def chi2PolarFunc(params,nmax,im,nm): """Function which is to be minimized in the chi^2 analysis for Polar shapelets params = [beta, xc, yc] beta: characteristic size of shapelets, fit parameter xc: x centroid of shapelets, fit parameter yc: y centroid of shapelets, fit parameter nmax: number of coefficents to use in the Laguerre polynomials im: observed image nm: noise map """ import sys beta=params[0] xc=params[1] yc=params[2] if beta<0.: print 'warning: beta going negative, setting to 0.0' beta=0. print 'beta: %f\txc: (%f,%f)'%(beta,xc,yc) size=im.shape r,th=shapelet.polarArray([xc,yc],size) bvals=fgenPolarBasisMatrix(beta,nmax,r,th) coeffs=solveCoeffs(bvals,im) mdl=np.abs(img.constructModel(bvals,coeffs,[xc,yc],size)) return np.sum((im-mdl)**2 / nm**2)/(size[0]*size[1])
def chi2nmaxPolarFunc(params,im,nm,beta,xc): """ params = [nmax] nmax: number of coefficents im: observed image nm: noise map beta: fit beta value xc: fit centroid position """ print params nmax=params size=im.shape r,th=shapelet.polarArray(xc,size) bvals=genPolarBasisMatrix(beta,nmax,r,th) coeffs=solveCoeffs(bvals,im) mdl=np.abs(img.constructModel(bvals,coeffs,xc,size)) return np.sum((im-mdl)**2 / nm**2)/(size[0]*size[1])
def chi2nmaxPolarFunc(params,im,nm,beta0,beta1,phi,xc): """ params = [nmax] nmax: number of coefficents im: observed image nm: noise map beta0: fit beta value beta1: fit beta value phi: rotation angle xc: fit centroid position """ #nmax=params[0] nmax=[params, params] size=im.shape r,th=shapelet.polarArray(xc,size) bvals=genPolarBasisMatrix([beta0,beta1],nmax,phi,r,th) coeffs=solveCoeffs(bvals,im) mdl=np.abs(img.constructModel(bvals,coeffs,size)) return np.sum((im-mdl)**2 / nm**2)/(size[0]*size[1])
def chi2nmaxPolarFunc(params, im, nm, beta0, beta1, phi, xc): """ params = [nmax] nmax: number of coefficents im: observed image nm: noise map beta0: fit beta value beta1: fit beta value phi: rotation angle xc: fit centroid position """ #nmax=params[0] nmax = [params, params] size = im.shape r, th = shapelet.polarArray(xc, size) bvals = genPolarBasisMatrix([beta0, beta1], nmax, phi, r, th) coeffs = solveCoeffs(bvals, im) mdl = np.abs(img.constructModel(bvals, coeffs, size)) return np.sum((im - mdl)**2 / nm**2) / (size[0] * size[1])
def chi2PolarFunc(params,nmax,im,nm,order=['beta0','beta1','phi','yc','xc'],set_beta=[None,None],set_phi=None,set_xc=[None,None],r=None,th=None): """Function which is to be minimized in the chi^2 analysis for Polar shapelets params = [beta0, beta1, phi, xc, yc] or some subset beta0: characteristic size of shapelets, fit parameter beta1: characteristic size of shapelets, fit parameter phi: rotation angle of shapelets, fit parameter yc: y centroid of shapelets, fit parameter xc: x centroid of shapelets, fit parameter nmax: number of coefficents to use in the Laguerre polynomials im: observed image nm: noise map order: order of parameters fixed parameters: set_beta, set_phi, set_xc r: radius from centroid, array of im.shape, not required if xc and yc being fit th: angle from centroid, array of im.shape, not required if xc and yc being fit """ #determine which parameters are being fit for, and which are not beta0=set_beta[0] beta1=set_beta[1] phi=set_phi yc=set_xc[0] xc=set_xc[1] fitParams={'beta':False,'phi':False,'xc':False} for pid,paramName in enumerate(order): if paramName=='beta0': beta0=params[pid] fitParams['beta']=True elif paramName=='beta1': beta1=params[pid] fitParams['beta']=True elif paramName=='phi': phi=params[pid] fitParams['phi']=True elif paramName=='xc': xc=params[pid] fitParams['xc']=True elif paramName=='yc': yc=params[pid] fitParams['xc']=True #if beta0<0.: # print 'warning: beta going negative, setting to 0.0' # beta0=0. #if beta1<0.: # print 'warning: beta going negative, setting to 0.0' # beta1=0. if beta0<0.: print 'warning: beta going negative, taking absolute value' beta0 = np.abs(beta0) if beta1<0.: print 'warning: beta going negative, taking absolute value' beta1 = np.abs(beta1) print 'beta: (%f,%f)\t phi: %f\txc: (%f,%f)'%(beta0,beta1,phi,xc,yc) #update noise map nm=img.makeNoiseMap(nm.shape,np.mean(nm),np.std(nm)) size=im.shape if fitParams['xc'] or r is None: r,th=shapelet.polarArray([yc,xc],size) #the radius,theta pairs need to updated if fitting for the xc centre or if not using the r,th inputs bvals=genPolarBasisMatrix([beta0,beta1],nmax,phi,r,th) coeffs=solveCoeffs(bvals,im) mdl=np.abs(img.constructModel(bvals,coeffs,size)) return np.sum((im-mdl)**2 / nm**2)/(size[0]*size[1])
try: beta0,phi0=initBetaPhi(subim,mode='basic') print beta0, phi0 beta0,phi0=initBetaPhi(subim,mode='fit') print beta0, phi0 except: print 'Test failed (%i):'%tc, sys.exc_info()[0] te+=1 #genPolarBasisMatrix(beta,nmax,r,th): #solveCoeffs(m,im): tc+=1 try: beta0,phi0=initBetaPhi(subim,mode='fit') xc=img.maxPos(subim) r0,th0=shapelet.polarArray(xc,subim.shape) mPolar=genPolarBasisMatrix(beta0,5,0.,r0,th0) coeffs=solveCoeffs(mPolar,subim) print coeffs if write_files: fileio.writeLageurreCoeffs('testLageurre.pkl',coeffs,xc,subim.shape,beta0,0.,[5,5],pos=[hdr['ra'],hdr['dec'],hdr['dra'],hdr['ddec']],info='Test Lageurre coeff file') except: print 'Test failed (%i):'%tc, sys.exc_info()[0] te+=1 #genBasisMatrix(beta,nmax,rx,ry): #solveCoeffs(m,im): tc+=1 try: beta0,phi0=initBetaPhi(subim,mode='fit') xc=img.maxPos(subim) rx=np.array(range(0,subim.shape[0]),dtype=float)-xc[0]
from time import time import cshapelet as csh import fshapelet as fsh import shapelet as sh import decomp import cProfile, pstats USE_PROFILER = True n = 16 m = 2 PB_DIM = (1000, 500) xc = (800, 1300) beta0 = 100. mask = None r, th = sh.polarArray(xc, PB_DIM) print 'Problem dim:', PB_DIM backend_list = {'original': decomp, 'opt + numexpr': fsh, 'opt + cython': csh } pr = {} for backend, mod in backend_list.iteritems(): if USE_PROFILER: pr[backend] = cProfile.Profile() pr[backend].enable() t = time() res0 = mod.genPolarBasisMatrix(beta0, n, r, th),
def chi2PolarFunc(params, nmax, im, nm, order=['beta0', 'beta1', 'phi', 'yc', 'xc'], set_beta=[None, None], set_phi=None, set_xc=[None, None], r=None, th=None): """Function which is to be minimized in the chi^2 analysis for Polar shapelets params = [beta0, beta1, phi, xc, yc] or some subset beta0: characteristic size of shapelets, fit parameter beta1: characteristic size of shapelets, fit parameter phi: rotation angle of shapelets, fit parameter yc: y centroid of shapelets, fit parameter xc: x centroid of shapelets, fit parameter nmax: number of coefficents to use in the Laguerre polynomials im: observed image nm: noise map order: order of parameters fixed parameters: set_beta, set_phi, set_xc r: radius from centroid, array of im.shape, not required if xc and yc being fit th: angle from centroid, array of im.shape, not required if xc and yc being fit """ #determine which parameters are being fit for, and which are not beta0 = set_beta[0] beta1 = set_beta[1] phi = set_phi yc = set_xc[0] xc = set_xc[1] fitParams = {'beta': False, 'phi': False, 'xc': False} for pid, paramName in enumerate(order): if paramName == 'beta0': beta0 = params[pid] fitParams['beta'] = True elif paramName == 'beta1': beta1 = params[pid] fitParams['beta'] = True elif paramName == 'phi': phi = params[pid] fitParams['phi'] = True elif paramName == 'xc': xc = params[pid] fitParams['xc'] = True elif paramName == 'yc': yc = params[pid] fitParams['xc'] = True #if beta0<0.: # print 'warning: beta going negative, setting to 0.0' # beta0=0. #if beta1<0.: # print 'warning: beta going negative, setting to 0.0' # beta1=0. if beta0 < 0.: print 'warning: beta going negative, taking absolute value' beta0 = np.abs(beta0) if beta1 < 0.: print 'warning: beta going negative, taking absolute value' beta1 = np.abs(beta1) print 'beta: (%f,%f)\t phi: %f\txc: (%f,%f)' % (beta0, beta1, phi, xc, yc) #update noise map nm = img.makeNoiseMap(nm.shape, np.mean(nm), np.std(nm)) size = im.shape if fitParams['xc'] or r is None: r, th = shapelet.polarArray( [yc, xc], size ) #the radius,theta pairs need to updated if fitting for the xc centre or if not using the r,th inputs bvals = genPolarBasisMatrix([beta0, beta1], nmax, phi, r, th) coeffs = solveCoeffs(bvals, im) mdl = np.abs(img.constructModel(bvals, coeffs, size)) return np.sum((im - mdl)**2 / nm**2) / (size[0] * size[1])
try: beta0, phi0 = initBetaPhi(subim, mode='basic') print beta0, phi0 beta0, phi0 = initBetaPhi(subim, mode='fit') print beta0, phi0 except: print 'Test failed (%i):' % tc, sys.exc_info()[0] te += 1 #genPolarBasisMatrix(beta,nmax,r,th): #solveCoeffs(m,im): tc += 1 try: beta0, phi0 = initBetaPhi(subim, mode='fit') xc = img.maxPos(subim) r0, th0 = shapelet.polarArray(xc, subim.shape) mPolar = genPolarBasisMatrix(beta0, 5, 0., r0, th0) coeffs = solveCoeffs(mPolar, subim) print coeffs if write_files: fileio.writeLageurreCoeffs( 'testLageurre.pkl', coeffs, xc, subim.shape, beta0, 0., [5, 5], pos=[hdr['ra'], hdr['dec'], hdr['dra'], hdr['ddec']], info='Test Lageurre coeff file') except: print 'Test failed (%i):' % tc, sys.exc_info()[0]
from time import time import cshapelet as csh import fshapelet as fsh import shapelet as sh import decomp import cProfile, pstats USE_PROFILER = True n = 16 m = 2 PB_DIM = (1000, 500) xc = (800, 1300) beta0 = 100. mask = None r, th = sh.polarArray(xc, PB_DIM) print('Problem dim:', PB_DIM) backend_list = {'original': decomp, 'opt + numexpr': fsh, 'opt + cython': csh} pr = {} for backend, mod in backend_list.items(): if USE_PROFILER: pr[backend] = cProfile.Profile() pr[backend].enable() t = time() res0 = mod.genPolarBasisMatrix(beta0, n, r, th), t = time() - t if USE_PROFILER: pr[backend].disable()
def test_polarArray(): xc = (100., 200.) res0 = fsh.polarArray(xc, PB_DIM) res1 = sh.polarArray(xc, PB_DIM) yield assert_allclose, res0, res1, 1e-7, 1e-9
def setup(): global r, th, xc, beta, PB_DIM xc = (100, 130) beta = 100. PB_DIM = (300, 200) r, th = sh.polarArray(xc, PB_DIM)