TTLEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "VVT"   : Process("VVT",      VVTEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "VVJ"   : Process("VVJ",      VVJEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "VVL"   : Process("VVL",      VVLEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "W"     : Process("W",        WEstimation         (era, directory, mt, friend_directory=mt_friend_directory))
        }

    et = ETSM2018()
    et.cuts.remove("tau_iso")
    et.cuts.add(Cut("(byTightIsolationMVArun2017v2DBoldDMwLT2017_2<0.5&&byVLooseIsolationMVArun2017v2DBoldDMwLT2017_2>0.5)", "tau_anti_iso"))
    et_processes = {
        "data"  : Process("data_obs", DataEstimation      (era, directory, et, friend_directory=et_friend_directory)),
        "EMB"   : Process("EMB",      ZTTEmbeddedEstimation(era, directory, et, friend_directory=et_friend_directory)),
        "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "ZJ"    : Process("ZJ",       ZJEstimation        (era, directory, et, friend_directory=et_friend_directory)),
        "ZL"    : Process("ZL",       ZLEstimation        (era, directory, et, friend_directory=et_friend_directory)),
        "TTT"   : Process("TTT",      TTTEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "TTJ"   : Process("TTJ",      TTJEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "TTL"   : Process("TTL",      TTLEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "VVT"   : Process("VVT",      VVTEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "VVJ"   : Process("VVJ",      VVJEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "VVL"   : Process("VVL",      VVLEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "W"     : Process("W",        WEstimation         (era, directory, et, friend_directory=et_friend_directory))
        }

    #in tt two 'channels' are needed: antiisolated region for each tau respectively
    tt1 = TTSM2018()
    tt1.cuts.remove("tau_1_iso")
    tt1.cuts.add(Cut("(byTightIsolationMVArun2017v2DBoldDMwLT2017_1<0.5&&byVLooseIsolationMVArun2017v2DBoldDMwLT2017_1>0.5)", "tau_1_anti_iso"))
    tt1_processes = {
        "data"  : Process("data_obs", DataEstimation   (era, directory, tt1, friend_directory=tt_friend_directory)),
        "EMB"   : Process("EMB",      ZTTEmbeddedEstimation(era, directory, tt1, friend_directory=tt_friend_directory)),
        "ZTT"   : Process("ZTT",      ZTTEstimation   (era, directory, tt1, friend_directory=tt_friend_directory)),
        "ZJ"    : Process("ZJ",       ZJEstimation        (era, directory, tt1, friend_directory=tt_friend_directory)),
        "ZL"    : Process("ZL",       ZLEstimation        (era, directory, tt1, friend_directory=tt_friend_directory)),
        "TTT"   : Process("TTT",      TTTEstimation   (era, directory, tt1, friend_directory=tt_friend_directory)),
        "TTJ"   : Process("TTJ",      TTJEstimation   (era, directory, tt1, friend_directory=tt_friend_directory)),
        "TTL"   : Process("TTL",      TTLEstimation   (era, directory, tt1, friend_directory=tt_friend_directory)),
        "VVT"   : Process("VVT",      VVTEstimation   (era, directory, tt1, friend_directory=tt_friend_directory)),
        "VVJ"   : Process("VVJ",      VVJEstimation   (era, directory, tt1, friend_directory=tt_friend_directory)),
        "VVL"   : Process("VVL",      VVLEstimation   (era, directory, tt1, friend_directory=tt_friend_directory)),
        "W"     : Process("W",        WEstimation         (era, directory, tt1, friend_directory=tt_friend_directory))
        }
    tt2 = TTSM2018()
    tt2.cuts.remove("tau_2_iso")
    tt2.cuts.add(Cut("(byTightIsolationMVArun2017v2DBoldDMwLT2017_2<0.5&&byVLooseIsolationMVArun2017v2DBoldDMwLT2017_2>0.5)", "tau_2_anti_iso"))
    tt2_processes = {
        "data"  : Process("data_obs", DataEstimation      (era, directory, tt2, friend_directory=tt_friend_directory)),
        "EMB"   : Process("EMB",      ZTTEmbeddedEstimation(era, directory, tt2, friend_directory=tt_friend_directory)),
        "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, tt2, friend_directory=tt_friend_directory)),
        "ZJ"    : Process("ZJ",       ZJEstimation        (era, directory, tt2, friend_directory=tt_friend_directory)),
        "ZL"    : Process("ZL",       ZLEstimation        (era, directory, tt2, friend_directory=tt_friend_directory)),
        "TTT"   : Process("TTT",      TTTEstimation       (era, directory, tt2, friend_directory=tt_friend_directory)),
        "TTJ"   : Process("TTJ",      TTJEstimation       (era, directory, tt2, friend_directory=tt_friend_directory)),
        "TTL"   : Process("TTL",      TTLEstimation       (era, directory, tt2, friend_directory=tt_friend_directory)),
        "VVT"   : Process("VVT",      VVTEstimation       (era, directory, tt2, friend_directory=tt_friend_directory)),
        "VVJ"   : Process("VVJ",      VVJEstimation       (era, directory, tt2, friend_directory=tt_friend_directory)),
        "VVL"   : Process("VVL",      VVLEstimation       (era, directory, tt2, friend_directory=tt_friend_directory)),
        "W"     : Process("W",        WEstimation         (era, directory, tt2, friend_directory=tt_friend_directory))
        }

    # Variables and categories
    config = yaml.load(open("fake-factor-application/config.yaml"))
    if not args.config in config.keys():
        logger.critical("Requested config key %s not available in fake-factor-application/config.yaml!" % args.config)
        raise Exception
    config = config[args.config]

    et_categories = []
    # et
    et_categories.append(
        Category(
            "inclusive",
            et,
            Cuts(),
            variable=Variable(args.config, VariableBinning(config["et"]["binning"]), config["et"]["expression"])))
    if not args.only_inclusive:
        for i, label in enumerate(["ggh", "qqh", "ztt", "zll", "w", "tt", "ss", "misc"]):
            et_categories.append(
                Category(
                    label,
                    et,
                    Cuts(
                        Cut("et_max_index=={index}".format(index=i), "exclusive_score")),
                    variable=Variable(args.config, VariableBinning(config["et"]["binning"]), config["et"]["expression"])))
    mt_categories = []
    # mt
    mt_categories.append(
        Category(
            "inclusive",
            mt,
            Cuts(),
            variable=Variable(args.config, VariableBinning(config["mt"]["binning"]), config["mt"]["expression"])))
    if not args.only_inclusive:
        for i, label in enumerate(["ggh", "qqh", "ztt", "zll", "w", "tt", "ss", "misc"]):
            mt_categories.append(
                Category(
                    label,
                    mt,
                    Cuts(
                        Cut("mt_max_index=={index}".format(index=i), "exclusive_score")),
                    variable=Variable(args.config, VariableBinning(config["mt"]["binning"]), config["mt"]["expression"])))
    tt1_categories = []
    tt2_categories = []
    # tt
    tt1_categories.append(
        Category(
            "tt1_inclusive",
            tt1,
            Cuts(),
            variable=Variable(args.config, VariableBinning(config["tt"]["binning"]), config["tt"]["expression"])))
    tt2_categories.append(
        Category(
            "tt2_inclusive",
            tt2,
            Cuts(),
            variable=Variable(args.config, VariableBinning(config["tt"]["binning"]), config["tt"]["expression"])))
    if not args.only_inclusive:
        for i, label in enumerate(["ggh", "qqh", "ztt", "noniso", "misc"]):
            tt1_categories.append(
                Category(
                    "tt1_"+label,
                    tt1,
                    Cuts(
                        Cut("tt_max_index=={index}".format(index=i), "exclusive_score")),
                    variable=Variable(args.config, VariableBinning(config["tt"]["binning"]), config["tt"]["expression"])))
            tt2_categories.append(
                Category(
                    "tt2_"+label,
                    tt2,
                    Cuts(
                        Cut("tt_max_index=={index}".format(index=i), "exclusive_score")),
                    variable=Variable(args.config, VariableBinning(config["tt"]["binning"]), config["tt"]["expression"])))

    # Nominal histograms
    # yapf: enable
    for process, category in product(et_processes.values(), et_categories):
        systematics.add(
            Systematic(category=category,
                       process=process,
                       analysis="smhtt",
                       era=era,
                       variation=Nominal(),
                       mass="125"))

    for process, category in product(mt_processes.values(), mt_categories):
        systematics.add(
            Systematic(category=category,
                       process=process,
                       analysis="smhtt",
                       era=era,
                       variation=Nominal(),
                       mass="125"))

    for process, category in product(tt1_processes.values(), tt1_categories):
        systematics.add(
            Systematic(category=category,
                       process=process,
                       analysis="smhtt",
                       era=era,
                       variation=Nominal(),
                       mass="125"))

    for process, category in product(tt2_processes.values(), tt2_categories):
        systematics.add(
            Systematic(category=category,
                       process=process,
                       analysis="smhtt",
                       era=era,
                       variation=Nominal(),
                       mass="125"))

    # Produce histograms
    logger.info("Start producing shapes.")
    systematics.produce()
    logger.info("Done producing shapes.")
コード例 #3
0
def main(args):
    # Container for all distributions to be drawn
    systematics_mm = Systematics("shapes_mm_recoilunc_2018.root",
                                 num_threads=args.num_threads,
                                 find_unique_objects=True)

    # Era
    era = Run2018(args.datasets)

    # Channels and processes
    # yapf: disable
    directory = args.directory

    mm = MM()
    mm_processes = {
        "ZL"    : Process("ZL",       ZLEstimation        (era, directory, mm, friend_directory=[])),
        }

    # Variables and categories
    binning = yaml.load(open(args.binning))
    mm_categories = []

    variable_bins = {
        "njets" : [0, 1, 2],
        "genbosonpt" : [0, 10, 20, 30, 50],
    }
    variable_names = [
        "recoilParToZ",
        "puppirecoilParToZ",
    ]

    for njets_bin in range(len(variable_bins["njets"])):
        for pt_bin in range(len(variable_bins["genbosonpt"])):
            name = "njets_bin_%s_vs_ptvis_bin_%s"%(str(njets_bin),str(pt_bin))
            category_njets = ""
            category_pt = ""
            if njets_bin == (len(variable_bins["njets"]) - 1):
                category_njets = "njets >= %s"%str(variable_bins["njets"][njets_bin])
            else:
                category_njets = "njets == %s"%str(variable_bins["njets"][njets_bin])
            if pt_bin == (len(variable_bins["genbosonpt"]) - 1):
                category_pt = "genbosonpt > %s"%str(variable_bins["genbosonpt"][pt_bin])
            else:
                category_pt= "genbosonpt > %s && genbosonpt <= %s"%(str(variable_bins["genbosonpt"][pt_bin]),str(variable_bins["genbosonpt"][pt_bin+1]))
            print category_njets, category_pt
            cuts = Cuts(
                Cut(category_njets,"njets_category"),
                Cut(category_pt,"ptvis_category"),
                Cut("m_vis > 70 && m_vis < 110","z_peak")
            )
            for v in variable_names:
                mm_categories.append(
                    Category(
                        name,
                        mm,
                        cuts,
                        variable=Variable("relative_%s"%v,ConstantBinning(400,-20.0,20.0), expression="-%s/genbosonpt"%v)))

    # Nominal histograms
    for process, category in product(mm_processes.values(), mm_categories):
        systematics_mm.add(
            Systematic(
                category=category,
                process=process,
                analysis="smhtt",
                era=era,
                variation=Nominal(),
                mass="125"))


    # Produce histograms
    systematics_mm.produce()
コード例 #4
0
def main(args):
    # Container for all distributions to be drawn
    systematics_mm = Systematics("counts_zptm_2018.root",
                                 num_threads=args.num_threads,
                                 find_unique_objects=True)

    # Era
    era = Run2018(args.datasets)

    # Channels and processes
    # yapf: disable
    directory = args.directory

    mm = MM()
    mm_processes = {
        "data"  : Process("data_obs", DataEstimation      (era, directory, mm, friend_directory=[])),
        "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, mm, friend_directory=[])),
        "ZL"    : Process("ZL",       ZLEstimation        (era, directory, mm, friend_directory=[])),
        "TTT"   : Process("TTT",      TTTEstimation       (era, directory, mm, friend_directory=[])),
        "TTL"   : Process("TTL",      TTLEstimation       (era, directory, mm, friend_directory=[])),
        "VVT"   : Process("VVT",      VVTEstimation       (era, directory, mm, friend_directory=[])),
        "VVL"   : Process("VVL",      VVLEstimation       (era, directory, mm, friend_directory=[])),
        "W"     : Process("W",        WEstimation         (era, directory, mm, friend_directory=[])),
        }
    mm_processes["QCD"] = Process("QCD", QCDEstimation_SStoOS_MTETEM(era, directory, mm,
            [mm_processes[process] for process in ["ZTT", "ZL", "W", "TTT", "TTL", "VVT", "VVL"]],
            mm_processes["data"], friend_directory=[], extrapolation_factor=2.0))


    # Variables and categories
    mm_categories = []

    variable_bins = {
        "m_vis" : [50, 100, 200, 500, 1000],
        "ptvis" : [0, 10, 20, 30, 40, 50, 100, 150, 200, 300, 400, 1000],
    }

    for mass_bin in range(len(variable_bins["m_vis"]) - 1):
        for pt_bin in range(len(variable_bins["ptvis"]) - 1):
            name = "%s_bin_%s_vs_%s_bin_%s"%("m_vis",str(mass_bin),"ptvis",str(pt_bin))
            cuts = Cuts(Cut("(m_vis > %s && m_vis < %s) && (ptvis > %s && ptvis < %s)"%(str(variable_bins["m_vis"][mass_bin]),str(variable_bins["m_vis"][mass_bin+1]),str(variable_bins["ptvis"][pt_bin]),str(variable_bins["ptvis"][pt_bin+1])),"zptm_category"))
            mm_categories.append(
                Category(
                    name,
                    mm,
                    cuts,
                    variable=None))

    # Nominal histograms
    for process, category in product(mm_processes.values(), mm_categories):
        #if process.name in ["ZTT","ZLL"]:
        #    process.estimation_method.get_weights().remove("zPtReweightWeight")
        systematics_mm.add(
            Systematic(
                category=category,
                process=process,
                analysis="smhtt",
                era=era,
                variation=Nominal(),
                mass="125"))


    # Produce histograms
    systematics_mm.produce()
コード例 #5
0
def main(args):
    # Write arparse arguments to YAML config
    logger.debug("Write argparse arguments to YAML config.")
    output_config = {}
    output_config["base_path"] = args.base_path
    output_config["friend_paths"] = args.friend_paths
    output_config["output_path"] = args.output_path
    output_config["output_filename"] = args.output_filename
    output_config["tree_path"] = args.tree_path
    output_config["event_branch"] = args.event_branch
    output_config["training_weight_branch"] = args.training_weight_branch
    logger.debug("Channel" + args.channel + " Era " + args.era)

    # Define era
    if "2016" in args.era:
        from shape_producer.estimation_methods_2016 import DataEstimation, ggHEstimation, qqHEstimation, \
            ZTTEstimation, ZLEstimation, ZJEstimation, TTTEstimation, TTJEstimation, \
            ZTTEmbeddedEstimation, TTLEstimation, \
            EWKZEstimation, VVLEstimation, VVTEstimation, VVJEstimation, WEstimation

        from shape_producer.era import Run2016
        era = Run2016(args.database)

    elif "2017" in args.era:
        from shape_producer.estimation_methods_2017 import DataEstimation, ZTTEstimation, ZJEstimation, ZLEstimation, \
            TTLEstimation, TTJEstimation, TTTEstimation, VVTEstimation, VVJEstimation, VVLEstimation, WEstimation, \
            ggHEstimation, qqHEstimation, EWKZEstimation, ZTTEmbeddedEstimation

        from shape_producer.era import Run2017
        era = Run2017(args.database)

    elif "2018" in args.era:
        from shape_producer.estimation_methods_2018 import DataEstimation, ZTTEstimation, ZJEstimation, ZLEstimation, \
            TTLEstimation, TTJEstimation, TTTEstimation, VVTEstimation, VVJEstimation, VVLEstimation, WEstimation, \
            ggHEstimation, qqHEstimation, EWKZEstimation, ZTTEmbeddedEstimation

        from shape_producer.era import Run2018
        era = Run2018(args.database)
    else:
        logger.fatal("Era {} is not implemented.".format(args.era))
        raise Exception

    def estimationMethodAndClassMapGenerator():
        ###### common processes
        if args.training_stxs1p1:
            classes_map = {
# class1
"ggH_GG2H_PTH_GT200125": "ggh_PTHGT200",
# class2
"ggH_GG2H_0J_PTH_0_10125": "ggh_0J",
"ggH_GG2H_0J_PTH_GT10125": "ggh_0J",
# class3
"ggH_GG2H_1J_PTH_0_60125": "ggh_1J_PTH0to120",
"ggH_GG2H_1J_PTH_60_120125": "ggh_1J_PTH0to120",
# class4
"ggH_GG2H_1J_PTH_120_200125": "ggh_1J_PTH120to200",
# class5
"ggH_GG2H_GE2J_MJJ_0_350_PTH_0_60125": "ggh_2J",
"ggH_GG2H_GE2J_MJJ_0_350_PTH_60_120125": "ggh_2J",
"ggH_GG2H_GE2J_MJJ_0_350_PTH_120_200125": "ggh_2J",
# class6
"ggH_GG2H_GE2J_MJJ_350_700_PTH_0_200_PTHJJ_0_25125": "vbftopo_lowmjj",
"ggH_GG2H_GE2J_MJJ_350_700_PTH_0_200_PTHJJ_GT25125": "vbftopo_lowmjj",
"qqH_QQ2HQQ_GE2J_MJJ_350_700_PTH_0_200_PTHJJ_0_25125": "vbftopo_lowmjj",
"qqH_QQ2HQQ_GE2J_MJJ_350_700_PTH_0_200_PTHJJ_GT25125": "vbftopo_lowmjj",
# class7
"ggH_GG2H_GE2J_MJJ_GT700_PTH_0_200_PTHJJ_0_25125": "vbftopo_highmjj",
"ggH_GG2H_GE2J_MJJ_GT700_PTH_0_200_PTHJJ_GT25125": "vbftopo_highmjj",
"qqH_QQ2HQQ_GE2J_MJJ_GT700_PTH_0_200_PTHJJ_0_25125": "vbftopo_highmjj",
"qqH_QQ2HQQ_GE2J_MJJ_GT700_PTH_0_200_PTHJJ_GT25125": "vbftopo_highmjj",
# class8
"qqH_QQ2HQQ_GE2J_MJJ_0_60125": "qqh_2J",
"qqH_QQ2HQQ_GE2J_MJJ_60_120125": "qqh_2J",
"qqH_QQ2HQQ_GE2J_MJJ_120_350125": "qqh_2J",
# class9
"qqH_QQ2HQQ_GE2J_MJJ_GT350_PTH_GT200125": "qqh_PTHGT200",
            }
            estimationMethodList = [
ggHEstimation("ggH_GG2H_PTH_GT200125", era, args.base_path, channel),
ggHEstimation("ggH_GG2H_0J_PTH_0_10125", era, args.base_path, channel),
ggHEstimation("ggH_GG2H_0J_PTH_GT10125", era, args.base_path, channel),
ggHEstimation("ggH_GG2H_1J_PTH_0_60125", era, args.base_path, channel),
ggHEstimation("ggH_GG2H_1J_PTH_60_120125", era, args.base_path, channel),
ggHEstimation("ggH_GG2H_1J_PTH_120_200125", era, args.base_path, channel),
ggHEstimation("ggH_GG2H_GE2J_MJJ_0_350_PTH_0_60125", era, args.base_path, channel),
ggHEstimation("ggH_GG2H_GE2J_MJJ_0_350_PTH_60_120125", era, args.base_path, channel),
ggHEstimation("ggH_GG2H_GE2J_MJJ_0_350_PTH_120_200125", era, args.base_path, channel),
ggHEstimation("ggH_GG2H_GE2J_MJJ_350_700_PTH_0_200_PTHJJ_0_25125", era, args.base_path, channel),
ggHEstimation("ggH_GG2H_GE2J_MJJ_350_700_PTH_0_200_PTHJJ_GT25125", era, args.base_path, channel),
qqHEstimation("qqH_QQ2HQQ_GE2J_MJJ_350_700_PTH_0_200_PTHJJ_0_25125", era, args.base_path, channel),
qqHEstimation("qqH_QQ2HQQ_GE2J_MJJ_350_700_PTH_0_200_PTHJJ_GT25125", era, args.base_path, channel),
ggHEstimation("ggH_GG2H_GE2J_MJJ_GT700_PTH_0_200_PTHJJ_0_25125", era, args.base_path, channel),
ggHEstimation("ggH_GG2H_GE2J_MJJ_GT700_PTH_0_200_PTHJJ_GT25125", era, args.base_path, channel),
qqHEstimation("qqH_QQ2HQQ_GE2J_MJJ_GT700_PTH_0_200_PTHJJ_0_25125", era, args.base_path, channel),
qqHEstimation("qqH_QQ2HQQ_GE2J_MJJ_GT700_PTH_0_200_PTHJJ_GT25125", era, args.base_path, channel),
qqHEstimation("qqH_QQ2HQQ_GE2J_MJJ_0_60125", era, args.base_path, channel),
qqHEstimation("qqH_QQ2HQQ_GE2J_MJJ_60_120125", era, args.base_path, channel),
qqHEstimation("qqH_QQ2HQQ_GE2J_MJJ_120_350125", era, args.base_path, channel),
qqHEstimation("qqH_QQ2HQQ_GE2J_MJJ_GT350_PTH_GT200125", era, args.base_path, channel),
            ]
        elif args.training_inclusive:
            classes_map = {
                "ggH125": "xxh",
                "qqH125": "xxh",
            }
            estimationMethodList = [
                ggHEstimation("ggH125", era, args.base_path, channel),
                qqHEstimation("qqH125", era, args.base_path, channel),

            ]
        else:
            classes_map = {
                "ggH125": "ggh",
                "qqH125": "qqh",
            }
            estimationMethodList = [
                ggHEstimation("ggH125", era, args.base_path, channel),
                qqHEstimation("qqH125", era, args.base_path, channel),

            ]
        estimationMethodList.extend([
            EWKZEstimation(era, args.base_path, channel),
            VVLEstimation(era, args.base_path, channel)
        ])
        classes_map["EWKZ"]="misc"
        ##### TT* zl,zj processes
        estimationMethodList.extend([
            TTLEstimation(era, args.base_path, channel),
            ZLEstimation(era, args.base_path, channel)
        ])
        if args.channel == "tt":
            classes_map.update({
                "TTL": "misc",
                "ZL": "misc",
                "VVL": "misc"
            })
        ## not TTJ,ZJ for em
        elif args.channel == "em":
            classes_map.update({
                "TTL": "tt",
                "ZL": "misc",
                "VVL": "db"
            })
        else:
            classes_map.update({
                "TTL": "tt",
                "ZL": "zll",
                "VVL": "misc"
            })
        ######## Check for emb vs MC
        if args.training_z_estimation_method == "emb":
            classes_map["EMB"] = "emb"
            estimationMethodList.extend([
                ZTTEmbeddedEstimation(era, args.base_path, channel)])
        elif args.training_z_estimation_method == "mc":
            classes_map["ZTT"] = "ztt"
            estimationMethodList.extend([
                ZTTEstimation(era, args.base_path, channel),
                TTTEstimation(era, args.base_path, channel),
                VVTEstimation(era, args.base_path, channel)
            ])
            if args.channel == "tt":
                classes_map.update({
                    "TTT": "misc",
                    "VVT": "misc"
                })
            ## not TTJ,ZJ for em
            elif args.channel == "em":
                classes_map.update({
                    "TTT": "tt",
                    "VVT": "db"
                })
            else:
                classes_map.update({
                    "TTT": "tt",
                    "VVT": "misc"
                })

        else:
            logger.fatal("No valid training-z-estimation-method! Options are emb, mc. Argument was {}".format(
                args.training_z_estimation_method))
            raise Exception

        if args.training_jetfakes_estimation_method == "ff" and args.channel != "em":
            classes_map.update({
                "ff": "ff"
            })
        elif args.training_jetfakes_estimation_method == "mc" or args.channel == "em":
            # less data-> less categories for tt
            if args.channel == "tt":
                classes_map.update({
                    "TTJ": "misc",
                    "ZJ": "misc"
                })
            ## not TTJ,ZJ for em
            elif args.channel != "em":
                classes_map.update({
                    "TTJ": "tt",
                    "ZJ": "zll"
                })
            if args.channel != "em":
                classes_map.update({
                    "VVJ": "misc"
                })
                estimationMethodList.extend([
                    VVJEstimation(era, args.base_path, channel),
                    ZJEstimation(era, args.base_path, channel),
                    TTJEstimation(era, args.base_path, channel)
                ])
            ###w:
            estimationMethodList.extend([WEstimation(era, args.base_path, channel)])
            if args.channel in ["et", "mt"]:
                classes_map["W"] = "w"
            else:
                classes_map["W"] = "misc"
            ### QCD class
            if args.channel == "tt":
                classes_map["QCD"] = "noniso"
            else:
                classes_map["QCD"] = "ss"

        else:
            logger.fatal("No valid training-jetfakes-estimation-method! Options are ff, mc. Argument was {}".format(
                args.training_jetfakes_estimation_method))
            raise Exception
        return ([classes_map, estimationMethodList])

    channelDict = {}
    channelDict["2016"] = {"mt": MTSM2016(), "et": ETSM2016(), "tt": TTSM2016(), "em": EMSM2016()}
    channelDict["2017"] = {"mt": MTSM2017(), "et": ETSM2017(), "tt": TTSM2017(), "em": EMSM2017()}
    channelDict["2018"] = {"mt": MTSM2018(), "et": ETSM2018(), "tt": TTSM2018(), "em": EMSM2018()}

    channel = channelDict[args.era][args.channel]

    # Set up `processes` part of config
    output_config["processes"] = {}

    # Additional cuts
    additional_cuts = Cuts()
    logger.warning("Use additional cuts for mt: %s", additional_cuts.expand())

    classes_map, estimationMethodList = estimationMethodAndClassMapGenerator()

    ### disables all other estimation methods
    # classes_map={"ff":"ff"}
    # estimationMethodList=[]

    for estimation in estimationMethodList:
        output_config["processes"][estimation.name] = {
            "files": [
                str(f).replace(args.base_path.rstrip("/") + "/", "")
                for f in estimation.get_files()
            ],
            "cut_string": (estimation.get_cuts() + channel.cuts +
                           additional_cuts).expand(),
            "weight_string":
                estimation.get_weights().extract(),
            "class":
                classes_map[estimation.name]
        }

    if args.training_jetfakes_estimation_method == "mc" or args.channel == "em":
        if args.training_jetfakes_estimation_method == "ff":
            logger.warn("ff+em: using mc for em channel")
        # Same sign selection for data-driven QCD
        estimation = DataEstimation(era, args.base_path, channel)
        estimation.name = "QCD"
        channel_qcd = copy.deepcopy(channel)

        if args.channel != "tt":
            ## os= opposite sign
            channel_qcd.cuts.get("os").invert()
        # Same sign selection for data-driven QCD
        else:
            channel_qcd.cuts.remove("tau_2_iso")
            channel_qcd.cuts.add(
                Cut("byTightDeepTau2017v2p1VSjet_2<0.5", "tau_2_iso"))
            channel_qcd.cuts.add(
                Cut("byMediumDeepTau2017v2p1VSjet_2>0.5", "tau_2_iso_loose"))

        output_config["processes"][estimation.name] = {
            "files": [
                str(f).replace(args.base_path.rstrip("/") + "/", "")
                for f in estimation.get_files()
            ],
            "cut_string": (estimation.get_cuts() + channel_qcd.cuts + additional_cuts).expand(),
            "weight_string": estimation.get_weights().extract(),
            "class": classes_map[estimation.name]
        }
    else:  ## ff and not em
        estimation = DataEstimation(era, args.base_path, channel)
        estimation.name = "ff"
        aiso = copy.deepcopy(channel)
        if args.channel in ["et", "mt"]:
            aisoCut = Cut(
                "byTightDeepTau2017v2p1VSjet_2<0.5&&byVLooseDeepTau2017v2p1VSjet_2>0.5",
                "tau_aiso")
            fakeWeightstring = "ff2_nom"
            aiso.cuts.remove("tau_iso")
        elif args.channel == "tt":
            aisoCut = Cut(
                "(byTightDeepTau2017v2p1VSjet_2>0.5&&byTightDeepTau2017v2p1VSjet_1<0.5&&byVLooseDeepTau2017v2p1VSjet_1>0.5)||(byTightDeepTau2017v2p1VSjet_1>0.5&&byTightDeepTau2017v2p1VSjet_2<0.5&&byVLooseDeepTau2017v2p1VSjet_2>0.5)",
                "tau_aiso")
            fakeWeightstring = "(0.5*ff1_nom*(byTightDeepTau2017v2p1VSjet_1<0.5)+0.5*ff2_nom*(byTightDeepTau2017v2p1VSjet_2<0.5))"
            aiso.cuts.remove("tau_1_iso")
            aiso.cuts.remove("tau_2_iso")
        # self._nofake_processes = [copy.deepcopy(p) for p in nofake_processes]

        aiso.cuts.add(aisoCut)
        additionalWeights = Weights(Weight(fakeWeightstring, "fake_factor"))

        output_config["processes"][estimation.name] = {
            "files": [
                str(f).replace(args.base_path.rstrip("/") + "/", "")
                for f in estimation.get_files()
            ],
            "cut_string": (estimation.get_cuts() + aiso.cuts).expand(),
            "weight_string": (estimation.get_weights() + additionalWeights).extract(),
            "class": classes_map[estimation.name]
        }

    output_config["datasets"] = [args.output_path + "/fold" + fold + "_training_dataset.root" for fold in ["0", "1"]]
    #####################################
    # Write output config
    logger.info("Write config to file: {}".format(args.output_config))
    yaml.dump(output_config, open(args.output_config, 'w'), default_flow_style=False)
コード例 #6
0
def main(args):
    # Write arparse arguments to YAML config
    filelist = {}

    # Define era
    if "2016" in args.era:
        from shape_producer.estimation_methods_2016 import DataEstimation, ggHEstimation, qqHEstimation, ZTTEstimation, ZLEstimation, ZJEstimation, WEstimation, TTTEstimation, TTJEstimation, ZTTEmbeddedEstimation, TTLEstimation, EWKZEstimation, VVLEstimation, VVJEstimation, VVEstimation, VVTEstimation, VHEstimation,  EWKWpEstimation, EWKWmEstimation, ttHEstimation, ggHWWEstimation, qqHWWEstimation
        #QCDEstimation_SStoOS_MTETEM, QCDEstimationTT, HTTEstimation,

        from shape_producer.era import Run2016
        era = Run2016(args.database)
    elif "2017" in args.era:
        from shape_producer.estimation_methods_2017 import DataEstimation, ZTTEstimation, ZLEstimation, ZJEstimation, TTLEstimation, TTJEstimation, TTTEstimation, VVTEstimation, VVJEstimation, VVLEstimation, WEstimation, ggHEstimation, qqHEstimation, VHEstimation, EWKZEstimation, ZTTEmbeddedEstimation, ttHEstimation

        from shape_producer.era import Run2017
        era = Run2017(args.database)
    elif "2018" in args.era:
        from shape_producer.estimation_methods_2018 import DataEstimation, ZTTEstimation, ZLEstimation, ZJEstimation, TTLEstimation, TTJEstimation, TTTEstimation, VVTEstimation, VVJEstimation, VVLEstimation, WEstimation, ggHEstimation, qqHEstimation, VHEstimation, EWKZEstimation, ZTTEmbeddedEstimation, ttHEstimation

        from shape_producer.era import Run2018
        era = Run2018(args.database)

    else:
        logger.fatal("Era {} is not implemented.".format(args.era))
        raise Exception

    logger.debug("Write filelist for channel %s in era %s.", args.channel,
                 args.era)

    ############################################################################

    # Era: 2016, Channel: mt
    if "2016" in args.era and args.channel == "mt":
        channel = MTSM2016()
        for estimation in [
                ggHEstimation("ggH", era, args.directory, channel),
                qqHEstimation("qqH", era, args.directory, channel),    
                ttHEstimation(era, args.directory, channel),
                VHEstimation(era, args.directory, channel),
                ZTTEstimation(era, args.directory, channel),
                #ZTTEmbeddedEstimation(era, args.directory, channel), #TODO include EMB again once samples are there
                ZLEstimation(era, args.directory, channel),
                ZJEstimation(era, args.directory, channel),
                TTTEstimation(era, args.directory, channel),
                TTLEstimation(era, args.directory, channel),
                TTJEstimation(era, args.directory, channel),
                WEstimation(era, args.directory, channel),
                VVEstimation(era, args.directory, channel),
                EWKZEstimation(era, args.directory, channel),
                EWKWpEstimation(era, args.directory, channel),
                EWKWmEstimation(era, args.directory, channel),
                DataEstimation(era, args.directory, channel),
                ggHWWEstimation(era, args.directory, channel),
                qqHWWEstimation(era, args.directory, channel)
        ]:
            # Get files for estimation method
            logger.debug("Get files for estimation method %s.",
                         estimation.name)
            files = [str(f) for f in estimation.get_files()]

            # Go through files and get folders for channel
            for f in files:
                if not os.path.exists(f):
                    logger.fatal("File does not exist: %s", f)
                    raise Exception

                folders = []
                f_ = ROOT.TFile(f)
                for k in f_.GetListOfKeys():
                    if "{}_".format(args.channel) in k.GetName():
                        folders.append(k.GetName())
                f_.Close()

                filelist[f] = folders

    ############################################################################

    # Era: 2017, Channel: mt
    if "2017" in args.era and args.channel == "mt":
        channel = MTSM2017()
        for estimation in [
                ggHEstimation("ggH", era, args.directory, channel),
                qqHEstimation("qqH", era, args.directory, channel),
                ttHEstimation(era, args.directory, channel),
                VHEstimation(era, args.directory, channel),
                ZTTEstimation(era, args.directory, channel),
                ZTTEmbeddedEstimation(era, args.directory, channel),
                ZLEstimation(era, args.directory, channel),
                ZJEstimation(era, args.directory, channel),
                TTTEstimation(era, args.directory, channel),
                TTJEstimation(era, args.directory, channel),
                TTLEstimation(era, args.directory, channel),
                WEstimation(era, args.directory, channel),
                VVJEstimation(era, args.directory, channel),
                VVTEstimation(era, args.directory, channel),
                VVLEstimation(era, args.directory, channel),
                EWKZEstimation(era, args.directory, channel),
                DataEstimation(era, args.directory, channel)
        ]:
            # Get files for estimation method
            logger.debug("Get files for estimation method %s.",
                         estimation.name)
            files = [str(f) for f in estimation.get_files()]

            # Go through files and get folders for channel
            for f in files:
                if not os.path.exists(f):
                    logger.fatal("File does not exist: %s", f)
                    raise Exception

                folders = []
                f_ = ROOT.TFile(f)
                for k in f_.GetListOfKeys():
                    if "{}_".format(args.channel) in k.GetName():
                        folders.append(k.GetName())
                f_.Close()

                filelist[f] = folders

    ############################################################################

    # Era: 2018, Channel: mt
    if "2018" in args.era and args.channel == "mt":
        channel = MTSM2018()
        for estimation in [
                ggHEstimation("ggH", era, args.directory, channel),
                qqHEstimation("qqH", era, args.directory, channel),
                ttHEstimation(era, args.directory, channel),
                VHEstimation(era, args.directory, channel),
                ZTTEstimation(era, args.directory, channel),
                ZTTEmbeddedEstimation(era, args.directory, channel),
                ZLEstimation(era, args.directory, channel),
                ZJEstimation(era, args.directory, channel),
                TTTEstimation(era, args.directory, channel),
                TTJEstimation(era, args.directory, channel),
                TTLEstimation(era, args.directory, channel),
                WEstimation(era, args.directory, channel),
                VVJEstimation(era, args.directory, channel),
                VVTEstimation(era, args.directory, channel),
                VVLEstimation(era, args.directory, channel),
                EWKZEstimation(era, args.directory, channel),
                DataEstimation(era, args.directory, channel)
        ]:  
            # Get files for estimation method
            logger.debug("Get files for estimation method %s.",
                         estimation.name)
            files = [str(f) for f in estimation.get_files()]

            # Go through files and get folders for channel
            for f in files:
                if not os.path.exists(f):
                    logger.fatal("File does not exist: %s", f)
                    raise Exception

                folders = []
                f_ = ROOT.TFile(f)
                for k in f_.GetListOfKeys():
                    if "{}_".format(args.channel) in k.GetName():
                        folders.append(k.GetName())
                f_.Close()

                filelist[f] = folders


    ############################################################################

    # Era: 2016, Channel: et
    if "2016" in args.era and args.channel == "et":
        channel = ETSM2016()
        for estimation in [
                ggHEstimation("ggH", era, args.directory, channel),
                qqHEstimation("qqH", era, args.directory, channel),    
                ttHEstimation(era, args.directory, channel),
                VHEstimation(era, args.directory, channel),
                ZTTEstimation(era, args.directory, channel),
                #ZTTEmbeddedEstimation(era, args.directory, channel), #TODO include EMB again once samples are there
                ZLEstimation(era, args.directory, channel),
                ZJEstimation(era, args.directory, channel),
                TTTEstimation(era, args.directory, channel),
                TTLEstimation(era, args.directory, channel),
                TTJEstimation(era, args.directory, channel),
                WEstimation(era, args.directory, channel),
                VVEstimation(era, args.directory, channel),
                EWKZEstimation(era, args.directory, channel),
                EWKWpEstimation(era, args.directory, channel),
                EWKWmEstimation(era, args.directory, channel),
                DataEstimation(era, args.directory, channel),
                ggHWWEstimation(era, args.directory, channel),
                qqHWWEstimation(era, args.directory, channel)
        ]:
            # Get files for estimation method
            logger.debug("Get files for estimation method %s.",
                         estimation.name)
            files = [str(f) for f in estimation.get_files()]

            # Go through files and get folders for channel
            for f in files:
                if not os.path.exists(f):
                    logger.fatal("File does not exist: %s", f)
                    raise Exception

                folders = []
                f_ = ROOT.TFile(f)
                for k in f_.GetListOfKeys():
                    if "{}_".format(args.channel) in k.GetName():
                        folders.append(k.GetName())
                f_.Close()

                filelist[f] = folders

    ############################################################################

    # Era: 2017, Channel: et
    if "2017" in args.era and args.channel == "et":
        channel = ETSM2017()
        for estimation in [
                ggHEstimation("ggH", era, args.directory, channel),
                qqHEstimation("qqH", era, args.directory, channel),
                ttHEstimation(era, args.directory, channel),
                VHEstimation(era, args.directory, channel),
                ZTTEstimation(era, args.directory, channel),
                ZTTEmbeddedEstimation(era, args.directory, channel),
                ZLEstimation(era, args.directory, channel),
                ZJEstimation(era, args.directory, channel),
                TTTEstimation(era, args.directory, channel),
                TTJEstimation(era, args.directory, channel),
                TTLEstimation(era, args.directory, channel),
                WEstimation(era, args.directory, channel),
                VVJEstimation(era, args.directory, channel),
                VVTEstimation(era, args.directory, channel),
                VVLEstimation(era, args.directory, channel),
                EWKZEstimation(era, args.directory, channel),
                DataEstimation(era, args.directory, channel)
        ]:
            # Get files for estimation method
            logger.debug("Get files for estimation method %s.",
                         estimation.name)
            files = [str(f) for f in estimation.get_files()]

            # Go through files and get folders for channel
            for f in files:
                if not os.path.exists(f):
                    logger.fatal("File does not exist: %s", f)
                    raise Exception

                folders = []
                f_ = ROOT.TFile(f)
                for k in f_.GetListOfKeys():
                    if "{}_".format(args.channel) in k.GetName():
                        folders.append(k.GetName())
                f_.Close()

                filelist[f] = folders

    ############################################################################

    # Era: 2018, Channel: et
    if "2018" in args.era and args.channel == "et":
        channel = ETSM2018()
        for estimation in [
                ggHEstimation("ggH", era, args.directory, channel),
                qqHEstimation("qqH", era, args.directory, channel),
                ttHEstimation(era, args.directory, channel),
                VHEstimation(era, args.directory, channel),
                ZTTEstimation(era, args.directory, channel),
                ZTTEmbeddedEstimation(era, args.directory, channel),
                ZLEstimation(era, args.directory, channel),
                ZJEstimation(era, args.directory, channel),
                TTTEstimation(era, args.directory, channel),
                TTJEstimation(era, args.directory, channel),
                TTLEstimation(era, args.directory, channel),
                WEstimation(era, args.directory, channel),
                VVJEstimation(era, args.directory, channel),
                VVTEstimation(era, args.directory, channel),
                VVLEstimation(era, args.directory, channel),
                EWKZEstimation(era, args.directory, channel),
                DataEstimation(era, args.directory, channel)
        ]:  
            # Get files for estimation method
            logger.debug("Get files for estimation method %s.",
                         estimation.name)
            files = [str(f) for f in estimation.get_files()]

            # Go through files and get folders for channel
            for f in files:
                if not os.path.exists(f):
                    logger.fatal("File does not exist: %s", f)
                    raise Exception

                folders = []
                f_ = ROOT.TFile(f)
                for k in f_.GetListOfKeys():
                    if "{}_".format(args.channel) in k.GetName():
                        folders.append(k.GetName())
                f_.Close()

                filelist[f] = folders

    ############################################################################

    # Era: 2016, Channel: tt
    if "2016" in args.era and args.channel == "tt":
        channel = TTSM2016()
        for estimation in [
                ggHEstimation("ggH", era, args.directory, channel),
                qqHEstimation("qqH", era, args.directory, channel),    
                ttHEstimation(era, args.directory, channel),
                VHEstimation(era, args.directory, channel),
                ZTTEstimation(era, args.directory, channel),
                #ZTTEmbeddedEstimation(era, args.directory, channel), #TODO include EMB again once samples are there
                ZLEstimation(era, args.directory, channel),
                ZJEstimation(era, args.directory, channel),
                TTTEstimation(era, args.directory, channel),
                TTLEstimation(era, args.directory, channel),
                TTJEstimation(era, args.directory, channel),
                WEstimation(era, args.directory, channel),
                VVEstimation(era, args.directory, channel),
                EWKZEstimation(era, args.directory, channel),
                EWKWpEstimation(era, args.directory, channel),
                EWKWmEstimation(era, args.directory, channel),
                DataEstimation(era, args.directory, channel),
                ggHWWEstimation(era, args.directory, channel),
                qqHWWEstimation(era, args.directory, channel)
        ]:
            # Get files for estimation method
            logger.debug("Get files for estimation method %s.",
                         estimation.name)
            files = [str(f) for f in estimation.get_files()]

            # Go through files and get folders for channel
            for f in files:
                if not os.path.exists(f):
                    logger.fatal("File does not exist: %s", f)
                    raise Exception

                folders = []
                f_ = ROOT.TFile(f)
                for k in f_.GetListOfKeys():
                    if "{}_".format(args.channel) in k.GetName():
                        folders.append(k.GetName())
                f_.Close()

                filelist[f] = folders

    ############################################################################

    # Era 2017, Channel: tt
    if "2017" in args.era and args.channel == "tt":
        channel = TTSM2017()
        for estimation in [
                ggHEstimation("ggH", era, args.directory, channel),
                qqHEstimation("qqH", era, args.directory, channel),
                ttHEstimation(era, args.directory, channel),
                VHEstimation(era, args.directory, channel),
                ZTTEstimation(era, args.directory, channel),
                ZTTEmbeddedEstimation(era, args.directory, channel),
                ZLEstimation(era, args.directory, channel),
                ZJEstimation(era, args.directory, channel),
                TTTEstimation(era, args.directory, channel),
                TTJEstimation(era, args.directory, channel),
                TTLEstimation(era, args.directory, channel),
                WEstimation(era, args.directory, channel),
                VVJEstimation(era, args.directory, channel),
                VVTEstimation(era, args.directory, channel),
                VVLEstimation(era, args.directory, channel),
                EWKZEstimation(era, args.directory, channel),
                DataEstimation(era, args.directory, channel)
        ]:
            # Get files for estimation method
            logger.debug("Get files for estimation method %s.",
                         estimation.name)
            files = [str(f) for f in estimation.get_files()]

            # Go through files and get folders for channel
            for f in files:
                if not os.path.exists(f):
                    logger.fatal("File does not exist: %s", f)
                    raise Exception

                folders = []
                f_ = ROOT.TFile(f)
                for k in f_.GetListOfKeys():
                    if "{}_".format(args.channel) in k.GetName():
                        folders.append(k.GetName())
                f_.Close()

                filelist[f] = folders

    ############################################################################

    # Era 2018, Channel: tt
    if "2018" in args.era and args.channel == "tt":
        channel = TTSM2018()
        for estimation in [
                ggHEstimation("ggH", era, args.directory, channel),
                qqHEstimation("qqH", era, args.directory, channel),
                ttHEstimation(era, args.directory, channel),
                VHEstimation(era, args.directory, channel),
                ZTTEstimation(era, args.directory, channel),
                ZTTEmbeddedEstimation(era, args.directory, channel),
                ZLEstimation(era, args.directory, channel),
                ZJEstimation(era, args.directory, channel),
                TTTEstimation(era, args.directory, channel),
                TTJEstimation(era, args.directory, channel),
                TTLEstimation(era, args.directory, channel),
                WEstimation(era, args.directory, channel),
                VVJEstimation(era, args.directory, channel),
                VVTEstimation(era, args.directory, channel),
                VVLEstimation(era, args.directory, channel),
                EWKZEstimation(era, args.directory, channel),
                DataEstimation(era, args.directory, channel)
        ]:
            # Get files for estimation method
            logger.debug("Get files for estimation method %s.",
                         estimation.name)
            files = [str(f) for f in estimation.get_files()]

            # Go through files and get folders for channel
            for f in files:
                if not os.path.exists(f):
                    logger.fatal("File does not exist: %s", f)
                    raise Exception

                folders = []
                f_ = ROOT.TFile(f)
                for k in f_.GetListOfKeys():
                    if "{}_".format(args.channel) in k.GetName():
                        folders.append(k.GetName())
                f_.Close()

                filelist[f] = folders


    ############################################################################

    # Era: 2016, Channel: em
    if "2016" in args.era and args.channel == "em":
        channel = EMSM2016()
        for estimation in [
                ggHEstimation("ggH", era, args.directory, channel),
                qqHEstimation("qqH", era, args.directory, channel),    
                ttHEstimation(era, args.directory, channel),
                VHEstimation(era, args.directory, channel),
                ZTTEstimation(era, args.directory, channel),
                #ZTTEmbeddedEstimation(era, args.directory, channel), #TODO include EMB again once samples are there
                ZLEstimation(era, args.directory, channel),
                TTTEstimation(era, args.directory, channel),
                TTLEstimation(era, args.directory, channel),
                WEstimation(era, args.directory, channel),
                VVEstimation(era, args.directory, channel),
                EWKZEstimation(era, args.directory, channel),
                EWKWpEstimation(era, args.directory, channel),
                EWKWmEstimation(era, args.directory, channel),
                DataEstimation(era, args.directory, channel),
                ggHWWEstimation(era, args.directory, channel),
                qqHWWEstimation(era, args.directory, channel)
        ]:
            # Get files for estimation method
            logger.debug("Get files for estimation method %s.",
                         estimation.name)
            files = [str(f) for f in estimation.get_files()]

            # Go through files and get folders for channel
            for f in files:
                if not os.path.exists(f):
                    logger.fatal("File does not exist: %s", f)
                    raise Exception

                folders = []
                f_ = ROOT.TFile(f)
                for k in f_.GetListOfKeys():
                    if "{}_".format(args.channel) in k.GetName():
                        folders.append(k.GetName())
                f_.Close()

                filelist[f] = folders

    ############################################################################

    # Era: 2017, Channel: em
    if "2017" in args.era and args.channel == "em":
        channel = EMSM2017()
        for estimation in [
                ggHEstimation("ggH", era, args.directory, channel),
                qqHEstimation("qqH", era, args.directory, channel),
                ttHEstimation(era, args.directory, channel),
                VHEstimation(era, args.directory, channel),
                ZTTEstimation(era, args.directory, channel),
                ZTTEmbeddedEstimation(era, args.directory, channel),
                ZLEstimation(era, args.directory, channel),
                TTTEstimation(era, args.directory, channel),
                TTLEstimation(era, args.directory, channel),
                WEstimation(era, args.directory, channel),
                VVTEstimation(era, args.directory, channel),
                VVLEstimation(era, args.directory, channel),
                EWKZEstimation(era, args.directory, channel),
                DataEstimation(era, args.directory, channel)
        ]:
            # Get files for estimation method
            logger.debug("Get files for estimation method %s.",
                         estimation.name)
            files = [str(f) for f in estimation.get_files()]

            # Go through files and get folders for channel
            for f in files:
                if not os.path.exists(f):
                    logger.fatal("File does not exist: %s", f)
                    raise Exception

                folders = []
                f_ = ROOT.TFile(f)
                for k in f_.GetListOfKeys():
                    if "{}_".format(args.channel) in k.GetName():
                        folders.append(k.GetName())
                f_.Close()

                filelist[f] = folders

    ############################################################################

    # Era: 2018, Channel: em
    if "2018" in args.era and args.channel == "em":
        channel = EMSM2018()
        for estimation in [
                ggHEstimation("ggH", era, args.directory, channel),
                qqHEstimation("qqH", era, args.directory, channel),
                ttHEstimation(era, args.directory, channel),
                VHEstimation(era, args.directory, channel),
                ZTTEstimation(era, args.directory, channel),
                ZTTEmbeddedEstimation(era, args.directory, channel),
                ZLEstimation(era, args.directory, channel),
                TTTEstimation(era, args.directory, channel),
                TTLEstimation(era, args.directory, channel),
                WEstimation(era, args.directory, channel),
                VVTEstimation(era, args.directory, channel),
                VVLEstimation(era, args.directory, channel),
                EWKZEstimation(era, args.directory, channel),
                DataEstimation(era, args.directory, channel)
        ]:
            # Get files for estimation method
            logger.debug("Get files for estimation method %s.",
                         estimation.name)
            files = [str(f) for f in estimation.get_files()]

            # Go through files and get folders for channel
            for f in files:
                if not os.path.exists(f):
                    logger.fatal("File does not exist: %s", f)
                    raise Exception

                folders = []
                f_ = ROOT.TFile(f)
                for k in f_.GetListOfKeys():
                    if "{}_".format(args.channel) in k.GetName():
                        folders.append(k.GetName())
                f_.Close()

                filelist[f] = folders

    ############################################################################

    # Write output filelist
    logger.info("Write filelist to file: {}".format(args.output))
    yaml.dump(filelist, open(args.output, 'w'), default_flow_style=False)
コード例 #7
0
def main(args):
    # Container for all distributions to be drawn
    systematics_mt = Systematics("shapes_mt_2018.root", num_threads=args.num_threads, find_unique_objects=True)
    systematics_et = Systematics("shapes_et_2018.root", num_threads=args.num_threads, find_unique_objects=True)
    systematics_tt = Systematics("shapes_tt_2018.root", num_threads=args.num_threads, find_unique_objects=True)
    systematics_em = Systematics("shapes_em_2018.root", num_threads=args.num_threads, find_unique_objects=True)
    systematics_mm = Systematics("shapes_mm_2018.root", num_threads=args.num_threads, find_unique_objects=True)

    # Era
    era = Run2018(args.datasets)

    # Channels and processes
    # yapf: disable
    directory = args.directory
    et_friend_directory = args.et_friend_directory
    mt_friend_directory = args.mt_friend_directory
    tt_friend_directory = args.tt_friend_directory
    em_friend_directory = args.em_friend_directory
    mm_friend_directory = args.mm_friend_directory

    ff_friend_directory = args.fake_factor_friend_directory

    #mt = MT()
    #mt_processes = {
    #    "data"  : Process("data_obs", DataEstimation      (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "EMB"   : Process("EMB",      ZTTEmbeddedEstimation  (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "ZJ"    : Process("ZJ",       ZJEstimation        (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "ZL"    : Process("ZL",       ZLEstimation        (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "TTT"   : Process("TTT",      TTTEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "TTJ"   : Process("TTJ",      TTJEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "TTL"   : Process("TTL",      TTLEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "VVT"   : Process("VVT",      VVTEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "VVJ"   : Process("VVJ",      VVJEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "VVL"   : Process("VVL",      VVLEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "W"     : Process("W",        WEstimation         (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "ggH"   : Process("ggH125",   ggHEstimation       ("ggH125", era, directory, mt, friend_directory=mt_friend_directory)),
    #    "qqH"   : Process("qqH125",   qqHEstimation       ("qqH125", era, directory, mt, friend_directory=mt_friend_directory)),
    #    "VH"    : Process("VH125",    VHEstimation        (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "WH"    : Process("WH125",    WHEstimation        (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "ZH"    : Process("ZH125",    ZHEstimation        (era, directory, mt, friend_directory=mt_friend_directory)),
    #    "ttH"   : Process("ttH125",   ttHEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
    #    }
    #mt_processes["FAKES"] = Process("jetFakes", NewFakeEstimationLT(era, directory, mt, [mt_processes[process] for process in ["ZTT", "ZL", "TTT", "TTL", "VVT", "VVL"]], mt_processes["data"], friend_directory=mt_friend_directory+[ff_friend_directory]))
    #mt_processes["FAKESEMB"] = Process("jetFakesEMB", NewFakeEstimationLT(era, directory, mt, [mt_processes[process] for process in ["EMB", "ZL", "TTL", "VVL"]], mt_processes["data"], friend_directory=mt_friend_directory+[ff_friend_directory]))

    #mt_processes["QCD"] = Process("QCD", QCDEstimation_SStoOS_MTETEM(era, directory, mt,
    #        [mt_processes[process] for process in ["ZTT", "ZL", "ZJ", "W", "TTT", "TTJ", "TTL", "VVT", "VVJ", "VVL"]],
    #        mt_processes["data"], friend_directory=mt_friend_directory, extrapolation_factor=1.00))
    #mt_processes["QCDEMB"] = Process("QCDEMB", QCDEstimation_SStoOS_MTETEM(era, directory, mt,
    #        [mt_processes[process] for process in ["EMB", "ZL", "ZJ", "W", "TTJ", "TTL", "VVJ", "VVL"]],
    #        mt_processes["data"], friend_directory=mt_friend_directory, extrapolation_factor=1.00))


    #et = ET()
    #et_processes = {
    #    "data"  : Process("data_obs", DataEstimation      (era, directory, et, friend_directory=et_friend_directory)),
    #    "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, et, friend_directory=et_friend_directory)),
    #    "EMB"   : Process("EMB",      ZTTEmbeddedEstimation  (era, directory, et, friend_directory=et_friend_directory)),
    #    "ZJ"    : Process("ZJ",       ZJEstimation        (era, directory, et, friend_directory=et_friend_directory)),
    #    "ZL"    : Process("ZL",       ZLEstimation        (era, directory, et, friend_directory=et_friend_directory)),
    #    "TTT"   : Process("TTT",      TTTEstimation       (era, directory, et, friend_directory=et_friend_directory)),
    #    "TTJ"   : Process("TTJ",      TTJEstimation       (era, directory, et, friend_directory=et_friend_directory)),
    #    "TTL"   : Process("TTL",      TTLEstimation       (era, directory, et, friend_directory=et_friend_directory)),
    #    "VVT"   : Process("VVT",      VVTEstimation       (era, directory, et, friend_directory=et_friend_directory)),
    #    "VVJ"   : Process("VVJ",      VVJEstimation       (era, directory, et, friend_directory=et_friend_directory)),
    #    "VVL"   : Process("VVL",      VVLEstimation       (era, directory, et, friend_directory=et_friend_directory)),
    #    "W"     : Process("W",        WEstimation         (era, directory, et, friend_directory=et_friend_directory)),
    #    "ggH"   : Process("ggH125",   ggHEstimation       ("ggH125", era, directory, et, friend_directory=et_friend_directory)),
    #    "qqH"   : Process("qqH125",   qqHEstimation       ("qqH125", era, directory, et, friend_directory=et_friend_directory)),
    #    "VH"    : Process("VH125",    VHEstimation        (era, directory, et, friend_directory=et_friend_directory)),
    #    "WH"    : Process("WH125",    WHEstimation        (era, directory, et, friend_directory=et_friend_directory)),
    #    "ZH"    : Process("ZH125",    ZHEstimation        (era, directory, et, friend_directory=et_friend_directory)),
    #    "ttH"   : Process("ttH125",   ttHEstimation       (era, directory, et, friend_directory=et_friend_directory)),
    #    }
    #et_processes["FAKES"] = Process("jetFakes", NewFakeEstimationLT(era, directory, et, [et_processes[process] for process in ["ZTT", "ZL", "TTT", "TTL", "VVT", "VVL"]], et_processes["data"], friend_directory=et_friend_directory+[ff_friend_directory]))
    #et_processes["FAKESEMB"] = Process("jetFakesEMB", NewFakeEstimationLT(era, directory, et, [et_processes[process] for process in ["EMB", "ZL", "TTL", "VVL"]], et_processes["data"], friend_directory=et_friend_directory+[ff_friend_directory]))

    #et_processes["QCD"] = Process("QCD", QCDEstimation_SStoOS_MTETEM(era, directory, et,
    #        [et_processes[process] for process in ["ZTT", "ZL", "ZJ", "W", "TTT", "TTJ", "TTL", "VVT", "VVJ", "VVL"]],
    #        et_processes["data"], friend_directory=et_friend_directory, extrapolation_factor=1.00))
    #et_processes["QCDEMB"] = Process("QCDEMB", QCDEstimation_SStoOS_MTETEM(era, directory, et,
    #        [et_processes[process] for process in ["EMB", "ZL", "ZJ", "W", "TTJ", "TTL", "VVJ", "VVL"]],
    #        et_processes["data"], friend_directory=et_friend_directory, extrapolation_factor=1.00))


    #tt = TT()
    #tt_processes = {
    #    "data"  : Process("data_obs", DataEstimation      (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "EMB"   : Process("EMB",      ZTTEmbeddedEstimation  (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "ZJ"    : Process("ZJ",       ZJEstimation        (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "ZL"    : Process("ZL",       ZLEstimation        (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "TTT"   : Process("TTT",      TTTEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "TTJ"   : Process("TTJ",      TTJEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "TTL"   : Process("TTL",      TTLEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "VVT"   : Process("VVT",      VVTEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "VVJ"   : Process("VVJ",      VVJEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "VVL"   : Process("VVL",      VVLEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "W"     : Process("W",        WEstimation         (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "ggH"   : Process("ggH125",   ggHEstimation       ("ggH125", era, directory, tt, friend_directory=tt_friend_directory)),
    #    "qqH"   : Process("qqH125",   qqHEstimation       ("qqH125", era, directory, tt, friend_directory=tt_friend_directory)),
    #    "VH"    : Process("VH125",    VHEstimation        (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "WH"    : Process("WH125",    WHEstimation        (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "ZH"    : Process("ZH125",    ZHEstimation        (era, directory, tt, friend_directory=tt_friend_directory)),
    #    "ttH"   : Process("ttH125",   ttHEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
    #    }
    #tt_processes["FAKESEMB"] = Process("jetFakesEMB", NewFakeEstimationTT(era, directory, tt, [tt_processes[process] for process in ["EMB", "ZL", "TTL", "VVL"]], tt_processes["data"], friend_directory=tt_friend_directory+[ff_friend_directory]))
    #tt_processes["FAKES"] = Process("jetFakes", NewFakeEstimationTT(era, directory, tt, [tt_processes[process] for process in ["ZTT", "ZL", "TTT", "TTL", "VVT", "VVL"]], tt_processes["data"], friend_directory=tt_friend_directory+[ff_friend_directory]))

    #tt_processes["QCD"] = Process("QCD", QCDEstimation_ABCD_TT_ISO2(era, directory, tt,
    #        [tt_processes[process] for process in ["ZTT", "ZL", "ZJ", "W", "TTT", "TTJ", "TTL", "VVT", "VVJ", "VVL"]],
    #        tt_processes["data"], friend_directory=tt_friend_directory))
    #tt_processes["QCDEMB"] = Process("QCDEMB", QCDEstimation_ABCD_TT_ISO2(era, directory, tt,
    #        [tt_processes[process] for process in ["EMB", "ZL", "ZJ", "W", "TTJ", "TTL", "VVJ", "VVL"]],
    #        tt_processes["data"], friend_directory=tt_friend_directory))

    #em = EM()
    #em_processes = {
    #    "data"  : Process("data_obs", DataEstimation      (era, directory, em, friend_directory=em_friend_directory)),
    #    "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, em, friend_directory=em_friend_directory)),
    #    "EMB"   : Process("EMB",      ZTTEmbeddedEstimation  (era, directory, em, friend_directory=em_friend_directory)),
    #    "ZL"    : Process("ZL",       ZLEstimation        (era, directory, em, friend_directory=em_friend_directory)),
    #    "TTT"   : Process("TTT",      TTTEstimation       (era, directory, em, friend_directory=em_friend_directory)),
    #    "TTL"   : Process("TTL",      TTLEstimation       (era, directory, em, friend_directory=em_friend_directory)),
    #    "VVT"   : Process("VVT",      VVTEstimation       (era, directory, em, friend_directory=em_friend_directory)),
    #    "VVL"   : Process("VVL",      VVLEstimation       (era, directory, em, friend_directory=em_friend_directory)),
    #    "W"     : Process("W",        WEstimation         (era, directory, em, friend_directory=em_friend_directory)),
    #    "ggH"   : Process("ggH125",   ggHEstimation       ("ggH125", era, directory, em, friend_directory=em_friend_directory)),
    #    "qqH"   : Process("qqH125",   qqHEstimation       ("qqH125", era, directory, em, friend_directory=em_friend_directory)),
    #    "VH"    : Process("VH125",    VHEstimation        (era, directory, em, friend_directory=em_friend_directory)),
    #    "WH"    : Process("WH125",    WHEstimation        (era, directory, em, friend_directory=em_friend_directory)),
    #    "ZH"    : Process("ZH125",    ZHEstimation        (era, directory, em, friend_directory=em_friend_directory)),
    #    "ttH"   : Process("ttH125",   ttHEstimation       (era, directory, em, friend_directory=em_friend_directory)),
    #    }

    #em_processes["QCD"] = Process("QCD", QCDEstimation_SStoOS_MTETEM(era, directory, em, [em_processes[process] for process in ["ZTT", "ZL", "W", "TTT", "VVT", "VVL"]], em_processes["data"], extrapolation_factor=1.0, qcd_weight = Weight("em_qcd_extrap_up_Weight","qcd_weight")))
    #em_processes["QCDEMB"] = Process("QCDEMB", QCDEstimation_SStoOS_MTETEM(era, directory, em, [em_processes[process] for process in ["EMB", "ZL", "W", "VVL"]], em_processes["data"], extrapolation_factor=1.0, qcd_weight = Weight("em_qcd_extrap_up_Weight","qcd_weight")))

    mm = MM()
    mm_processes = {
        "data"  : Process("data_obs", DataEstimation      (era, directory, mm, friend_directory=mm_friend_directory)),
        "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, mm, friend_directory=mm_friend_directory)),
        "ZL"    : Process("ZL",       ZLEstimation        (era, directory, mm, friend_directory=mm_friend_directory)),
        "TTT"   : Process("TTT",      TTTEstimation       (era, directory, mm, friend_directory=mm_friend_directory)),
        "TTL"   : Process("TTL",      TTLEstimation       (era, directory, mm, friend_directory=mm_friend_directory)),
        "VVT"   : Process("VVT",      VVTEstimation       (era, directory, mm, friend_directory=mm_friend_directory)),
        "VVL"   : Process("VVL",      VVLEstimation       (era, directory, mm, friend_directory=mm_friend_directory)),
        "W"     : Process("W",        WEstimation         (era, directory, mm, friend_directory=mm_friend_directory)),
        }
    mm_processes["QCD"] = Process("QCD", QCDEstimation_SStoOS_MTETEM(era, directory, mm,
            [mm_processes[process] for process in ["ZTT", "ZL", "W", "TTT", "TTL", "VVT", "VVL"]],
            mm_processes["data"], friend_directory=mm_friend_directory, extrapolation_factor=2.0))


    # Variables and categories
    binning = yaml.load(open(args.binning))

    mt_categories = []
    et_categories = []
    tt_categories = []
    em_categories = []
    mm_categories = []

    variable_names = [
        "m_vis", "ptvis",
    #    "DiTauDeltaR",

    #    "m_sv", "pt_sv", "eta_sv",
    #    "m_sv_puppi", "pt_sv_puppi", "eta_sv_puppi",
    #    "m_fastmtt", "pt_fastmtt", "eta_fastmtt",
    #    "m_fastmtt_puppi", "pt_fastmtt_puppi", "eta_fastmtt_puppi",

    #    "ME_D", "ME_vbf", "ME_z2j_1", "ME_z2j_2", "ME_q2v1", "ME_q2v2", "ME_costheta1", "ME_costheta2", "ME_costhetastar", "ME_phi", "ME_phi1",

        "pt_1", "pt_2", "eta_1", "eta_2",

    #    "mjj", "jdeta", "dijetpt",
        "njets", "jpt_1", "jpt_2", "jeta_1", "jeta_2",
    #    "nbtag", "bpt_1", "bpt_2", "beta_1", "beta_2",

       "met", #"mt_1", "mt_2", "pt_tt", "pZetaMissVis", "pt_ttjj", "mt_tot", "mTdileptonMET",
        "puppimet", #"mt_1_puppi", "mt_2_puppi", "pt_tt_puppi", "pZetaPuppiMissVis", "pt_ttjj_puppi", "mt_tot_puppi", "mTdileptonMET_puppi",
    #    "NNrecoil_pt", "nnmet", "mt_1_nn", "mt_2_nn", "pt_tt_nn", "pZetaNNMissVis", "pt_ttjj_nn", "mt_tot_nn", "mTdileptonMET_nn",

        "metParToZ", "metPerpToZ",
        "puppimetParToZ", "puppimetPerpToZ",
    ]

    #if "mt" in args.channels:
    #    variables = [Variable(v,VariableBinning(binning["control"]["mt"][v]["bins"]), expression=binning["control"]["mt"][v]["expression"]) for v in variable_names]
    #    cuts = Cuts()
    #    for name, var in zip(variable_names, variables):
    #        mt_categories.append(
    #            Category(
    #                name,
    #                mt,
    #                cuts,
    #                variable=var))

    #if "et" in args.channels:
    #    variables = [Variable(v,VariableBinning(binning["control"]["et"][v]["bins"]), expression=binning["control"]["et"][v]["expression"]) for v in variable_names]
    #    cuts = Cuts()
    #    for name, var in zip(variable_names, variables):
    #        et_categories.append(
    #            Category(
    #                name,
    #                et,
    #                cuts,
    #                variable=var))

    #if "tt" in args.channels:
    #    variables = [Variable(v,VariableBinning(binning["control"]["tt"][v]["bins"]), expression=binning["control"]["tt"][v]["expression"]) for v in variable_names]
    #    cuts = Cuts()
    #    for name, var in zip(variable_names, variables):
    #        tt_categories.append(
    #            Category(
    #                name,
    #                tt,
    #                cuts,
    #                variable=var))

    #if "em" in args.channels:
    #    variables = [Variable(v,VariableBinning(binning["control"]["em"][v]["bins"]), expression=binning["control"]["em"][v]["expression"]) for v in variable_names]
    #    cuts = Cuts()
    #    for name, var in zip(variable_names, variables):
    #        em_categories.append(
    #            Category(
    #                name,
    #                em,
    #                cuts,
    #                variable=var))

    if "mm" in args.channels:
        variables = [Variable(v,VariableBinning(binning["control"]["mm"][v]["bins"]), expression=binning["control"]["mm"][v]["expression"]) for v in variable_names]
        variables.append(Variable("m_vis_high",ConstantBinning(19,50.0,1000.0),expression="m_vis"))
        variable_names.append("m_vis_high")
        cuts = Cuts()
        for name, var in zip(variable_names, variables):
            mm_categories.append(
                Category(
                    name,
                    mm,
                    cuts,
                    variable=var))
            mm_categories.append(
                Category(
                    name+"_peak",
                    mm,
                    Cuts(Cut("m_vis > 70 && m_vis < 110","m_vis_peak")),
                    variable=var))

    # Nominal histograms
    #if "mt" in args.channels:
    #    for process, category in product(mt_processes.values(), mt_categories):
    #        systematics_mt.add(
    #            Systematic(
    #                category=category,
    #                process=process,
    #                analysis="smhtt",
    #                era=era,
    #                variation=Nominal(),
    #                mass="125"))

    #if "et" in args.channels:
    #    for process, category in product(et_processes.values(), et_categories):
    #        systematics_et.add(
    #            Systematic(
    #                category=category,
    #                process=process,
    #                analysis="smhtt",
    #                era=era,
    #                variation=Nominal(),
    #                mass="125"))

    #if "tt" in args.channels:
    #    for process, category in product(tt_processes.values(), tt_categories):
    #        systematics_tt.add(
    #            Systematic(
    #                category=category,
    #                process=process,
    #                analysis="smhtt",
    #                era=era,
    #                variation=Nominal(),
    #                mass="125"))

    #if "em" in args.channels:
    #    for process, category in product(em_processes.values(), em_categories):
    #        systematics_em.add(
    #            Systematic(
    #                category=category,
    #                process=process,
    #                analysis="smhtt",
    #                era=era,
    #                variation=Nominal(),
    #                mass="125"))

    if "mm" in args.channels:
        for process, category in product(mm_processes.values(), mm_categories):
            systematics_mm.add(
                Systematic(
                    category=category,
                    process=process,
                    analysis="smhtt",
                    era=era,
                    variation=Nominal(),
                    mass="125"))


    # Produce histograms
    #if "mt" in args.channels: systematics_mt.produce()
    #if "et" in args.channels: systematics_et.produce()
    #if "tt" in args.channels: systematics_tt.produce()
    #if "em" in args.channels: systematics_em.produce()
    if "mm" in args.channels: systematics_mm.produce()
コード例 #8
0
def main(args):
    # Container for all distributions to be drawn
    systematics_mm = Systematics("shapes_mm_recoil_2018.root",
                                 num_threads=args.num_threads,
                                 find_unique_objects=True)

    # Era
    era = Run2018(args.datasets)

    # Channels and processes
    # yapf: disable
    directory = args.directory

    zptm_path = "/portal/ekpbms1/home/akhmet/workdir/FriendTreeProductionMain/CMSSW_10_2_14/src/ZPtMReweighting_workdir/ZPtMReweighting_collected/"
    mm = MM()
    mm_processes = {
        "data"  : Process("data_obs", DataEstimation      (era, directory, mm, friend_directory=[])),
        "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, mm, friend_directory=[zptm_path])),
        "ZL"    : Process("ZL",       ZLEstimation        (era, directory, mm, friend_directory=[zptm_path])),
        "TTT"   : Process("TTT",      TTTEstimation       (era, directory, mm, friend_directory=[])),
        "TTL"   : Process("TTL",      TTLEstimation       (era, directory, mm, friend_directory=[])),
        "VVT"   : Process("VVT",      VVTEstimation       (era, directory, mm, friend_directory=[])),
        "VVL"   : Process("VVL",      VVLEstimation       (era, directory, mm, friend_directory=[])),
        "W"     : Process("W",        WEstimation         (era, directory, mm, friend_directory=[])),
        }
    mm_processes["QCD"] = Process("QCD", QCDEstimation_SStoOS_MTETEM(era, directory, mm,
            [mm_processes[process] for process in ["ZTT", "ZL", "W", "TTT", "TTL", "VVT", "VVL"]],
            mm_processes["data"], friend_directory=[], extrapolation_factor=2.0))

    # Variables and categories
    binning = yaml.load(open(args.binning))
    mm_categories = []

    variable_bins = {
        "njets" : [0, 1, 2],
        "ptvis" : [0, 10, 20, 30, 50],
    }
    variable_names = [
        "metParToZ", "metPerpToZ",
        "puppimetParToZ", "puppimetPerpToZ",
    #        "recoilParToZ", "recoilPerpToZ",
    #        "puppirecoilParToZ", "puppirecoilPerpToZ",
    ]

    for njets_bin in range(len(variable_bins["njets"])):
        for pt_bin in range(len(variable_bins["ptvis"])):
            name = "njets_bin_%s_vs_ptvis_bin_%s"%(str(njets_bin),str(pt_bin))
            category_njets = ""
            category_pt = ""
            if njets_bin == (len(variable_bins["njets"]) - 1):
                category_njets = "njets >= %s"%str(variable_bins["njets"][njets_bin])
            else:
                category_njets = "njets == %s"%str(variable_bins["njets"][njets_bin])
            if pt_bin == (len(variable_bins["ptvis"]) - 1):
                category_pt = "ptvis > %s"%str(variable_bins["ptvis"][pt_bin])
            else:
                category_pt= "ptvis > %s && ptvis <= %s"%(str(variable_bins["ptvis"][pt_bin]),str(variable_bins["ptvis"][pt_bin+1]))
            print category_njets, category_pt
            cuts = Cuts(
                Cut(category_njets,"njets_category"),
                Cut(category_pt,"ptvis_category"),
                Cut("m_vis > 70 && m_vis < 110","z_peak")
            )
            for v in variable_names:
                mm_categories.append(
                    Category(
                        name,
                        mm,
                        cuts,
                        variable=Variable(v,VariableBinning(binning["control"]["mm"][v]["bins"]), expression=binning["control"]["mm"][v]["expression"])))

    # Nominal histograms
    for process, category in product(mm_processes.values(), mm_categories):
        systematics_mm.add(
            Systematic(
                category=category,
                process=process,
                analysis="smhtt",
                era=era,
                variation=Nominal(),
                mass="125"))


    # Produce histograms
    systematics_mm.produce()
コード例 #9
0
def main(args):
    # Container for all distributions to be drawn
    logger.info("Set up shape variations.")
    systematics = Systematics(
        "{}_cutbased_shapes_{}.root".format(args.tag,
                                            args.discriminator_variable),
        num_threads=args.num_threads,
        skip_systematic_variations=args.skip_systematic_variations)

    # Era selection
    if "2018" in args.era:
        from shape_producer.estimation_methods_2018 import DataEstimation, ZTTEstimation, ZTTEmbeddedEstimation, ZLEstimation, ZJEstimation, TTLEstimation, TTJEstimation, TTTEstimation, VVLEstimation, VVTEstimation, VVJEstimation, WEstimation, ggHEstimation, qqHEstimation, VHEstimation, WHEstimation, ZHEstimation, ttHEstimation, HWWEstimation, ggHWWEstimation, qqHWWEstimation, SUSYggHEstimation, SUSYbbHEstimation, QCDEstimation_ABCD_TT_ISO2, QCDEstimation_SStoOS_MTETEM, NewFakeEstimationLT, NewFakeEstimationTT

        from shape_producer.era import Run2018
        era = Run2018(args.datasets)
    else:
        logger.critical("Era {} is not implemented.".format(args.era))
        raise Exception

    # Channels and processes
    # yapf: disable
    directory = args.directory
    friend_directories = {
        "et" : args.et_friend_directory,
        "mt" : args.mt_friend_directory,
        "tt" : args.tt_friend_directory,
        "em" : args.em_friend_directory,
    }
    ff_friend_directory = args.fake_factor_friend_directory

    channel_dict = {
        "mt" : MTMSSM2018(),
        "et" : ETMSSM2018(),
        "tt" : TTMSSM2018(),
        "em" : EMMSSM2018(),
    }

    susyggH_masses = [80, 90, 100, 110, 120, 130, 140, 160, 180, 200, 250, 300, 350, 400, 450, 600, 700, 800, 900, 1200, 1400, 1500, 1600, 1800, 2000, 2300, 2600, 2900, 3200]
    susybbH_lo_masses = [80, 90, 100, 110, 120, 130, 140, 160, 180, 200, 250, 300, 350, 400, 450, 600, 700, 800, 900, 1200, 1400, 1500, 1600, 1800, 2000, 2300, 2600, 2900, 3200]
    susybbH_masses = [80, 90, 100, 110, 120, 125, 130, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2300, 2600, 2900, 3200, 3500]

    processes = {
        "mt" : {},
        "et" : {},
        "tt" : {},
        "em" : {},
    }

    for ch in args.channels:

        # common processes
        if args.shape_group == "backgrounds":
            processes[ch]["data"] = Process("data_obs", DataEstimation         (era, directory, channel_dict[args.era][ch], friend_directory=friend_directories[ch]))
            processes[ch]["EMB"]  = Process("EMB",      ZTTEmbeddedEstimation  (era, directory, channel_dict[args.era][ch], friend_directory=friend_directories[ch]))
            processes[ch]["ZL"]   = Process("ZL",       ZLEstimation           (era, directory, channel_dict[args.era][ch], friend_directory=friend_directories[ch]))
            processes[ch]["TTL"]  = Process("TTL",      TTLEstimation          (era, directory, channel_dict[args.era][ch], friend_directory=friend_directories[ch]))
            processes[ch]["VVL"]  = Process("VVL",      VVLEstimation          (era, directory, channel_dict[args.era][ch], friend_directory=friend_directories[ch]))

            processes[ch]["VH125"]   = Process("VH125",    VHEstimation        (era, directory, channel_dict[args.era][ch], friend_directory=friend_directories[ch]))
            processes[ch]["WH125"]   = Process("WH125",    WHEstimation        (era, directory, channel_dict[args.era][ch], friend_directory=friend_directories[ch]))
            processes[ch]["ZH125"]   = Process("ZH125",    ZHEstimation        (era, directory, channel_dict[args.era][ch], friend_directory=friend_directories[ch]))
            processes[ch]["ttH125"]  = Process("ttH125",   ttHEstimation       (era, directory, channel_dict[args.era][ch], friend_directory=friend_directories[ch]))

            processes[ch]["ggHWW125"] = Process("ggHWW125", ggHWWEstimation       (era, directory, channel_dict[ch], friend_directory=friend_directories[ch]))
            processes[ch]["qqHWW125"] = Process("qqHWW125", qqHWWEstimation       (era, directory, channel_dict[ch], friend_directory=friend_directories[ch]))

        # mssm ggH and bbH signals
        if "gg" in args.shape_group:
            for m in susyggH_masses:
                name = args.shape_group + "_" + str(m)
                processes[ch][name] = Process(name, SUSYggHEstimation(era, directory, channel_dict[ch], str(m), args.shape_group.replace("gg",""), friend_directory=friend_directories[ch]))
        if args.shape_group == "bbH":
            for m in susybbH_masses:
                name = "bbH_" + str(m)
                processes[ch][name] = Process(name, SUSYbbHEstimation(era, directory, channel_dict[ch], str(m), friend_directory=friend_directories[ch]))

        if args.shape_group == "sm_signals":
            # stage 0 and stage 1.1 ggh and qqh
            for ggH_htxs in ggHEstimation.htxs_dict:
                processes[ch][ggH_htxs] = Process(ggH_htxs, ggHEstimation(ggH_htxs, era, directory, channel_dict[ch], friend_directory=[]))  # friend_directories[ch]))
            for qqH_htxs in qqHEstimation.htxs_dict:
                processes[ch][qqH_htxs] = Process(qqH_htxs, qqHEstimation(qqH_htxs, era, directory, channel_dict[ch], friend_directory=[]))  # friend_directories[ch]))

        # channel-specific processes
        if args.shape_group == "backgrounds":
            if ch in ["mt", "et"]:
                processes[ch]["FAKES"] = Process("jetFakes", NewFakeEstimationLT(era, directory, channel_dict[ch], [processes[ch][process] for process in ["EMB", "ZL", "TTL", "VVL"]], processes[ch]["data"], friend_directory=friend_directories[ch]+[ff_friend_directory]))
            elif ch == "tt":
                processes[ch]["FAKES"] = Process("jetFakes", NewFakeEstimationTT(era, directory, channel_dict[ch], [processes[ch][process] for process in ["EMB", "ZL", "TTL", "VVL"]], processes[ch]["data"], friend_directory=friend_directories[ch]+[ff_friend_directory]))
            elif ch == "em":
                processes[ch]["W"]   = Process("W",   WEstimation(era, directory, channel_dict[ch], friend_directory=friend_directories[ch]))
                processes[ch]["QCD"] = Process("QCD", QCDEstimation_SStoOS_MTETEM(era, directory, channel_dict[ch], [processes[ch][process] for process in ["EMB", "ZL", "W", "VVL", "TTL"]], processes[ch]["data"], extrapolation_factor=1.0, qcd_weight = Weight("em_qcd_extrap_up_Weight","qcd_weight")))

    # Variables and categories
    if sys.version_info.major <= 2 and sys.version_info.minor <= 7 and sys.version_info.micro <= 15:
        binning = yaml.load(open(args.binning))
    else:
        binning = yaml.load(open(args.binning), Loader=yaml.FullLoader)

    # Cut-based analysis shapes
    categories = {
        "mt" : [],
        "et" : [],
        "tt" : [],
        "em" : [],
    }

    for ch in args.channels:
        discriminator = construct_variable(binning, args.discriminator_variable)
        # Get dictionary mapping category name to cut objects.
        cut_dict = create_cut_map(binning, ch)
        # Create full set of cuts from dict and create category using these cuts.
        cuts = Cuts(*cut_dict[args.category])
        categories[ch].append(Category(args.category, channel_dict[ch], cuts, variable=discriminator))


    # Choice of activated signal processes
    signal_nicks = []

    sm_htt_backgrounds_nicks = ["WH125", "ZH125", "VH125", "ttH125"]
    sm_hww_nicks = ["ggHWW125", "qqHWW125"]
    sm_htt_signals_nicks = [ggH_htxs for ggH_htxs in ggHEstimation.htxs_dict] + [qqH_htxs for qqH_htxs in qqHEstimation.htxs_dict]
    susy_nicks = []
    if "gg" in args.shape_group:
        for m in susyggH_masses:
            susy_nicks.append(args.shape_group + "_" + str(m))
    if args.shape_group == "bbH":
        for m in susybbH_masses:
            susy_nicks.append("bbH_" + str(m))

    if args.shape_group == "backgrounds":
        signal_nicks = sm_htt_backgrounds_nicks + sm_hww_nicks
    elif args.shape_group == "sm_signals":
        signal_nicks = sm_htt_signals_nicks
    else:
        signal_nicks = susy_nicks

    # Nominal histograms
    for ch in args.channels:
        for process, category in product(processes[ch].values(), categories[ch]):
            systematics.add(Systematic(category=category, process=process, analysis="mssmvssm", era=era, variation=Nominal(), mass="125"))

    # Setup shapes variations

    # EMB: 10% removed events in ttbar simulation (ttbar -> real tau tau events) will be added/subtracted to ZTT shape to use as systematic
    if args.shape_group == "backgrounds":
        tttautau_process = {}
        for ch in args.channels:
            tttautau_process[ch] = Process("TTT", TTTEstimation(era, directory, channel_dict[ch], friend_directory=friend_directories[ch]))
            processes[ch]['ZTTpTTTauTauDown'] = Process("ZTTpTTTauTauDown", AddHistogramEstimationMethod("AddHistogram", "nominal", era, directory, channel_dict[ch], [processes[ch]["EMB"], tttautau_process[ch]], [1.0, -0.1]))
            processes[ch]['ZTTpTTTauTauUp'] = Process("ZTTpTTTauTauUp", AddHistogramEstimationMethod("AddHistogram", "nominal", era, directory, channel_dict[ch], [processes[ch]["EMB"], tttautau_process[ch]], [1.0, 0.1]))
            for category in categories[ch]:
                for updownvar in ["Down", "Up"]:
                    systematics.add(Systematic(category=category, process=processes[ch]['ZTTpTTTauTau%s'%updownvar], analysis="smhtt", era=era, variation=Relabel("CMS_htt_emb_ttbar_Run2018", updownvar), mass="125"))

    # Split JES shapes
    jet_es_variations = create_systematic_variations("CMS_scale_j_Absolute", "jecUncAbsolute", DifferentPipeline)
    jet_es_variations += create_systematic_variations("CMS_scale_j_Absolute_Run2018", "jecUncAbsoluteYear", DifferentPipeline)
    jet_es_variations += create_systematic_variations("CMS_scale_j_BBEC1", "jecUncBBEC1", DifferentPipeline)
    jet_es_variations += create_systematic_variations("CMS_scale_j_BBEC1_Run2018", "jecUncBBEC1Year", DifferentPipeline)
    jet_es_variations += create_systematic_variations("CMS_scale_j_EC2", "jecUncEC2", DifferentPipeline)
    jet_es_variations += create_systematic_variations("CMS_scale_j_EC2_Run2018", "jecUncEC2Year", DifferentPipeline)
    jet_es_variations += create_systematic_variations("CMS_scale_j_FlavorQCD", "jecUncFlavorQCD", DifferentPipeline)
    jet_es_variations += create_systematic_variations("CMS_scale_j_HF", "jecUncHF", DifferentPipeline)
    jet_es_variations += create_systematic_variations("CMS_scale_j_HF_Run2018", "jecUncHFYear", DifferentPipeline)
    jet_es_variations += create_systematic_variations("CMS_scale_j_RelativeBal", "jecUncRelativeBal", DifferentPipeline)
    jet_es_variations += create_systematic_variations("CMS_scale_j_RelativeSample_Run2018", "jecUncRelativeSampleYear", DifferentPipeline)

    # B-tagging
    btag_eff_variations = create_systematic_variations("CMS_htt_eff_b_Run2018", "btagEff", DifferentPipeline)
    mistag_eff_variations = create_systematic_variations("CMS_htt_mistag_b_Run2018", "btagMistag", DifferentPipeline)

    ## Variations common for all groups (most of the mc-related systematics)
    common_mc_variations = btag_eff_variations + mistag_eff_variations + jet_es_variations

    # MET energy scale. Note: only those variations for non-resonant processes are used in the stat. inference
    met_unclustered_variations = create_systematic_variations("CMS_scale_met_unclustered", "metUnclusteredEn", DifferentPipeline)

    # Recoil correction unc, for resonant processes
    recoil_variations = create_systematic_variations( "CMS_htt_boson_reso_met_Run2018", "metRecoilResolution", DifferentPipeline)
    recoil_variations += create_systematic_variations( "CMS_htt_boson_scale_met_Run2018", "metRecoilResponse", DifferentPipeline)

    # Tau energy scale (general, MC-specific & EMB-specific), it is mt, et & tt specific
    tau_es_variations = {}

    for unctype in ["", "_mc", "_emb"]:
        tau_es_variations[unctype] = create_systematic_variations("CMS_scale%s_t_3prong_Run%s"% (unctype, args.era), "tauEsThreeProng", DifferentPipeline)
        tau_es_variations[unctype] += create_systematic_variations("CMS_scale%s_t_3prong1pizero_Run%s"% (unctype, args.era), "tauEsThreeProngOnePiZero", DifferentPipeline)
        tau_es_variations[unctype] += create_systematic_variations("CMS_scale%s_t_1prong_Run%s"% (unctype, args.era), "tauEsOneProng", DifferentPipeline)
        tau_es_variations[unctype] += create_systematic_variations("CMS_scale%s_t_1prong1pizero_Run%s"% (unctype, args.era), "tauEsOneProngOnePiZero", DifferentPipeline)

    # Tau ID variations (general, MC-specific & EMB specific), it is mt, et & tt specific
    # in et and mt one nuisance per pT bin, in tt per dm
    tau_id_variations = {}
    for ch in ["et" , "mt", "tt"]:
        tau_id_variations[ch] = {}
        for unctype in ["", "_emb"]:
            tau_id_variations[ch][unctype] = []
            if ch in ["et", "mt"]:
                pt = [30, 35, 40, 500, 1000, "inf"]
                for i, ptbin in enumerate(pt[:-1]):
                    bindown = ptbin
                    binup = pt[i+1]
                    if binup == "inf":
                        tau_id_variations[ch][unctype].append(
                                ReplaceWeight("CMS_eff{unctype}_t_{bindown}-{binup}_Run{era}".format(unctype=unctype,bindown=bindown, binup=binup, era=args.era), "taubyIsoIdWeight",
                                    Weight("(((pt_2 >= {bindown})*tauIDScaleFactorWeightUp_tight_DeepTau2017v2p1VSjet_2)+((pt_2 < {bindown})*tauIDScaleFactorWeight_tight_DeepTau2017v2p1VSjet_2))".format(bindown=bindown), "taubyIsoIdWeight"), "Up"))
                        tau_id_variations[ch][unctype].append(
                                ReplaceWeight("CMS_eff{unctype}_t_{bindown}-{binup}_Run{era}".format(unctype=unctype, bindown=bindown, binup=binup, era=args.era), "taubyIsoIdWeight",
                                    Weight("(((pt_2 >= {bindown})*tauIDScaleFactorWeightDown_tight_DeepTau2017v2p1VSjet_2)+((pt_2 < {bindown})*tauIDScaleFactorWeight_tight_DeepTau2017v2p1VSjet_2))".format(bindown=bindown),"taubyIsoIdWeight"), "Down"))
                    else:
                        tau_id_variations[ch][unctype].append(
                                ReplaceWeight("CMS_eff{unctype}_t_{bindown}-{binup}_Run{era}".format(unctype=unctype, bindown=bindown, binup=binup, era=args.era), "taubyIsoIdWeight",
                                    Weight("(((pt_2 >= {bindown} && pt_2 <= {binup})*tauIDScaleFactorWeightUp_tight_DeepTau2017v2p1VSjet_2)+((pt_2 < {bindown} || pt_2 > {binup})*tauIDScaleFactorWeight_tight_DeepTau2017v2p1VSjet_2))".format(bindown=bindown, binup=binup),"taubyIsoIdWeight"), "Up"))
                        tau_id_variations[ch][unctype].append(
                                ReplaceWeight("CMS_eff{unctype}_t_{bindown}-{binup}_Run{era}".format(unctype=unctype, bindown=bindown, binup=binup, era=args.era), "taubyIsoIdWeight",
                                    Weight("(((pt_2 >= {bindown} && pt_2 <= {binup})*tauIDScaleFactorWeightDown_tight_DeepTau2017v2p1VSjet_2)+((pt_2 < {bindown} || pt_2 > {binup})*tauIDScaleFactorWeight_tight_DeepTau2017v2p1VSjet_2))".format(bindown=bindown, binup=binup),"taubyIsoIdWeight"), "Down"))
            if ch in ["tt"]:
                for decaymode in [0, 1, 10, 11]:
                    tau_id_variations[ch][unctype].append(
                                ReplaceWeight("CMS_eff{unctype}_t_dm{dm}_Run{era}".format(unctype=unctype, dm=decaymode, era=args.era), "taubyIsoIdWeight",
                                    Weight("(((decayMode_1=={dm})*tauIDScaleFactorWeightUp_tight_DeepTau2017v2p1VSjet_1)+((decayMode_1!={dm})*tauIDScaleFactorWeight_tight_DeepTau2017v2p1VSjet_1)*((decayMode_2=={dm})*tauIDScaleFactorWeightUp_tight_DeepTau2017v2p1VSjet_2)+((decayMode_2!={dm})*tauIDScaleFactorWeight_tight_DeepTau2017v2p1VSjet_2))".format(dm=decaymode), "taubyIsoIdWeight"), "Up"))
                    tau_id_variations[ch][unctype].append(
                                ReplaceWeight("CMS_eff{unctype}_t_dm{dm}_Run{era}".format(unctype=unctype, dm=decaymode, era=args.era), "taubyIsoIdWeight",
                                    Weight("(((decayMode_1=={dm})*tauIDScaleFactorWeightDown_tight_DeepTau2017v2p1VSjet_1)+((decayMode_1!={dm})*tauIDScaleFactorWeight_tight_DeepTau2017v2p1VSjet_1)*((decayMode_2=={dm})*tauIDScaleFactorWeightDown_tight_DeepTau2017v2p1VSjet_2)+((decayMode_2!={dm})*tauIDScaleFactorWeight_tight_DeepTau2017v2p1VSjet_2))".format(dm=decaymode), "taubyIsoIdWeight"), "Down"))

    # Ele energy scale & smear uncertainties (MC-specific), it is et & em specific
    ele_es_variations = create_systematic_variations("CMS_scale_mc_e", "eleScale", DifferentPipeline)
    ele_es_variations += create_systematic_variations("CMS_reso_mc_e", "eleSmear", DifferentPipeline)
    # Ele energy scale (EMB-specific), it is et & em specific
    ele_es_emb_variations = create_systematic_variations("CMS_scale_emb_e", "eleEs", DifferentPipeline)

    # Z pt reweighting
    zpt_variations = create_systematic_variations("CMS_htt_dyShape_Run2018", "zPtReweightWeight", SquareAndRemoveWeight)

    # top pt reweighting
    top_pt_variations = create_systematic_variations("CMS_htt_ttbarShape", "topPtReweightWeight", SquareAndRemoveWeight)

    # jet to tau fake efficiency
    # Needs to be introduced if one wants to create shapes for QCD
    # Applied to lt,tt channels for processes ZJ, TTJ, VVJ, W
    # value of weight: Up max(1-pt_2*0.002, 0.6)
    #                   Down min(1+pt_2*0.002, 1.4)

    # EMB charged track correction uncertainty (DM-dependent)
    decayMode_variations = []
    decayMode_variations.append(ReplaceWeight("CMS_3ProngEff_Run2018".format(args.era), "decayMode_SF", Weight("embeddedDecayModeWeight_effUp_pi0Nom", "decayMode_SF"), "Up"))
    decayMode_variations.append(ReplaceWeight("CMS_3ProngEff_Run2018".format(args.era), "decayMode_SF", Weight("embeddedDecayModeWeight_effDown_pi0Nom", "decayMode_SF"), "Down"))
    decayMode_variations.append(ReplaceWeight("CMS_1ProngPi0Eff_Run2018".format(args.era), "decayMode_SF", Weight("embeddedDecayModeWeight_effNom_pi0Up", "decayMode_SF"), "Up"))
    decayMode_variations.append(ReplaceWeight("CMS_1ProngPi0Eff_Run2018".format(args.era), "decayMode_SF", Weight("embeddedDecayModeWeight_effNom_pi0Down", "decayMode_SF"), "Down"))

    # QCD for em
    qcd_variations = []
    qcd_variations.append(ReplaceWeight("CMS_htt_qcd_0jet_rate_Run2018", "qcd_weight", Weight("em_qcd_osss_0jet_rateup_Weight", "qcd_weight"), "Up"))
    qcd_variations.append(ReplaceWeight("CMS_htt_qcd_0jet_rate_Run2018", "qcd_weight", Weight("em_qcd_osss_0jet_ratedown_Weight", "qcd_weight"), "Down"))
    qcd_variations.append(ReplaceWeight("CMS_htt_qcd_0jet_shape_Run2018", "qcd_weight", Weight("em_qcd_osss_0jet_shapeup_Weight", "qcd_weight"), "Up"))
    qcd_variations.append(ReplaceWeight("CMS_htt_qcd_0jet_shape_Run2018", "qcd_weight", Weight("em_qcd_osss_0jet_shapedown_Weight", "qcd_weight"), "Down"))
    qcd_variations.append(ReplaceWeight("CMS_htt_qcd_1jet_rate_Run2018", "qcd_weight", Weight("em_qcd_osss_1jet_rateup_Weight", "qcd_weight"), "Up"))
    qcd_variations.append(ReplaceWeight("CMS_htt_qcd_1jet_rate_Run2018", "qcd_weight", Weight("em_qcd_osss_1jet_ratedown_Weight", "qcd_weight"), "Down"))
    qcd_variations.append(ReplaceWeight("CMS_htt_qcd_1jet_shape_Run2018", "qcd_weight", Weight("em_qcd_osss_1jet_shapeup_Weight", "qcd_weight"), "Up"))
    qcd_variations.append(ReplaceWeight("CMS_htt_qcd_1jet_shape_Run2018", "qcd_weight", Weight("em_qcd_osss_1jet_shapedown_Weight", "qcd_weight"), "Down"))
    qcd_variations.append(ReplaceWeight("CMS_htt_qcd_iso_Run2018", "qcd_weight", Weight("em_qcd_extrap_up_Weight", "qcd_weight"), "Up"))
    qcd_variations.append(ReplaceWeight("CMS_htt_qcd_iso_Run2018", "qcd_weight", Weight("em_qcd_extrap_down_Weight", "qcd_weight"), "Down"))
    qcd_variations.append(ReplaceWeight("CMS_htt_qcd_iso", "qcd_weight", Weight("em_qcd_extrap_up_Weight", "qcd_weight"), "Up"))
    qcd_variations.append(ReplaceWeight("CMS_htt_qcd_iso", "qcd_weight", Weight("em_qcd_extrap_down_Weight", "qcd_weight"), "Down"))

    # Gluon-fusion WG1 uncertainty scheme
    ggh_variations = []
    for unc in [
            "THU_ggH_Mig01", "THU_ggH_Mig12", "THU_ggH_Mu", "THU_ggH_PT120",
            "THU_ggH_PT60", "THU_ggH_Res", "THU_ggH_VBF2j", "THU_ggH_VBF3j",
            "THU_ggH_qmtop"
    ]:
        ggh_variations.append(AddWeight(unc, "{}_weight".format(unc), Weight("({})".format(unc), "{}_weight".format(unc)), "Up"))
        ggh_variations.append(AddWeight(unc, "{}_weight".format(unc), Weight("(2.0-{})".format(unc), "{}_weight".format(unc)), "Down"))

    # ZL fakes energy scale
    fakelep_dict = {"et" : "Ele", "mt" : "Mu"}
    lep_fake_es_variations = {}
    for ch in ["mt", "et"]:
        lep_fake_es_variations[ch] = create_systematic_variations("CMS_ZLShape_%s_1prong_Run2018"%ch, "tau%sFakeEsOneProng"%fakelep_dict[ch], DifferentPipeline)
        lep_fake_es_variations[ch] += create_systematic_variations("CMS_ZLShape_%s_1prong1pizero_Run2018"%ch, "tau%sFakeEsOneProngPiZeros"%fakelep_dict[ch], DifferentPipeline)

    # Lepton trigger efficiency; the same values for (MC & EMB) and (mt & et)
    lep_trigger_eff_variations = {}
    for ch in ["mt", "et"]:
        lep_trigger_eff_variations[ch] = {}
        thresh_dict = {"mt": 25., "et": 28.}
        for unctype in ["", "_emb"]:
            lep_trigger_eff_variations[ch][unctype] = []
            lep_trigger_eff_variations[ch][unctype].append(AddWeight("CMS_eff_trigger%s_%s_Run2018"%(unctype, ch), "trg_%s_eff_weight"%ch, Weight("(1.0*(pt_1<={0})+1.02*(pt_1>{0}))".format(thresh_dict[ch]), "trg_%s_eff_weight"%ch), "Up"))
            lep_trigger_eff_variations[ch][unctype].append(AddWeight("CMS_eff_trigger%s_%s_Run2018"%(unctype, ch), "trg_%s_eff_weight"%ch, Weight("(1.0*(pt_1<={0})+0.98*(pt_1>{0}))".format(thresh_dict[ch]), "trg_%s_eff_weight"%ch), "Down"))
            lep_trigger_eff_variations[ch][unctype].append(AddWeight("CMS_eff_xtrigger%s_%s_Run2018"%(unctype, ch), "xtrg_%s_eff_weight"%ch, Weight("(1.054*(pt_1<={0})+1.0*(pt_1>{0}))".format(thresh_dict[ch]), "xtrg_%s_eff_weight"%ch), "Up"))
            lep_trigger_eff_variations[ch][unctype].append(AddWeight("CMS_eff_xtrigger%s_%s_Run2018"%(unctype, ch), "xtrg_%s_eff_weight"%ch, Weight("(0.946*(pt_1<={0})+1.0*(pt_1>{0}))".format(thresh_dict[ch]), "xtrg_%s_eff_weight"%ch), "Down"))

    # Fake factor uncertainties
    fake_factor_variations = {}
    for ch in ["mt", "et", "tt"]:
        fake_factor_variations[ch] = []
        if ch in ["mt", "et"]:
            for systematic_shift in [
                    "ff_qcd{ch}_syst_Run2018{shift}",
                    "ff_qcd_dm0_njet0{ch}_stat_Run2018{shift}",
                    "ff_qcd_dm0_njet1{ch}_stat_Run2018{shift}",
                    "ff_w_syst_Run2018{shift}",
                    "ff_w_dm0_njet0{ch}_stat_Run2018{shift}",
                    "ff_w_dm0_njet1{ch}_stat_Run2018{shift}",
                    "ff_tt_syst_Run2018{shift}",
                    "ff_tt_dm0_njet0_stat_Run2018{shift}",
                    "ff_tt_dm0_njet1_stat_Run2018{shift}",
            ]:
                for shift_direction in ["Up", "Down"]:
                    fake_factor_variations[ch].append(ReplaceWeight("CMS_%s"%(systematic_shift.format(ch="_"+ch, shift="").replace("_dm0", "")), "fake_factor", Weight("ff2_{syst}".format(syst=systematic_shift.format(ch="", shift="_%s" %shift_direction.lower()).replace("_Run2018", "")), "fake_factor"), shift_direction))
        elif ch == "tt":
            for systematic_shift in [
                    "ff_qcd{ch}_syst_Run2018{shift}",
                    "ff_qcd_dm0_njet0{ch}_stat_Run2018{shift}",
                    "ff_qcd_dm0_njet1{ch}_stat_Run2018{shift}",
                    "ff_w{ch}_syst_Run2018{shift}", "ff_tt{ch}_syst_Run2018{shift}",
                    "ff_w_frac{ch}_syst_Run2018{shift}",
                    "ff_tt_frac{ch}_syst_Run2018{shift}"
            ]:
                for shift_direction in ["Up", "Down"]:
                    fake_factor_variations[ch].append(ReplaceWeight("CMS_%s" % (systematic_shift.format(ch="_"+ch, shift="").replace("_dm0", "")), "fake_factor", Weight("(0.5*ff1_{syst}*(byTightDeepTau2017v2p1VSjet_1<0.5)+0.5*ff2_{syst}*(byTightDeepTau2017v2p1VSjet_2<0.5))".format(syst=systematic_shift.format(ch="", shift="_%s" % shift_direction.lower()).replace("_Run2018", "")), "fake_factor"), shift_direction))

    ## Group nicks
    mc_nicks = ["ZL", "TTL", "VVL"] + signal_nicks # to be extended with 'W' in em
    boson_mc_nicks = ["ZL"]         + signal_nicks # to be extended with 'W' in em

    ## Add variations to systematics
    for ch in args.channels:

        channel_mc_nicks = mc_nicks + ["W"] if ch == "em" else mc_nicks
        channel_boson_mc_nicks = boson_mc_nicks + ["W"] if ch == "em" else boson_mc_nicks
        if args.shape_group != "backgrounds":
            channel_mc_nicks = signal_nicks
            channel_boson_mc_nicks = signal_nicks

        channel_mc_common_variations = common_mc_variations
        if ch in ["et", "em"]:
            channel_mc_common_variations += ele_es_variations
        if ch in ["et", "mt", "tt"]:
            channel_mc_common_variations += tau_es_variations[""] + tau_es_variations["_mc"] + tau_id_variations[ch][""]
        if ch in ["et", "mt"]:
            channel_mc_common_variations += lep_trigger_eff_variations[ch][""]

        # variations common accross all shape groups
        for variation in channel_mc_common_variations:
            for process_nick in channel_mc_nicks:
                systematics.add_systematic_variation(variation=variation, process=processes[ch][process_nick], channel=channel_dict[ch], era=era)

        for variation in recoil_variations:
            for process_nick in channel_boson_mc_nicks:
                systematics.add_systematic_variation(variation=variation, process=processes[ch][process_nick], channel=channel_dict[ch], era=era)

        # variations relevant for ggH signals in 'sm_signals' shape group
        if args.shape_group == "sm_signals":
            for variation in ggh_variations:
                for process_nick in [nick for nick in signal_nicks if "ggH" in nick and "HWW" not in nick and "ggH_" not in nick]:
                    systematics.add_systematic_variation(variation=variation, process=processes[ch][process_nick], channel=channel_dict[ch], era=era)

        # variations only relevant for the 'background' shape group
        if args.shape_group == "backgrounds":
            for variation in top_pt_variations:
                # TODO: Needs to be adapted if one wants to use DY MC or QCD estimation(lt,tt: TTT, TTL, TTJ, em: TTT, TTL)
                systematics.add_systematic_variation(variation=variation, process=processes[ch]["TTL"], channel=channel_dict[ch], era=era)

            for variation in met_unclustered_variations:
                for process_nick in ["TTL", "VVL"]:
                    systematics.add_systematic_variation(variation=variation, process=processes[ch][process_nick], channel=channel_dict[ch], era=era)

            zl_variations = zpt_variations
            if ch in ["et", "mt"]:
                zl_variations += lep_fake_es_variations[ch]
            # TODO: maybe prepare variations for shape production with DY MC and QCD estimation, then applied to ZTT, ZL and ZJ for lt channels and ZTT and ZL for em channel
            for variation in zl_variations:
                systematics.add_systematic_variation(variation=variation, process=processes[ch]["ZL"], channel=channel_dict[ch], era=era)

            if ch == "em":
                for variation in qcd_variations:
                    systematics.add_systematic_variation(variation=variation ,process=processes[ch]["QCD"], channel=channel_dict[ch], era=era)

            if ch in ["mt","et", "tt"]:
                ff_variations = fake_factor_variations[ch] + tau_es_variations[""] + tau_es_variations["_mc"] + tau_es_variations["_emb"]
                for variation in ff_variations:
                    systematics.add_systematic_variation(variation=variation, process=processes[ch]["FAKES"], channel=channel_dict[ch], era=era)

            emb_variations = []
            if ch in ["mt","et", "tt"]:
                emb_variations += tau_es_variations[""] + tau_es_variations["_emb"] + tau_id_variations[ch]["_emb"] + decayMode_variations
            if ch in ["mt", "et"]:
                emb_variations += lep_trigger_eff_variations[ch]["_emb"]
            if ch in ["et", "em"]:
                emb_variations += ele_es_emb_variations
            for variation in emb_variations:
                systematics.add_systematic_variation(variation=variation, process=processes[ch]["EMB"], channel=channel_dict[ch], era=era)

    # Produce histograms
    logger.info("Start producing shapes.")
    systematics.produce()
    logger.info("Done producing shapes.")
コード例 #10
0
def main(args):
    # Write arparse arguments to YAML config
    logger.debug("Write argparse arguments to YAML config.")
    output_config = {}
    output_config["base_path"] = args.base_path
    output_config["friend_paths"] = args.friend_paths
    output_config["output_path"] = args.output_path
    output_config["output_filename"] = args.output_filename
    output_config["tree_path"] = args.tree_path
    output_config["event_branch"] = args.event_branch
    output_config["training_weight_branch"] = args.training_weight_branch

    # Define era
    if "2016" in args.era:
        from shape_producer.estimation_methods_2016 import DataEstimation, ggHEstimation, qqHEstimation, ZTTEstimation, ZLEstimation, ZJEstimation, WEstimation, TTTEstimation, TTJEstimation, ZTTEmbeddedEstimation, TTLEstimation, EWKZEstimation, VVLEstimation, VVJEstimation, VVEstimation, VVTEstimation
        #QCDEstimation_SStoOS_MTETEM, QCDEstimationTT, EWKWpEstimation, EWKWmEstimation, , VHEstimation, HTTEstimation,
        from shape_producer.era import Run2016
        era = Run2016(args.database)

    elif "2017" in args.era:
        from shape_producer.estimation_methods_2017 import DataEstimation, ZTTEstimation, ZJEstimation, ZLEstimation, TTLEstimation, TTJEstimation, TTTEstimation, VVTEstimation, VVJEstimation, VVLEstimation, WEstimation, ggHEstimation, qqHEstimation, EWKZEstimation, ZTTEmbeddedEstimation

        from shape_producer.era import Run2017
        era = Run2017(args.database)

    elif "2018" in args.era:
        from shape_producer.estimation_methods_2018 import DataEstimation, ZTTEstimation, ZJEstimation, ZLEstimation, TTLEstimation, TTJEstimation, TTTEstimation, VVTEstimation, VVJEstimation, VVLEstimation, WEstimation, ggHEstimation, qqHEstimation, EWKZEstimation, ZTTEmbeddedEstimation

        from shape_producer.era import Run2018
        era = Run2018(args.database)
    else:
        logger.fatal("Era {} is not implemented.".format(args.era))
        raise Exception

    def estimationMethodAndClassMapGenerator():
        ###### common processes
        classes_map = {"ggH": "ggh", "qqH": "qqh", "EWKZ": "misc"}
        estimationMethodList = [
            ggHEstimation("ggH", era, args.base_path, channel),
            qqHEstimation("qqH", era, args.base_path, channel),
            EWKZEstimation(era, args.base_path, channel),
            VVLEstimation(era, args.base_path, channel),
            WEstimation(era, args.base_path, channel)
        ]
        ######## Check for emb vs MC
        if args.training_z_estimation_method == "emb":
            classes_map["EMB"] = "ztt"
            estimationMethodList.extend(
                [ZTTEmbeddedEstimation(era, args.base_path, channel)])

        elif args.training_z_estimation_method == "mc":
            classes_map["ZTT"] = "ztt"
            estimationMethodList.extend([
                ZTTEstimation(era, args.base_path, channel),
                TTTEstimation(era, args.base_path, channel),
                VVTEstimation(era, args.base_path, channel)
            ])
        else:
            logger.fatal(
                "No valid training-z-estimation-method! Options are emb, mc. Argument was {}"
                .format(args.training_z_estimation_method))
            raise Exception

        ##### TT* zl,zj processes
        estimationMethodList.extend([
            TTLEstimation(era, args.base_path, channel),
            ZLEstimation(era, args.base_path, channel)
        ])
        # less data-> less categories for tt
        if args.channel == "tt":
            classes_map.update({
                "TTT": "misc",
                "TTL": "misc",
                "TTJ": "misc",
                "ZL": "misc",
                "ZJ": "misc"
            })
            estimationMethodList.extend([
                ZJEstimation(era, args.base_path, channel),
                TTJEstimation(era, args.base_path, channel)
            ])
        ## not TTJ,ZJ for em
        elif args.channel == "em":
            classes_map.update({"TTT": "tt", "TTL": "tt", "ZL": "misc"})
        else:
            classes_map.update({
                "TTT": "tt",
                "TTL": "tt",
                "TTJ": "tt",
                "ZL": "zll",
                "ZJ": "zll"
            })
            estimationMethodList.extend([
                ZJEstimation(era, args.base_path, channel),
                TTJEstimation(era, args.base_path, channel)
            ])
        ###w:
        # estimation metho already included, just different mapping fror et and mt
        if args.channel in ["et", "mt"]:
            classes_map["W"] = "w"
        else:
            classes_map["W"] = "misc"

        #####  VV/[VVT,VVL,VVJ] split
        # VVL in common, VVT in "EMBvsMC"
        if args.channel == "em":
            classes_map.update({"VVT": "db", "VVL": "db"})
        else:
            classes_map.update({"VVT": "misc", "VVL": "misc", "VVJ": "misc"})
            estimationMethodList.extend([
                VVJEstimation(era, args.base_path, channel),
            ])
        ### QCD class

        if args.channel == "tt":
            classes_map["QCD"] = "noniso"
        else:
            classes_map["QCD"] = "ss"
        return ([classes_map, estimationMethodList])

    channelDict = {}
    channelDict["2016"] = {
        "mt": MTSM2016(),
        "et": ETSM2016(),
        "tt": TTSM2016(),
        "em": EMSM2016()
    }
    channelDict["2017"] = {
        "mt": MTSM2017(),
        "et": ETSM2017(),
        "tt": TTSM2017(),
        "em": EMSM2017()
    }
    channelDict["2018"] = {
        "mt": MTSM2018(),
        "et": ETSM2018(),
        "tt": TTSM2018(),
        "em": EMSM2018()
    }

    channel = channelDict[args.era][args.channel]

    # Set up `processes` part of config
    output_config["processes"] = {}

    # Additional cuts
    additional_cuts = Cuts()
    logger.warning("Use additional cuts for mt: %s", additional_cuts.expand())

    classes_map, estimationMethodList = estimationMethodAndClassMapGenerator()

    ##MC+/Embedding Processes
    for estimation in estimationMethodList:
        output_config["processes"][estimation.name] = {
            "files": [
                str(f).replace(args.base_path.rstrip("/") + "/", "")
                for f in estimation.get_files()
            ],
            "cut_string":
            (estimation.get_cuts() + channel.cuts + additional_cuts).expand(),
            "weight_string":
            estimation.get_weights().extract(),
            "class":
            classes_map[estimation.name]
        }
    ###
    # Same sign selection for data-driven QCD
    estimation = DataEstimation(era, args.base_path, channel)
    estimation.name = "QCD"
    channel_qcd = copy.deepcopy(channel)

    if args.channel != "tt":
        ## os= opposite sign
        channel_qcd.cuts.get("os").invert()
    # Same sign selection for data-driven QCD
    else:
        channel_qcd.cuts.remove("tau_2_iso")
        channel_qcd.cuts.add(
            Cut("byTightIsolationMVArun2017v2DBoldDMwLT2017_2<0.5",
                "tau_2_iso"))
        channel_qcd.cuts.add(
            Cut("byLooseIsolationMVArun2017v2DBoldDMwLT2017_2>0.5",
                "tau_2_iso_loose"))

    output_config["processes"][estimation.name] = {
        "files": [
            str(f).replace(args.base_path.rstrip("/") + "/", "")
            for f in estimation.get_files()
        ],
        "cut_string":
        (estimation.get_cuts() + channel_qcd.cuts + additional_cuts).expand(),
        "weight_string":
        estimation.get_weights().extract(),
        "class":
        classes_map[estimation.name]
    }

    #####################################
    # Write output config
    logger.info("Write config to file: {}".format(args.output_config))
    yaml.dump(output_config,
              open(args.output_config, 'w'),
              default_flow_style=False)
コード例 #11
0
def main(args):
    # Container for all distributions to be drawn
    logger.info("Set up shape variations.")
    systematics = Systematics(
        "{}_shapes.root".format(args.tag),
        num_threads=args.num_threads,
        skip_systematic_variations=args.skip_systematic_variations)

    # Era selection
    if "2018" in args.era:
        from shape_producer.estimation_methods_2018 import DataEstimation, ZTTEstimation, ZTTEmbeddedEstimation, ZLEstimation, ZJEstimation, TTLEstimation, TTJEstimation, TTTEstimation, VVLEstimation, VVTEstimation, VVJEstimation, WEstimation, ggHEstimation, ggHEstimation_0J, ggHEstimation_1J_PTH_0_60, ggHEstimation_1J_PTH_60_120, ggHEstimation_1J_PTH_120_200, ggHEstimation_1J_PTH_GT200, ggHEstimation_GE2J_PTH_0_60, ggHEstimation_GE2J_PTH_60_120, ggHEstimation_GE2J_PTH_120_200, ggHEstimation_GE2J_PTH_GT200, ggHEstimation_VBFTOPO_JET3, ggHEstimation_VBFTOPO_JET3VETO, qqHEstimation, qqHEstimation_VBFTOPO_JET3VETO, qqHEstimation_VBFTOPO_JET3, qqHEstimation_REST, qqHEstimation_VH2JET, qqHEstimation_PTJET1_GT200, VHEstimation, WHEstimation, ZHEstimation, ttHEstimation, QCDEstimation_ABCD_TT_ISO2, QCDEstimation_SStoOS_MTETEM, FakeEstimationLT, NewFakeEstimationLT, FakeEstimationTT, NewFakeEstimationTT

        from shape_producer.era import Run2018
        era = Run2018(args.datasets)

    else:
        logger.critical("Era {} is not implemented.".format(args.era))
        raise Exception

    # Channels and processes
    # yapf: disable
    directory = args.directory
    et_friend_directory = []#args.et_friend_directory
    em_friend_directory = []#args.em_friend_directory
    mt_friend_directory = []#args.mt_friend_directory
    tt_friend_directory = []#args.tt_friend_directory
    ff_friend_directory = []#args.fake_factor_friend_directory
    mt = MTSM2018()
    mt_processes = {
        "data"  : Process("data_obs", DataEstimation      (era, directory, mt, friend_directory=mt_friend_directory)),
        "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "EMB"   : Process("EMB",      ZTTEmbeddedEstimation  (era, directory, mt, friend_directory=mt_friend_directory)),
        "ZJ"    : Process("ZJ",       ZJEstimation        (era, directory, mt, friend_directory=mt_friend_directory)),
        "ZL"    : Process("ZL",       ZLEstimation        (era, directory, mt, friend_directory=mt_friend_directory)),
        "TTT"   : Process("TTT",      TTTEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "TTJ"   : Process("TTJ",      TTJEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "TTL"   : Process("TTL",      TTLEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "VVT"   : Process("VVT",      VVTEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "VVJ"   : Process("VVJ",      VVJEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "VVL"   : Process("VVL",      VVLEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "W"     : Process("W",        WEstimation         (era, directory, mt, friend_directory=mt_friend_directory)),
        "ggH"   : Process("ggH125",   ggHEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "qqH"   : Process("qqH125",   qqHEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        # "ggH_0J"               : Process("ggH_0J125",               ggHEstimation_0J              (era, directory, mt, friend_directory=mt_friend_directory)),
        # "ggH_1J_PTH_0_60"      : Process("ggH_1J_PTH_0_60125",      ggHEstimation_1J_PTH_0_60     (era, directory, mt, friend_directory=mt_friend_directory)),
        # "ggH_1J_PTH_60_120"    : Process("ggH_1J_PTH_60_120125",    ggHEstimation_1J_PTH_60_120   (era, directory, mt, friend_directory=mt_friend_directory)),
        # "ggH_1J_PTH_120_200"   : Process("ggH_1J_PTH_120_200125",   ggHEstimation_1J_PTH_120_200  (era, directory, mt, friend_directory=mt_friend_directory)),
        # "ggH_1J_PTH_GT200"     : Process("ggH_1J_PTH_GT200125",     ggHEstimation_1J_PTH_GT200    (era, directory, mt, friend_directory=mt_friend_directory)),
        # "ggH_GE2J_PTH_0_60"    : Process("ggH_GE2J_PTH_0_60125",    ggHEstimation_GE2J_PTH_0_60   (era, directory, mt, friend_directory=mt_friend_directory)),
        # "ggH_GE2J_PTH_60_120"  : Process("ggH_GE2J_PTH_60_120125",  ggHEstimation_GE2J_PTH_60_120 (era, directory, mt, friend_directory=mt_friend_directory)),
        # "ggH_GE2J_PTH_120_200" : Process("ggH_GE2J_PTH_120_200125", ggHEstimation_GE2J_PTH_120_200(era, directory, mt, friend_directory=mt_friend_directory)),
        # "ggH_GE2J_PTH_GT200"   : Process("ggH_GE2J_PTH_GT200125",   ggHEstimation_GE2J_PTH_GT200  (era, directory, mt, friend_directory=mt_friend_directory)),
        # "ggH_VBFTOPO_JET3VETO" : Process("ggH_VBFTOPO_JET3VETO125", ggHEstimation_VBFTOPO_JET3VETO(era, directory, mt, friend_directory=mt_friend_directory)),
        # "ggH_VBFTOPO_JET3"     : Process("ggH_VBFTOPO_JET3125",     ggHEstimation_VBFTOPO_JET3    (era, directory, mt, friend_directory=mt_friend_directory)),
        # "qqH_VBFTOPO_JET3VETO" : Process("qqH_VBFTOPO_JET3VETO125", qqHEstimation_VBFTOPO_JET3VETO(era, directory, mt, friend_directory=mt_friend_directory)),
        # "qqH_VBFTOPO_JET3"     : Process("qqH_VBFTOPO_JET3125",     qqHEstimation_VBFTOPO_JET3    (era, directory, mt, friend_directory=mt_friend_directory)),
        # "qqH_REST"             : Process("qqH_REST125",             qqHEstimation_REST            (era, directory, mt, friend_directory=mt_friend_directory)),
        # "qqH_VH2JET"           : Process("qqH_VH2JET125",           qqHEstimation_VH2JET          (era, directory, mt, friend_directory=mt_friend_directory)),
        # "qqH_PTJET1_GT200"     : Process("qqH_PTJET1_GT200125",     qqHEstimation_PTJET1_GT200    (era, directory, mt, friend_directory=mt_friend_directory)),
        # "VH"                   : Process("VH125",                   VHEstimation                  (era, directory, mt, friend_directory=mt_friend_directory)),
        # "WH"                   : Process("WH125",                   WHEstimation                  (era, directory, mt, friend_directory=mt_friend_directory)),
        # "ZH"                   : Process("ZH125",                   ZHEstimation                  (era, directory, mt, friend_directory=mt_friend_directory)),
        # "ttH"                  : Process("ttH125",                  ttHEstimation                 (era, directory, mt, friend_directory=mt_friend_directory)),
        }
    # mt_processes["FAKES"] = Process("jetFakes", NewFakeEstimationLT(era, directory, mt, [mt_processes[process] for process in ["EMB", "ZL", "TTL", "VVL"]], mt_processes["data"], friend_directory=[mt_friend_directory, ff_friend_directory]))
    #mt_fakes_for_uncs=Process("jetFakes", FakeEstimationLT(era, directory, mt, friend_directory=[mt_friend_directory, ff_friend_directory]))

    mt_processes["QCD"] = Process("QCD", QCDEstimation_SStoOS_MTETEM(era, directory, mt,
            [mt_processes[process] for process in ["ZTT", "ZL", "ZJ", "TTL","TTT","TTJ", "VVT", "VVJ", "VVL","W"]],
            mt_processes["data"], friend_directory=mt_friend_directory, extrapolation_factor=1.1))
    mt_processes["QCDEMB"] = Process("QCDEMB", QCDEstimation_SStoOS_MTETEM(era, directory, mt,
            [mt_processes[process] for process in ["EMB", "ZL", "ZJ", "TTL", "TTJ", "VVJ", "VVL","W"]],
            mt_processes["data"], friend_directory=mt_friend_directory, extrapolation_factor=1.1))



    et = ETSM2018()
    et_processes = {
        "data"  : Process("data_obs", DataEstimation      (era, directory, et, friend_directory=et_friend_directory)),
        "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "EMB"   : Process("EMB",      ZTTEmbeddedEstimation  (era, directory, et, friend_directory=et_friend_directory)),
        "ZJ"    : Process("ZJ",       ZJEstimation        (era, directory, et, friend_directory=et_friend_directory)),
        "ZL"    : Process("ZL",       ZLEstimation        (era, directory, et, friend_directory=et_friend_directory)),
        "TTT"   : Process("TTT",      TTTEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "TTJ"   : Process("TTJ",      TTJEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "TTL"   : Process("TTL",      TTLEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "VVT"   : Process("VVT",      VVTEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "VVJ"   : Process("VVJ",      VVJEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "VVL"   : Process("VVL",      VVLEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "W"     : Process("W",        WEstimation         (era, directory, et, friend_directory=et_friend_directory)),
        "ggH"   : Process("ggH125",   ggHEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        "qqH"   : Process("qqH125",   qqHEstimation       (era, directory, et, friend_directory=et_friend_directory)),
        # "ggH_0J"               : Process("ggH_0J125",               ggHEstimation_0J              (era, directory, et, friend_directory=et_friend_directory)),
        # "ggH_1J_PTH_0_60"      : Process("ggH_1J_PTH_0_60125",      ggHEstimation_1J_PTH_0_60     (era, directory, et, friend_directory=et_friend_directory)),
        # "ggH_1J_PTH_60_120"    : Process("ggH_1J_PTH_60_120125",    ggHEstimation_1J_PTH_60_120   (era, directory, et, friend_directory=et_friend_directory)),
        # "ggH_1J_PTH_120_200"   : Process("ggH_1J_PTH_120_200125",   ggHEstimation_1J_PTH_120_200  (era, directory, et, friend_directory=et_friend_directory)),
        # "ggH_1J_PTH_GT200"     : Process("ggH_1J_PTH_GT200125",     ggHEstimation_1J_PTH_GT200    (era, directory, et, friend_directory=et_friend_directory)),
        # "ggH_GE2J_PTH_0_60"    : Process("ggH_GE2J_PTH_0_60125",    ggHEstimation_GE2J_PTH_0_60   (era, directory, et, friend_directory=et_friend_directory)),
        # "ggH_GE2J_PTH_60_120"  : Process("ggH_GE2J_PTH_60_120125",  ggHEstimation_GE2J_PTH_60_120 (era, directory, et, friend_directory=et_friend_directory)),
        # "ggH_GE2J_PTH_120_200" : Process("ggH_GE2J_PTH_120_200125", ggHEstimation_GE2J_PTH_120_200(era, directory, et, friend_directory=et_friend_directory)),
        # "ggH_GE2J_PTH_GT200"   : Process("ggH_GE2J_PTH_GT200125",   ggHEstimation_GE2J_PTH_GT200  (era, directory, et, friend_directory=et_friend_directory)),
        # "ggH_VBFTOPO_JET3VETO" : Process("ggH_VBFTOPO_JET3VETO125", ggHEstimation_VBFTOPO_JET3VETO(era, directory, et, friend_directory=et_friend_directory)),
        # "ggH_VBFTOPO_JET3"     : Process("ggH_VBFTOPO_JET3125",     ggHEstimation_VBFTOPO_JET3    (era, directory, et, friend_directory=et_friend_directory)),
        # "qqH_VBFTOPO_JET3VETO" : Process("qqH_VBFTOPO_JET3VETO125", qqHEstimation_VBFTOPO_JET3VETO(era, directory, et, friend_directory=et_friend_directory)),
        # "qqH_VBFTOPO_JET3"     : Process("qqH_VBFTOPO_JET3125",     qqHEstimation_VBFTOPO_JET3    (era, directory, et, friend_directory=et_friend_directory)),
        # "qqH_REST"             : Process("qqH_REST125",             qqHEstimation_REST            (era, directory, et, friend_directory=et_friend_directory)),
        # "qqH_VH2JET"           : Process("qqH_VH2JET125",           qqHEstimation_VH2JET          (era, directory, et, friend_directory=et_friend_directory)),
        # "qqH_PTJET1_GT200"     : Process("qqH_PTJET1_GT200125",     qqHEstimation_PTJET1_GT200    (era, directory, et, friend_directory=et_friend_directory)),
        # "VH"                   : Process("VH125",                   VHEstimation                  (era, directory, et, friend_directory=et_friend_directory)),
        # "WH"                   : Process("WH125",                   WHEstimation                  (era, directory, et, friend_directory=et_friend_directory)),
        # "ZH"                   : Process("ZH125",                   ZHEstimation                  (era, directory, et, friend_directory=et_friend_directory)),
        # "ttH"                  : Process("ttH125",                  ttHEstimation                 (era, directory, et, friend_directory=et_friend_directory)),
        }
    # et_processes["FAKES"] = Process("jetFakes", NewFakeEstimationLT(era, directory, et, [et_processes[process] for process in ["EMB", "ZL", "TTL", "VVL"]], et_processes["data"], friend_directory=[et_friend_directory, ff_friend_directory]))

    et_processes["QCD"] = Process("QCD", QCDEstimation_SStoOS_MTETEM(era, directory, et,
            [et_processes[process] for process in ["ZTT", "ZL", "ZJ", "W", "TTT", "TTJ", "TTL", "VVT", "VVJ", "VVL"]],
            et_processes["data"], friend_directory=et_friend_directory, extrapolation_factor=1.1))
    et_processes["QCDEMB"] = Process("QCDEMB", QCDEstimation_SStoOS_MTETEM(era, directory, et,
            [et_processes[process] for process in ["EMB", "ZL", "ZJ", "W", "TTJ", "TTL", "VVJ", "VVL"]],
            et_processes["data"], friend_directory=et_friend_directory, extrapolation_factor=1.1))


    tt = TTSM2018()
    tt_processes = {
        "data"  : Process("data_obs", DataEstimation      (era, directory, tt, friend_directory=tt_friend_directory)),
        "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
        "EMB"   : Process("EMB",      ZTTEmbeddedEstimation  (era, directory, tt, friend_directory=tt_friend_directory)),
        "ZJ"    : Process("ZJ",       ZJEstimation        (era, directory, tt, friend_directory=tt_friend_directory)),
        "ZL"    : Process("ZL",       ZLEstimation        (era, directory, tt, friend_directory=tt_friend_directory)),
        "TTT"   : Process("TTT",      TTTEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
        "TTJ"   : Process("TTJ",      TTJEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
        "TTL"   : Process("TTL",      TTLEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
        "VVT"   : Process("VVT",      VVTEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
        "VVJ"   : Process("VVJ",      VVJEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
        "VVL"   : Process("VVL",      VVLEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
        "W"     : Process("W",        WEstimation         (era, directory, tt, friend_directory=tt_friend_directory)),
        "ggH"   : Process("ggH125",   ggHEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
        "qqH"   : Process("qqH125",   qqHEstimation       (era, directory, tt, friend_directory=tt_friend_directory)),
        # "ggH_0J"               : Process("ggH_0J125",               ggHEstimation_0J              (era, directory, tt, friend_directory=tt_friend_directory)),
        # "ggH_1J_PTH_0_60"      : Process("ggH_1J_PTH_0_60125",      ggHEstimation_1J_PTH_0_60     (era, directory, tt, friend_directory=tt_friend_directory)),
        # "ggH_1J_PTH_60_120"    : Process("ggH_1J_PTH_60_120125",    ggHEstimation_1J_PTH_60_120   (era, directory, tt, friend_directory=tt_friend_directory)),
        # "ggH_1J_PTH_120_200"   : Process("ggH_1J_PTH_120_200125",   ggHEstimation_1J_PTH_120_200  (era, directory, tt, friend_directory=tt_friend_directory)),
        # "ggH_1J_PTH_GT200"     : Process("ggH_1J_PTH_GT200125",     ggHEstimation_1J_PTH_GT200    (era, directory, tt, friend_directory=tt_friend_directory)),
        # "ggH_GE2J_PTH_0_60"    : Process("ggH_GE2J_PTH_0_60125",    ggHEstimation_GE2J_PTH_0_60   (era, directory, tt, friend_directory=tt_friend_directory)),
        # "ggH_GE2J_PTH_60_120"  : Process("ggH_GE2J_PTH_60_120125",  ggHEstimation_GE2J_PTH_60_120 (era, directory, tt, friend_directory=tt_friend_directory)),
        # "ggH_GE2J_PTH_120_200" : Process("ggH_GE2J_PTH_120_200125", ggHEstimation_GE2J_PTH_120_200(era, directory, tt, friend_directory=tt_friend_directory)),
        # "ggH_GE2J_PTH_GT200"   : Process("ggH_GE2J_PTH_GT200125",   ggHEstimation_GE2J_PTH_GT200  (era, directory, tt, friend_directory=tt_friend_directory)),
        # "ggH_VBFTOPO_JET3VETO" : Process("ggH_VBFTOPO_JET3VETO125", ggHEstimation_VBFTOPO_JET3VETO(era, directory, tt, friend_directory=tt_friend_directory)),
        # "ggH_VBFTOPO_JET3"     : Process("ggH_VBFTOPO_JET3125",     ggHEstimation_VBFTOPO_JET3    (era, directory, tt, friend_directory=tt_friend_directory)),
        # "qqH_VBFTOPO_JET3VETO" : Process("qqH_VBFTOPO_JET3VETO125", qqHEstimation_VBFTOPO_JET3VETO(era, directory, tt, friend_directory=tt_friend_directory)),
        # "qqH_VBFTOPO_JET3"     : Process("qqH_VBFTOPO_JET3125",     qqHEstimation_VBFTOPO_JET3    (era, directory, tt, friend_directory=tt_friend_directory)),
        # "qqH_REST"             : Process("qqH_REST125",             qqHEstimation_REST            (era, directory, tt, friend_directory=tt_friend_directory)),
        # "qqH_VH2JET"           : Process("qqH_VH2JET125",           qqHEstimation_VH2JET          (era, directory, tt, friend_directory=tt_friend_directory)),
        # "qqH_PTJET1_GT200"     : Process("qqH_PTJET1_GT200125",     qqHEstimation_PTJET1_GT200    (era, directory, tt, friend_directory=tt_friend_directory)),
        # "VH"                   : Process("VH125",                   VHEstimation                  (era, directory, tt, friend_directory=tt_friend_directory)),
        # "WH"                   : Process("WH125",                   WHEstimation                  (era, directory, tt, friend_directory=tt_friend_directory)),
        # "ZH"                   : Process("ZH125",                   ZHEstimation                  (era, directory, tt, friend_directory=tt_friend_directory)),
        # "ttH"                  : Process("ttH125",                  ttHEstimation                 (era, directory, tt, friend_directory=tt_friend_directory)),
        }
    # tt_processes["FAKES"] = Process("jetFakes", NewFakeEstimationTT(era, directory, tt, [tt_processes[process] for process in ["EMB", "ZL", "TTL", "VVL"]], tt_processes["data"], friend_directory=[tt_friend_directory, ff_friend_directory]))

    tt_processes["QCD"] = Process("QCD", QCDEstimation_ABCD_TT_ISO2(era, directory, tt,
            [tt_processes[process] for process in ["ZTT", "ZL", "ZJ", "W", "TTT", "TTJ", "TTL", "VVT", "VVJ", "VVL"]],
            tt_processes["data"], friend_directory=tt_friend_directory))
    tt_processes["QCDEMB"] = Process("QCDEMB", QCDEstimation_ABCD_TT_ISO2(era, directory, tt,
            [tt_processes[process] for process in ["EMB", "ZL", "ZJ", "W", "TTJ", "TTL", "VVJ", "VVL"]],
            tt_processes["data"], friend_directory=tt_friend_directory))

    em = EMSM2018()
    em_processes = {
        "data"  : Process("data_obs", DataEstimation      (era, directory, em, friend_directory=em_friend_directory)),
        "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, em, friend_directory=em_friend_directory)),
        "EMB"   : Process("EMB",      ZTTEmbeddedEstimation  (era, directory, em, friend_directory=em_friend_directory)),
        "ZJ"    : Process("ZJ",       ZJEstimation        (era, directory, em, friend_directory=em_friend_directory)),
        "ZL"    : Process("ZL",       ZLEstimation        (era, directory, em, friend_directory=em_friend_directory)),
        "TTT"   : Process("TTT",      TTTEstimation       (era, directory, em, friend_directory=em_friend_directory)),
        "TTJ"   : Process("TTJ",      TTJEstimation       (era, directory, em, friend_directory=em_friend_directory)),
        "TTL"   : Process("TTL",      TTLEstimation       (era, directory, em, friend_directory=em_friend_directory)),
        "VVT"   : Process("VVT",      VVTEstimation       (era, directory, em, friend_directory=em_friend_directory)),
        "VVJ"   : Process("VVJ",      VVJEstimation       (era, directory, em, friend_directory=em_friend_directory)),
        "VVL"   : Process("VVL",      VVLEstimation       (era, directory, em, friend_directory=em_friend_directory)),
        "W"     : Process("W",        WEstimation         (era, directory, em, friend_directory=em_friend_directory)),
        "ggH"   : Process("ggH125",   ggHEstimation       (era, directory, em, friend_directory=em_friend_directory)),
        "qqH"   : Process("qqH125",   qqHEstimation       (era, directory, em, friend_directory=em_friend_directory))
        }

    em_processes["QCD"] = Process("QCD", QCDEstimation_SStoOS_MTETEM(era, directory, em,
            [em_processes[process] for process in ["ZTT", "ZL", "ZJ", "W", "TTT", "TTJ", "TTL", "VVT", "VVJ", "VVL"]],
            em_processes["data"], friend_directory=em_friend_directory, extrapolation_factor=1.0, qcd_weight = Weight("em_qcd_extrap_up_Weight","qcd_weight")))
    em_processes["QCDEMB"] = Process("QCDEMB", QCDEstimation_SStoOS_MTETEM(era, directory, em,
            [em_processes[process] for process in ["EMB", "ZL", "ZJ", "W", "TTJ", "TTL", "VVJ", "VVL"]],
            em_processes["data"], friend_directory=em_friend_directory, extrapolation_factor=1.0, qcd_weight = Weight("em_qcd_extrap_up_Weight","qcd_weight")))



    # Variables and categories
    binning = yaml.load(open(args.binning))

    et_categories = []
    # Analysis shapes
    if "et" in args.channels:
        classes_et = ["ggh", "qqh", "ztt", "zll", "w", "tt", "ss", "misc"]
        for i, label in enumerate(classes_et):
            score = Variable(
                "et_max_score",
                 VariableBinning(binning["analysis"]["et"][label]))
            et_categories.append(
                Category(
                    label,
                    et,
                    Cuts(
                        Cut("et_max_index=={index}".format(index=i), "exclusive_score")),
                    variable=score))
            if label in ["ggh", "qqh"]:
                expression = ""
                for i_e, e in enumerate(binning["stxs_stage1"]["lt"][label]):
                    offset = (binning["analysis"]["et"][label][-1]-binning["analysis"]["et"][label][0])*i_e
                    expression += "{STXSBIN}*(et_max_score+{OFFSET})".format(STXSBIN=e, OFFSET=offset)
                    if not e is binning["stxs_stage1"]["lt"][label][-1]:
                        expression += " + "
                score_unrolled = Variable(
                    "et_max_score_unrolled",
                     VariableBinning(binning["analysis"]["et"][label+"_unrolled"]),
                     expression=expression)
                et_categories.append(
                    Category(
                        "{}_unrolled".format(label),
                        et,
                        Cuts(Cut("et_max_index=={index}".format(index=i), "exclusive_score"),
                             Cut("et_max_score>{}".format(1.0/len(classes_et)), "protect_unrolling")),
                        variable=score_unrolled))
    # Goodness of fit shapes
    elif args.gof_channel == "et":
        score = Variable(
                args.gof_variable,
                VariableBinning(binning["gof"]["et"][args.gof_variable]["bins"]),
                expression=binning["gof"]["et"][args.gof_variable]["expression"])
        if "cut" in binning["gof"]["et"][args.gof_variable].keys():
            cuts=Cuts(Cut(binning["gof"]["et"][args.gof_variable]["cut"], "binning"))
        else:
            cuts=Cuts()
        et_categories.append(
            Category(
                args.gof_variable,
                et,
                cuts,
                variable=score))

    mt_categories = []
    # Analysis shapes
    if "mt" in args.channels:
        classes_mt = ["ggh", "qqh", "ztt", "zll", "w", "tt", "ss", "misc"]
        for i, label in enumerate(classes_mt):
            score = Variable(
                "mt_max_score",
                 VariableBinning(binning["analysis"]["mt"][label]))
            mt_categories.append(
                Category(
                    label,
                    mt,
                    Cuts(
                        Cut("mt_max_index=={index}".format(index=i), "exclusive_score")),
                    variable=score))
            if label in ["ggh", "qqh"]:
                expression = ""
                for i_e, e in enumerate(binning["stxs_stage1"]["lt"][label]):
                    offset = (binning["analysis"]["mt"][label][-1]-binning["analysis"]["mt"][label][0])*i_e
                    expression += "{STXSBIN}*(mt_max_score+{OFFSET})".format(STXSBIN=e, OFFSET=offset)
                    if not e is binning["stxs_stage1"]["lt"][label][-1]:
                        expression += " + "
                score_unrolled = Variable(
                    "mt_max_score_unrolled",
                     VariableBinning(binning["analysis"]["mt"][label+"_unrolled"]),
                     expression=expression)
                mt_categories.append(
                    Category(
                        "{}_unrolled".format(label),
                        mt,
                        Cuts(Cut("mt_max_index=={index}".format(index=i), "exclusive_score"),
                             Cut("mt_max_score>{}".format(1.0/len(classes_mt)), "protect_unrolling")),
                        variable=score_unrolled))
    # Goodness of fit shapes
    elif args.gof_channel == "mt":
        score = Variable(
                args.gof_variable,
                VariableBinning(binning["gof"]["mt"][args.gof_variable]["bins"]),
                expression=binning["gof"]["mt"][args.gof_variable]["expression"])
        if "cut" in binning["gof"]["mt"][args.gof_variable].keys():
            cuts=Cuts(Cut(binning["gof"]["mt"][args.gof_variable]["cut"], "binning"))
        else:
            cuts=Cuts()
        mt_categories.append(
            Category(
                args.gof_variable,
                mt,
                cuts,
                variable=score))

    tt_categories = []
    # Analysis shapes
    if "tt" in args.channels:
        classes_tt = ["ggh", "qqh", "ztt", "noniso", "misc"]
        for i, label in enumerate(classes_tt):
            score = Variable(
                "tt_max_score",
                 VariableBinning(binning["analysis"]["tt"][label]))
            tt_categories.append(
                Category(
                    label,
                    tt,
                    Cuts(
                        Cut("tt_max_index=={index}".format(index=i), "exclusive_score")),
                    variable=score))
            if label in ["ggh", "qqh"]:
                expression = ""
                for i_e, e in enumerate(binning["stxs_stage1"]["tt"][label]):
                    offset = (binning["analysis"]["tt"][label][-1]-binning["analysis"]["tt"][label][0])*i_e
                    expression += "{STXSBIN}*(tt_max_score+{OFFSET})".format(STXSBIN=e, OFFSET=offset)
                    if not e is binning["stxs_stage1"]["tt"][label][-1]:
                        expression += " + "
                score_unrolled = Variable(
                    "tt_max_score_unrolled",
                     VariableBinning(binning["analysis"]["tt"][label+"_unrolled"]),
                     expression=expression)
                tt_categories.append(
                    Category(
                        "{}_unrolled".format(label),
                        tt,
                        Cuts(Cut("tt_max_index=={index}".format(index=i), "exclusive_score"),
                             Cut("tt_max_score>{}".format(1.0/len(classes_tt)), "protect_unrolling")),
                        variable=score_unrolled))
    # Goodness of fit shapes
    elif args.gof_channel == "tt":
        score = Variable(
                args.gof_variable,
                VariableBinning(binning["gof"]["tt"][args.gof_variable]["bins"]),
                expression=binning["gof"]["tt"][args.gof_variable]["expression"])
        if "cut" in binning["gof"]["tt"][args.gof_variable].keys():
            cuts=Cuts(Cut(binning["gof"]["tt"][args.gof_variable]["cut"], "binning"))
        else:
            cuts=Cuts()
        tt_categories.append(
            Category(
                args.gof_variable,
                tt,
                cuts,
                variable=score))

    em_categories = []
    # Analysis shapes
    if "em" in args.channels:
        classes_em = ["ggh", "qqh", "ztt", "zll", "w", "tt", "ss", "misc"]
        for i, label in enumerate(classes_em):
            score = Variable(
                "em_max_score",
                 VariableBinning(binning["analysis"]["em"][label]))
            em_categories.append(
                Category(
                    label,
                    em,
                    Cuts(
                        Cut("em_max_index=={index}".format(index=i), "exclusive_score")),
                    variable=score))
            if label in ["ggh", "qqh"]:
                expression = ""
                for i_e, e in enumerate(binning["stxs_stage1"]["lt"][label]):
                    offsem = (binning["analysis"]["em"][label][-1]-binning["analysis"]["em"][label][0])*i_e
                    expression += "{STXSBIN}*(em_max_score+{OFFSem})".format(STXSBIN=e, OFFSem=offsem)
                    if not e is binning["stxs_stage1"]["lt"][label][-1]:
                        expression += " + "
                score_unrolled = Variable(
                    "em_max_score_unrolled",
                     VariableBinning(binning["analysis"]["em"][label+"_unrolled"]),
                     expression=expression)
                em_categories.append(
                    Category(
                        "{}_unrolled".format(label),
                        em,
                        Cuts(Cut("em_max_index=={index}".format(index=i), "exclusive_score"),
                             Cut("em_max_score>{}".format(1.0/len(classes_em)), "protect_unrolling")),
                        variable=score_unrolled))
    # Goodness of fit shapes
    elif args.gof_channel == "em":
        score = Variable(
                args.gof_variable,
                VariableBinning(binning["gof"]["em"][args.gof_variable]["bins"]),
                expression=binning["gof"]["em"][args.gof_variable]["expression"])
        if "cut" in binning["gof"]["em"][args.gof_variable].keys():
            cuts=Cuts(Cut(binning["gof"]["em"][args.gof_variable]["cut"], "binning"))
        else:
            cuts=Cuts()
        em_categories.append(
            Category(
                args.gof_variable,
                em,
                cuts,
                variable=score))

    # Nominal histograms
    if args.gof_channel == None:
        signal_nicks = [
            "ggH", "qqH", "qqH_VBFTOPO_JET3VETO", "qqH_VBFTOPO_JET3",
            "qqH_REST", "qqH_PTJET1_GT200", "qqH_VH2JET", "ggH_0J",
            "ggH_1J_PTH_0_60", "ggH_1J_PTH_60_120", "ggH_1J_PTH_120_200",
            "ggH_1J_PTH_GT200", "ggH_GE2J_PTH_0_60", "ggH_GE2J_PTH_60_120",
            "ggH_GE2J_PTH_120_200", "ggH_GE2J_PTH_GT200", "ggH_VBFTOPO_JET3VETO",
            "ggH_VBFTOPO_JET3", "VH", "WH", "ZH", "ttH"
        ]
    else:
        signal_nicks = ["ggH", "qqH", "WH", "ZH", "ttH"]

    # yapf: enable
    if "et" in [args.gof_channel] + args.channels:
        for process, category in product(et_processes.values(), et_categories):
            systematics.add(
                Systematic(category=category,
                           process=process,
                           analysis="smhtt",
                           era=era,
                           variation=Nominal(),
                           mass="125"))
    if "mt" in [args.gof_channel] + args.channels:
        for process, category in product(mt_processes.values(), mt_categories):
            systematics.add(
                Systematic(category=category,
                           process=process,
                           analysis="smhtt",
                           era=era,
                           variation=Nominal(),
                           mass="125"))
    if "tt" in [args.gof_channel] + args.channels:
        for process, category in product(tt_processes.values(), tt_categories):
            systematics.add(
                Systematic(category=category,
                           process=process,
                           analysis="smhtt",
                           era=era,
                           variation=Nominal(),
                           mass="125"))
    if "em" in [args.gof_channel] + args.channels:
        for process, category in product(em_processes.values(), em_categories):
            systematics.add(
                Systematic(category=category,
                           process=process,
                           analysis="smhtt",
                           era=era,
                           variation=Nominal(),
                           mass="125"))

    # Produce histograms
    logger.info("Start producing shapes.")
    systematics.produce()
    logger.info("Done producing shapes.")
コード例 #12
0
def main(args):
    # Container for all distributions to be drawn
    logger.info("Set up shape variations.")
    systematics = Systematics(
        "{}_shapes.root".format(args.tag),
        num_threads=args.num_threads,
        skip_systematic_variations=args.skip_systematic_variations)

    # Era selection
    if "2018" in args.era:
        from shape_producer.estimation_methods_2018 import DataEstimation, ZTTEstimation, ZTTEmbeddedEstimation, ZLEstimation, ZJEstimation, TTLEstimation, TTJEstimation, TTTEstimation, VVLEstimation, VVTEstimation, VVJEstimation, WEstimation, ggHEstimation, ggHEstimation_0J, ggHEstimation_1J_PTH_0_60, ggHEstimation_1J_PTH_60_120, ggHEstimation_1J_PTH_120_200, ggHEstimation_1J_PTH_GT200, ggHEstimation_GE2J_PTH_0_60, ggHEstimation_GE2J_PTH_60_120, ggHEstimation_GE2J_PTH_120_200, ggHEstimation_GE2J_PTH_GT200, ggHEstimation_VBFTOPO_JET3, ggHEstimation_VBFTOPO_JET3VETO, qqHEstimation, qqHEstimation_VBFTOPO_JET3VETO, qqHEstimation_VBFTOPO_JET3, qqHEstimation_REST, qqHEstimation_VH2JET, qqHEstimation_PTJET1_GT200, VHEstimation, WHEstimation, ZHEstimation, ttHEstimation, QCDEstimation_ABCD_TT_ISO2, QCDEstimation_SStoOS_MTETEM, FakeEstimationLT, NewFakeEstimationLT, FakeEstimationTT, NewFakeEstimationTT, DYJetsToLLEstimation, TTEstimation, VVEstimation

        from shape_producer.era import Run2018
        era = Run2018(args.datasets)

    else:
        logger.critical("Era {} is not implemented.".format(args.era))
        raise Exception

    wp_dict_mva = {
        "vvloose": "byVVLooseIsolationMVArun2017v2DBoldDMwLT2017_2",
        "vloose": "byVLooseIsolationMVArun2017v2DBoldDMwLT2017_2",
        "loose": "byLooseIsolationMVArun2017v2DBoldDMwLT2017_2",
        "medium": "byMediumIsolationMVArun2017v2DBoldDMwLT2017_2",
        "tight": "byTightIsolationMVArun2017v2DBoldDMwLT2017_2",
        "vtight": "byVTightIsolationMVArun2017v2DBoldDMwLT2017_2",
        "vvtight": "byVVTightIsolationMVArun2017v2DBoldDMwLT2017_2",
        "mm": "0<1",
    }
    wp_dict_deeptau = {
        "vvvloose": "byVVVLooseDeepTau2017v2p1VSjet_2",
        "vvloose": "byVVLooseDeepTau2017v2p1VSjet_2",
        "vloose": "byVLooseDeepTau2017v2p1VSjet_2",
        "loose": "byLooseDeepTau2017v2p1VSjet_2",
        "medium": "byMediumDeepTau2017v2p1VSjet_2",
        "tight": "byTightDeepTau2017v2p1VSjet_2",
        "vtight": "byVTightDeepTau2017v2p1VSjet_2",
        "vvtight": "byVVTightDeepTau2017v2p1VSjet_2",
        "mm": "0<1",
    }
    wp_dict = wp_dict_deeptau

    logger.info("Produce shapes for the %s working point of the MVA Tau ID",
                args.working_point)
    # Channels and processes
    # yapf: disable
    directory = args.directory
    et_friend_directory = []#args.et_friend_directory
    em_friend_directory = []#args.em_friend_directory
    mt_friend_directory = []#args.mt_friend_directory
    tt_friend_directory = []#args.tt_friend_directory
    ff_friend_directory = []#args.fake_factor_friend_directory
    mt = MTTauID2018()
    mt.cuts.add(Cut(wp_dict[args.working_point]+">0.5", "tau_iso"))
    # if args.gof_channel == "mt":
    #     mt.cuts.remove("m_t")
    #     mt.cuts.remove("dZeta")
    #     mt.cuts.remove("absEta")
    mt_processes = {
        "data"  : Process("data_obs", DataEstimation      (era, directory, mt, friend_directory=mt_friend_directory)),
        "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "EMB"   : Process("EMB",      ZTTEmbeddedEstimation  (era, directory, mt, friend_directory=mt_friend_directory)),
        "ZJ"    : Process("ZJ",       ZJEstimation        (era, directory, mt, friend_directory=mt_friend_directory)),
        "ZL"    : Process("ZL",       ZLEstimation        (era, directory, mt, friend_directory=mt_friend_directory)),
        "TTT"   : Process("TTT",      TTTEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "TTJ"   : Process("TTJ",      TTJEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "TTL"   : Process("TTL",      TTLEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "VVT"   : Process("VVT",      VVTEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "VVJ"   : Process("VVJ",      VVJEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "VVL"   : Process("VVL",      VVLEstimation       (era, directory, mt, friend_directory=mt_friend_directory)),
        "W"     : Process("W",        WEstimation         (era, directory, mt, friend_directory=mt_friend_directory)),
        }
    # mt_processes["FAKES"] = Process("jetFakes", NewFakeEstimationLT(era, directory, mt, [mt_processes[process] for process in ["EMB", "ZL", "TTL", "VVL"]], mt_processes["data"], friend_directory=[mt_friend_directory, ff_friend_directory]))
    #mt_fakes_for_uncs=Process("jetFakes", FakeEstimationLT(era, directory, mt, friend_directory=[mt_friend_directory, ff_friend_directory]))
    mt_processes["QCD"] = Process("QCD", QCDEstimation_SStoOS_MTETEM(era, directory, mt,
            [mt_processes[process] for process in ["ZTT", "ZL", "ZJ", "TTL","TTT","TTJ", "VVT", "VVJ", "VVL","W"]],
            mt_processes["data"], friend_directory=mt_friend_directory, extrapolation_factor=1.1))
    mt_processes["QCDEMB"] = Process("QCDEMB", QCDEstimation_SStoOS_MTETEM(era, directory, mt,
            [mt_processes[process] for process in ["EMB", "ZL", "ZJ", "TTL", "TTJ", "VVJ", "VVL","W"]],
            mt_processes["data"], friend_directory=mt_friend_directory, extrapolation_factor=1.1))

    # TODO: Include Z-> mumu control region.
    mm = MMTauID2018()
    mm_processes = {
        "data"  : Process("data_obs", DataEstimation       (era, directory, mm, friend_directory=[])),
        "ZLL"   : Process("ZLL",      DYJetsToLLEstimation (era, directory, mm, friend_directory=[])),
        "MMEMB" : Process("MMEMB",    ZTTEmbeddedEstimation(era, directory, mm, friend_directory=[])),
        "TT"    : Process("TT",       TTEstimation         (era, directory, mm, friend_directory=[])),
        "VV"    : Process("VV",       VVEstimation         (era, directory, mm, friend_directory=[])),
        "W"     : Process("W",        WEstimation          (era, directory, mm, friend_directory=[])),
        }
    # mm_processes["FAKES"] = None  TODO: Add fake factors or alternative fake rate estimation here
    mm_processes["QCD"] = Process("QCD", QCDEstimation_SStoOS_MTETEM(era, directory, mm,
            [mm_processes[process] for process in ["ZLL", "W", "TT", "VV"]],
            mm_processes["data"], friend_directory=[], extrapolation_factor=1.17))
    mm_processes["QCDEMB"] = Process("QCDEMB", QCDEstimation_SStoOS_MTETEM(era, directory, mm,
            [mm_processes[process] for process in ["MMEMB", "W"]],
            mm_processes["data"], friend_directory=[], extrapolation_factor=1.17))



    # Variables and categories
    binning = yaml.load(open(args.binning))

    mt_categories = []
    # Goodness of fit shapes
    if args.gof_channel == "mt":
        score = Variable(
                args.gof_variable,
                VariableBinning(binning["control"]["mt"][args.gof_variable]["bins"]),
                expression=binning["control"]["mt"][args.gof_variable]["expression"])
        if "cut" in binning["control"]["mt"][args.gof_variable].keys():
            cuts=Cuts(Cut(binning["control"]["mt"][args.gof_variable]["cut"], "binning"))
        else:
            cuts=Cuts()
        mt_categories.append(
            Category(
                args.gof_variable,
                mt,
                cuts,
                variable=score))
    elif "mt" in args.channels:
        for cat in binning["categories"]["mt"]:
            category = Category(
                        cat,
                        mt,
                        Cuts(Cut(binning["categories"]["mt"][cat]["cut"], "category")),
                        variable=Variable(binning["categories"]["mt"][cat]["var"],
                            VariableBinning(binning["categories"]["mt"][cat]["bins"]),
                            expression=binning["categories"]["mt"][cat]["expression"]))
            mt_categories.append(category)

    # yapf: enable
    if "mt" in [args.gof_channel] + args.channels:
        for process, category in product(mt_processes.values(), mt_categories):
            systematics.add(
                Systematic(category=category,
                           process=process,
                           analysis="smhtt",
                           era=era,
                           variation=Nominal(),
                           mass="125"))

    mm_categories = []
    if "mm" in args.channels:
        category = Category("control",
                            mm,
                            Cuts(),
                            variable=Variable("m_vis",
                                              ConstantBinning(1, 50, 150),
                                              "m_vis"))
        mm_categories.append(category)

    if "mm" in args.channels:
        for process, category in product(mm_processes.values(), mm_categories):
            systematics.add(
                Systematic(category=category,
                           process=process,
                           analysis="smhtt",
                           era=era,
                           variation=Nominal(),
                           mass="125"))

    # Shapes variations

    # MC tau energy scale
    tau_es_3prong_variations = create_systematic_variations(
        "CMS_scale_mc_t_3prong_Run2018", "tauEsThreeProng", DifferentPipeline)
    tau_es_1prong_variations = create_systematic_variations(
        "CMS_scale_mc_t_1prong_Run2018", "tauEsOneProng", DifferentPipeline)
    tau_es_1prong1pizero_variations = create_systematic_variations(
        "CMS_scale_mc_t_1prong1pizero_Run2018", "tauEsOneProngOnePiZero",
        DifferentPipeline)
    for variation in tau_es_3prong_variations + tau_es_1prong_variations + tau_es_1prong1pizero_variations:
        for process_nick in [
                "ZTT",
                "TTT",
                "TTL",
                "VVL",
                "VVT",  # "FAKES"
        ]:
            if "mt" in [args.gof_channel] + args.channels:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mt_processes[process_nick],
                    channel=mt,
                    era=era)
    # Tau energy scale
    tau_es_3prong_variations = create_systematic_variations(
        "CMS_scale_t_3prong_Run2018", "tauEsThreeProng", DifferentPipeline)
    tau_es_1prong_variations = create_systematic_variations(
        "CMS_scale_t_1prong_Run2018", "tauEsOneProng", DifferentPipeline)
    tau_es_1prong1pizero_variations = create_systematic_variations(
        "CMS_scale_t_1prong1pizero_Run2018", "tauEsOneProngOnePiZero",
        DifferentPipeline)
    for variation in tau_es_3prong_variations + tau_es_1prong_variations + tau_es_1prong1pizero_variations:
        for process_nick in [
                "ZTT",
                "TTT",
                "TTL",
                "VVT",
                "VVL",
                "EMB",  # "FAKES"
        ]:
            if "mt" in [args.gof_channel] + args.channels:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mt_processes[process_nick],
                    channel=mt,
                    era=era)

    # Jet energy scale

    # Inclusive JES shapes TODO: Check this
    jet_es_variations = []
    '''jet_es_variations += create_systematic_variations(
        "CMS_scale_j_Run2017", "jecUnc", DifferentPipeline)'''

    # Splitted JES shapes
    jet_es_variations += create_systematic_variations(
        "CMS_scale_j_eta0to3_Run2018", "jecUncEta0to3", DifferentPipeline)
    jet_es_variations += create_systematic_variations(
        "CMS_scale_j_eta0to5_Run2018", "jecUncEta0to5", DifferentPipeline)
    jet_es_variations += create_systematic_variations(
        "CMS_scale_j_eta3to5_Run2018", "jecUncEta3to5", DifferentPipeline)
    jet_es_variations += create_systematic_variations(
        "CMS_scale_j_RelativeBal_Run2018", "jecUncRelativeBal",
        DifferentPipeline)
    jet_es_variations += create_systematic_variations(
        "CMS_scale_j_RelativeSample_Run2018", "jecUncRelativeSample",
        DifferentPipeline)

    for variation in jet_es_variations:
        for process_nick in [
                "ZTT",
                "ZL",
                "ZJ",
                "W",
                "TTT",
                "TTL",
                "TTJ",
                "VVT",
                "VVJ",
                "VVL",
        ]:
            if "mt" in [args.gof_channel] + args.channels:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mt_processes[process_nick],
                    channel=mt,
                    era=era)

    # MET energy scale. Note: only those variations for non-resonant processes are used in the stat. inference
    met_unclustered_variations = create_systematic_variations(
        "CMS_scale_met_unclustered", "metUnclusteredEn", DifferentPipeline)
    for variation in met_unclustered_variations:  # + met_clustered_variations:
        for process_nick in [
                "ZTT",
                "ZL",
                "ZJ",
                "W",
                "TTT",
                "TTL",
                "TTJ",
                "VVT",
                "VVJ",
                "VVL",
        ]:
            if "mt" in [args.gof_channel] + args.channels:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mt_processes[process_nick],
                    channel=mt,
                    era=era)

    # Recoil correction unc
    recoil_resolution_variations = create_systematic_variations(
        "CMS_htt_boson_reso_met_Run2018", "metRecoilResolution",
        DifferentPipeline)
    recoil_response_variations = create_systematic_variations(
        "CMS_htt_boson_scale_met_Run2018", "metRecoilResponse",
        DifferentPipeline)
    for variation in recoil_resolution_variations + recoil_response_variations:
        for process_nick in ["ZTT", "ZL", "ZJ", "W"]:
            if "mt" in [args.gof_channel] + args.channels:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mt_processes[process_nick],
                    channel=mt,
                    era=era)

    # Z pt reweighting
    zpt_variations = create_systematic_variations("CMS_htt_dyShape_Run2018",
                                                  "zPtReweightWeight",
                                                  SquareAndRemoveWeight)
    for variation in zpt_variations:
        for process_nick in ["ZTT", "ZL", "ZJ"]:
            if "mt" in [args.gof_channel] + args.channels:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mt_processes[process_nick],
                    channel=mt,
                    era=era)

    # top pt reweighting
    top_pt_variations = create_systematic_variations("CMS_htt_ttbarShape",
                                                     "topPtReweightWeight",
                                                     SquareAndRemoveWeight)
    for variation in top_pt_variations:
        for process_nick in ["TTT", "TTL", "TTJ"]:
            if "mt" in [args.gof_channel] + args.channels:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mt_processes[process_nick],
                    channel=mt,
                    era=era)

    # TODO: likely not necessary, to be checked
    # jet to tau fake efficiency
    jet_to_tau_fake_variations = []
    jet_to_tau_fake_variations.append(
        AddWeight("CMS_htt_jetToTauFake_Run2018", "jetToTauFake_weight",
                  Weight("max(1.0-pt_2*0.002, 0.6)", "jetToTauFake_weight"),
                  "Up"))
    jet_to_tau_fake_variations.append(
        AddWeight("CMS_htt_jetToTauFake_Run2018", "jetToTauFake_weight",
                  Weight("min(1.0+pt_2*0.002, 1.4)", "jetToTauFake_weight"),
                  "Down"))
    for variation in jet_to_tau_fake_variations:
        for process_nick in ["ZJ", "TTJ", "W", "VVJ"]:
            if "mt" in [args.gof_channel] + args.channels:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mt_processes[process_nick],
                    channel=mt,
                    era=era)

    # ZL fakes energy scale
    mu_fake_es_1prong_variations = create_systematic_variations(
        "CMS_ZLShape_mt_1prong_Run2018", "tauMuFakeEsOneProng",
        DifferentPipeline)
    mu_fake_es_1prong1pizero_variations = create_systematic_variations(
        "CMS_ZLShape_mt_1prong1pizero_Run2018", "tauMuFakeEsOneProngPiZeros",
        DifferentPipeline)

    if "mt" in [args.gof_channel] + args.channels:
        for process_nick in ["ZL"]:
            for variation in mu_fake_es_1prong_variations + mu_fake_es_1prong1pizero_variations:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mt_processes[process_nick],
                    channel=mt,
                    era=era)

    # lepton trigger efficiency
    lep_trigger_eff_variations = []
    lep_trigger_eff_variations.append(
        AddWeight(
            "CMS_eff_trigger_mt_Run2018", "trg_mt_eff_weight",
            Weight("(1.0*(pt_1<=25)+1.02*(pt_1>25))", "trg_mt_eff_weight"),
            "Up"))
    lep_trigger_eff_variations.append(
        AddWeight(
            "CMS_eff_trigger_mt_Run2018", "trg_mt_eff_weight",
            Weight("(1.0*(pt_1<=25)+0.98*(pt_1>25))", "trg_mt_eff_weight"),
            "Down"))
    for variation in lep_trigger_eff_variations:
        for process_nick in [
                "ZTT",
                "ZL",
                "ZJ",
                "W",
                "TTT",
                "TTL",
                "TTJ",
                "VVL",
                "VVT",
                "VVJ",
        ]:
            if "mt" in [args.gof_channel] + args.channels:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mt_processes[process_nick],
                    channel=mt,
                    era=era)
        for process_nick in ["ZLL", "TT", "VV", "W"]:
            if "mm" in [args.gof_channel] + args.channels:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mm_processes[process_nick],
                    channel=mm,
                    era=era)

    lep_trigger_eff_variations = []
    lep_trigger_eff_variations.append(
        AddWeight(
            "CMS_eff_trigger_emb_mt_Run2018", "trg_mt_eff_weight",
            Weight("(1.0*(pt_1<=25)+1.02*(pt_1>25))", "trg_mt_eff_weight"),
            "Up"))
    lep_trigger_eff_variations.append(
        AddWeight(
            "CMS_eff_trigger_emb_mt_Run2018", "trg_mt_eff_weight",
            Weight("(1.0*(pt_1<=25)+0.98*(pt_1>25))", "trg_mt_eff_weight"),
            "Down"))
    for variation in lep_trigger_eff_variations:
        for process_nick in ["EMB"]:
            if "mt" in [args.gof_channel] + args.channels:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mt_processes[process_nick],
                    channel=mt,
                    era=era)
        for process_nick in ["MMEMB"]:
            if "mm" in [args.gof_channel] + args.channels:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mm_processes[process_nick],
                    channel=mm,
                    era=era)

    # b tagging
    # btag_eff_variations = create_systematic_variations(
    #     "CMS_htt_eff_b_Run2017", "btagEff", DifferentPipeline)
    # mistag_eff_variations = create_systematic_variations(
    #     "CMS_htt_mistag_b_Run2017", "btagMistag", DifferentPipeline)
    # for variation in btag_eff_variations + mistag_eff_variations:
    #     for process_nick in [
    #             "ZTT", "ZL", "ZJ", "W", "TTT", "TTL", "TTJ", "VVT", "VVJ",
    #             "VVL"
    #     ]:
    #         if "et" in [args.gof_channel] + args.channels:
    #             systematics.add_systematic_variation(
    #                 variation=variation,
    #                 process=et_processes[process_nick],
    #                 channel=et,
    #                 era=era)
    #         if "mt" in [args.gof_channel] + args.channels:
    #             systematics.add_systematic_variation(
    #                 variation=variation,
    #                 process=mt_processes[process_nick],
    #                 channel=mt,
    #                 era=era)
    #         if "tt" in [args.gof_channel] + args.channels:
    #             systematics.add_systematic_variation(
    #                 variation=variation,
    #                 process=tt_processes[process_nick],
    #                 channel=tt,
    #                 era=era)
    #     for process_nick in ["ZTT", "ZL", "W", "TTT", "TTL",  "VVL", "VVT"
    #                         ]:
    #         if "em" in [args.gof_channel] + args.channels:
    #             systematics.add_systematic_variation(
    #                 variation=variation,
    #                 process=em_processes[process_nick],
    #                 channel=em,
    #                 era=era)

    # Embedded event specifics
    # Tau energy scale
    tau_es_3prong_variations = create_systematic_variations(
        "CMS_scale_emb_t_3prong_Run2018", "tauEsThreeProng", DifferentPipeline)
    tau_es_1prong_variations = create_systematic_variations(
        "CMS_scale_emb_t_1prong_Run2018", "tauEsOneProng", DifferentPipeline)
    tau_es_1prong1pizero_variations = create_systematic_variations(
        "CMS_scale_emb_t_1prong1pizero_Run2018", "tauEsOneProngOnePiZero",
        DifferentPipeline)
    for variation in tau_es_3prong_variations + tau_es_1prong_variations + tau_es_1prong1pizero_variations:
        for process_nick in ["EMB"]:  #,  "FAKES"]:
            if "mt" in [args.gof_channel] + args.channels:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mt_processes[process_nick],
                    channel=mt,
                    era=era)

    mt_decayMode_variations = []
    mt_decayMode_variations.append(
        ReplaceWeight(
            "CMS_3ProngEff_Run2018", "decayMode_SF",
            Weight("embeddedDecayModeWeight_effUp_pi0Nom", "decayMode_SF"),
            "Up"))
    mt_decayMode_variations.append(
        ReplaceWeight(
            "CMS_3ProngEff_Run2018", "decayMode_SF",
            Weight("embeddedDecayModeWeight_effDown_pi0Nom", "decayMode_SF"),
            "Down"))
    mt_decayMode_variations.append(
        ReplaceWeight(
            "CMS_1ProngPi0Eff_Run2018", "decayMode_SF",
            Weight("embeddedDecayModeWeight_effNom_pi0Up", "decayMode_SF"),
            "Up"))
    mt_decayMode_variations.append(
        ReplaceWeight(
            "CMS_1ProngPi0Eff_Run2018", "decayMode_SF",
            Weight("embeddedDecayModeWeight_effNom_pi0Down", "decayMode_SF"),
            "Down"))
    for variation in mt_decayMode_variations:
        for process_nick in ["EMB"]:
            if "mt" in [args.gof_channel] + args.channels:
                systematics.add_systematic_variation(
                    variation=variation,
                    process=mt_processes[process_nick],
                    channel=mt,
                    era=era)
    # 10% removed events in ttbar simulation (ttbar -> real tau tau events) will be added/subtracted to ZTT shape to use as systematic
    tttautau_process_mt = Process(
        "TTT", TTTEstimation(era, directory, mt, friend_directory=[]))
    if "mt" in [args.gof_channel] + args.channels:
        for category in mt_categories:
            mt_processes['ZTTpTTTauTauDown'] = Process(
                "ZTTpTTTauTauDown",
                AddHistogramEstimationMethod(
                    "AddHistogram", "nominal", era, directory, mt,
                    [mt_processes["EMB"], tttautau_process_mt], [1.0, -0.1]))
            systematics.add(
                Systematic(category=category,
                           process=mt_processes['ZTTpTTTauTauDown'],
                           analysis="smhtt",
                           era=era,
                           variation=Relabel("CMS_htt_emb_ttbar_Run2018",
                                             "Down"),
                           mass="125"))

            mt_processes['ZTTpTTTauTauUp'] = Process(
                "ZTTpTTTauTauUp",
                AddHistogramEstimationMethod(
                    "AddHistogram", "nominal", era, directory, mt,
                    [mt_processes["EMB"], tttautau_process_mt], [1.0, 0.1]))
            systematics.add(
                Systematic(category=category,
                           process=mt_processes['ZTTpTTTauTauUp'],
                           analysis="smhtt",
                           era=era,
                           variation=Relabel("CMS_htt_emb_ttbar_Run2018",
                                             "Up"),
                           mass="125"))

    # jetfakes
    # fake_factor_variations_mt = []
    # for systematic_shift in [
    #         "ff_qcd{ch}_syst_Run2017{shift}",
    #         "ff_qcd_dm0_njet0{ch}_stat_Run2017{shift}",
    #         "ff_qcd_dm0_njet1{ch}_stat_Run2017{shift}",
    #         #"ff_qcd_dm1_njet0{ch}_stat_Run2017{shift}",
    #         #"ff_qcd_dm1_njet1{ch}_stat_Run2017{shift}",
    #         "ff_w_syst_Run2017{shift}",
    #         "ff_w_dm0_njet0{ch}_stat_Run2017{shift}",
    #         "ff_w_dm0_njet1{ch}_stat_Run2017{shift}",
    #         #"ff_w_dm1_njet0{ch}_stat_Run2017{shift}",
    #         #"ff_w_dm1_njet1{ch}_stat_Run2017{shift}",
    #         "ff_tt_syst_Run2017{shift}",
    #         "ff_tt_dm0_njet0_stat_Run2017{shift}",
    #         "ff_tt_dm0_njet1_stat_Run2017{shift}",
    #         #"ff_tt_dm1_njet0_stat_Run2017{shift}",
    #         #"ff_tt_dm1_njet1_stat_Run2017{shift}"
    # ]:
    #     for shift_direction in ["Up", "Down"]:
    #         fake_factor_variations_mt.append(
    #             ReplaceWeight(
    #                 "CMS_%s" % (systematic_shift.format(ch='_mt', shift="").replace("_dm0", "")),
    #                 "fake_factor",
    #                 Weight(
    #                     "ff2_{syst}".format(
    #                         syst=systematic_shift.format(
    #                             ch="", shift="_%s" % shift_direction.lower())
    #                         .replace("_Run2017", "")),
    #                     "fake_factor"), shift_direction))
    # if "mt" in [args.gof_channel] + args.channels:
    #     for variation in fake_factor_variations_mt:
    #         systematics.add_systematic_variation(
    #             variation=variation,
    #             process=mt_processes["FAKES"],
    #             channel=mt,
    #             era=era)
    # Produce histograms
    logger.info("Start producing shapes.")
    systematics.produce()
    logger.info("Done producing shapes.")
コード例 #13
0
def main(args):
    # Container for all distributions to be drawn
    systematics_mm = Systematics("fitrecoil_mm_2018.root", num_threads=args.num_threads, find_unique_objects=True)

    # Era
    era = Run2018(args.datasets)

    # Channels and processes
    # yapf: disable
    directory = args.directory
    mm_friend_directory = args.mm_friend_directory

    mm = MM()
    mm_processes = {
        "data"  : Process("data_obs", DataEstimation      (era, directory, mm, friend_directory=mm_friend_directory)),
        "ZTT"   : Process("ZTT",      ZTTEstimation       (era, directory, mm, friend_directory=mm_friend_directory)),
        "ZL"    : Process("ZL",       ZLEstimation        (era, directory, mm, friend_directory=mm_friend_directory)),
        "TTT"   : Process("TTT",      TTTEstimation       (era, directory, mm, friend_directory=mm_friend_directory)),
        "TTL"   : Process("TTL",      TTLEstimation       (era, directory, mm, friend_directory=mm_friend_directory)),
        "VVT"   : Process("VVT",      VVTEstimation       (era, directory, mm, friend_directory=mm_friend_directory)),
        "VVL"   : Process("VVL",      VVLEstimation       (era, directory, mm, friend_directory=mm_friend_directory)),
        "W"     : Process("W",        WEstimation         (era, directory, mm, friend_directory=mm_friend_directory)),
        }
    mm_processes["QCD"] = Process("QCD", QCDEstimation_SStoOS_MTETEM(era, directory, mm,
            [mm_processes[process] for process in ["ZTT", "ZL", "W", "TTT", "TTL", "VVT", "VVL"]],
            mm_processes["data"], friend_directory=mm_friend_directory, extrapolation_factor=2.0))


    # Variables and categories
    mm_categories = []

    variable_names = [

#        "met", "metphi",
#        "puppimet", "puppimetphi",

        "metParToZ", "metPerpToZ",
        "puppimetParToZ", "puppimetPerpToZ",

#        "recoilParToZ", "recoilPerpToZ",
#        "puppirecoilParToZ", "puppirecoilPerpToZ",
    ]

    variables = [Variable(v,ConstantBinning(25,-100.0,100.0)) for v in variable_names]

    cuts = [
        Cut("njets == 0", "0jet"),
        Cut("njets == 1", "1jet"),
        Cut("njets >= 2", "ge2jet"),
    ]
    for cut in cuts:
        for var in variables:
            mm_categories.append(
                Category(
                    cut.name,
                    mm,
                    Cuts(Cut("m_vis > 70 && m_vis < 110","m_vis_peak"), cut),
                    variable=var))

    for process, category in product(mm_processes.values(), mm_categories):
        systematics_mm.add(
            Systematic(
                category=category,
                process=process,
                analysis="smhtt",
                era=era,
                variation=Nominal(),
                mass="125"))

    # Recoil correction unc
    recoil_resolution_variations = create_systematic_variations(
        "CMS_htt_boson_reso_met_Run2018", "metRecoilResolution",
        DifferentPipeline)
    recoil_response_variations = create_systematic_variations(
        "CMS_htt_boson_scale_met_Run2018", "metRecoilResponse",
        DifferentPipeline)
    for variation in recoil_resolution_variations + recoil_response_variations:
        systematics_mm.add_systematic_variation(
            variation=variation,
            process=mm_processes["ZL"],
            channel=mm,
            era=era)

    # Produce histograms
    systematics_mm.produce()
コード例 #14
0
def main(args):
    # Define era
    if "2016" in args.era:
        from shape_producer.era import Run2016
        era = Run2016(args.datasets)
    elif "2017" in args.era:
        from shape_producer.era import Run2017
        era = Run2017(args.datasets)
    elif "2018" in args.era:
        from shape_producer.era import Run2018
        era = Run2018(args.datasets)
    else:
        logger.fatal("Era {} is not implemented.".format(args.era))
        raise Exception

    # Load variables
    variables = yaml.load(open(args.variables))["selected_variables"]

    # Define bins and range of binning for variables in enabled channels
    channel_dict = {
        "et": {
            "2016": ETSM2016(),
            "2017": ETSM2017(),
            "2018": ETSM2018()
        },
        "mt": {
            "2016": MTSM2016(),
            "2017": MTSM2017(),
            "2018": MTSM2018()
        },
        "tt": {
            "2016": TTSM2016(),
            "2017": TTSM2017(),
            "2018": TTSM2018()
        },
        "em": {
            "2016": EMSM2016(),
            "2017": EMSM2017(),
            "2018": EMSM2018()
        },
    }
    friend_directories_dict = {
        "em": args.em_friend_directories,
        "et": args.et_friend_directories,
        "mt": args.mt_friend_directories,
        "tt": args.tt_friend_directories,
    }
    percentiles = [
        0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0
    ]

    config = {"gof": {}}

    for ch in channel_dict.keys():
        if ch != args.channel:
            continue
        # Get properties
        if "2016" in args.era:
            eraname = "2016"
        elif "2017" in args.era:
            eraname = "2017"
        elif "2018" in args.era:
            eraname = "2018"
        channel = channel_dict[ch][eraname]
        logger.info("Channel: %s" % ch)
        dict_ = {}
        additional_cuts = Cuts()
        logger.warning("Use additional cuts for %s: %s" %
                       (ch, additional_cuts.expand()))
        dict_ = get_properties(dict_, era, channel, args.directory,
                               additional_cuts)

        # Build chain
        dict_["tree_path"] = "%s_nominal/ntuple" % ch

        chain = build_chain(dict_, friend_directories_dict[ch])

        # Get percentiles and calculate 1d binning
        binning = get_1d_binning(ch, chain, variables[int(eraname)][ch],
                                 percentiles)

        # Add binning for unrolled 2d distributions
        binning = add_2d_unrolled_binning(variables[int(eraname)][ch], binning)

        # Append binning to config
        config["gof"][ch] = binning

    # Write config
    logger.info("Write binning config to %s.", args.output)
    yaml.dump(config, open(args.output, 'w'))
コード例 #15
0
        "mt": MTSM2017(),
        "et": ETSM2017(),
        "tt": TTSM2017(),
        "em": EMSM2017()
    },
    "2018": {
        "mt": MTSM2018(),
        "et": ETSM2018(),
        "tt": TTSM2018(),
        "em": EMSM2018()
    }
}
eraD = {
    "2016": Run2016(database),
    "2017": Run2017(database),
    "2018":Run2018(database)
}

from shape_producer.estimation_methods_2017 import DataEstimation, ZTTEstimation, ZJEstimation, ZLEstimation, TTLEstimation, TTJEstimation, TTTEstimation, VVTEstimation, VVJEstimation, VVLEstimation, WEstimation, ggHEstimation, qqHEstimation, EWKZEstimation, ZTTEmbeddedEstimation, NewFakeEstimationTT, NewFakeEstimationLT
from fake_factor_derivation.cuts import cutDB

class ParSpaceRegion(object):
    def __init__(self, eraName, channelName, bkgName):
        self.meta = {"era": eraName, "channel": channelName, "bkg": bkgName}
        self.era = eraD[eraName]
        self.channel = copy.deepcopy(channelDict[eraName][channelName])

        if self.meta["era"] not in ["2016", "2017"]: raise Exception

        ### remove old isolation cuts and add the very Loose isolation, that is needed to to exclude other backgrounds from all regions
        # for cut_ in self.channel.cuts.names: