コード例 #1
0
    def initialize(self, *args, **kwargs):
        self._context_persistence_excludes = \
            self._context_persistence_blacklist + \
            [e for e in self.__dict__.keys()
             if e not in self._context_persistence_whitelist]

        if os.path.isfile(self.state_filename):
            log.info("Loading state from {}".format(self.state_filename))
            load_context(self.state_filename,
                         context=self,
                         checksum=self.algo_filename)

        self.initialized = False

        with ZiplineAPI(self):
            super(self.__class__, self).initialize(*args, **kwargs)
            store_context(self.state_filename,
                          context=self,
                          checksum=self.algo_filename,
                          exclude_list=self._context_persistence_excludes)

        self.initialized = True
コード例 #2
0
def _run(handle_data, initialize, before_trading_start, analyze, algofile,
         algotext, defines, data_frequency, capital_base, bundle,
         bundle_timestamp, start, end, output, trading_calendar, print_algo,
         metrics_set, local_namespace, environ, blotter, benchmark_symbol,
         broker, state_filename):
    """Run a backtest for the given algorithm.

    This is shared between the cli and :func:`zipline.run_algo`.

    additions useful for live trading:
    broker - wrapper to connect to a real broker
    state_filename - saving the context of the algo to be able to restart
    """
    log.info("Using bundle '%s'." % bundle)

    if trading_calendar is None:
        trading_calendar = get_calendar('XNYS')

    bundle_data = load_sharadar_bundle(bundle)
    now = pd.Timestamp.utcnow()
    if start is None:
        start = bundle_data.equity_daily_bar_reader.first_trading_day if not broker else now

    if not trading_calendar.is_session(start.date()):
        start = trading_calendar.next_open(start)

    if end is None:
        end = bundle_data.equity_daily_bar_reader.last_available_dt if not broker else start

    # date parameter validation
    if trading_calendar.session_distance(start, end) < 0:
        raise _RunAlgoError(
            'There are no trading days between %s and %s' % (
                start.date(),
                end.date(),
            ), )

    if broker:
        log.info("Live Trading on %s." % start.date())
    else:
        log.info("Backtest from %s to %s." % (start.date(), end.date()))

    if benchmark_symbol:
        benchmark = symbol(benchmark_symbol)
        benchmark_sid = benchmark.sid
        benchmark_returns = load_benchmark_data_bundle(
            bundle_data.equity_daily_bar_reader, benchmark)
    else:
        benchmark_sid = None
        benchmark_returns = pd.Series(index=pd.date_range(start, end,
                                                          tz='utc'),
                                      data=0.0)

    # emission_rate is a string representing the smallest frequency at which metrics should be reported.
    # emission_rate will be either minute or daily. When emission_rate is daily, end_of_bar will not be called at all.
    emission_rate = 'daily'

    if algotext is not None:
        if local_namespace:
            # noinspection PyUnresolvedReferences
            ip = get_ipython()  # noqa
            namespace = ip.user_ns
        else:
            namespace = {}

        for assign in defines:
            try:
                name, value = assign.split('=', 2)
            except ValueError:
                raise ValueError(
                    'invalid define %r, should be of the form name=value' %
                    assign, )
            try:
                # evaluate in the same namespace so names may refer to
                # eachother
                namespace[name] = eval(value, namespace)
            except Exception as e:
                raise ValueError(
                    'failed to execute definition for name %r: %s' %
                    (name, e), )
    elif defines:
        raise _RunAlgoError(
            'cannot pass define without `algotext`',
            "cannot pass '-D' / '--define' without '-t' / '--algotext'",
        )
    else:
        namespace = {}
        if algofile is not None:
            algotext = algofile.read()

    if print_algo:
        if PYGMENTS:
            highlight(
                algotext,
                PythonLexer(),
                TerminalFormatter(),
                outfile=sys.stdout,
            )
        else:
            click.echo(algotext)

    first_trading_day = \
        bundle_data.equity_daily_bar_reader.first_trading_day

    if isinstance(metrics_set, six.string_types):
        try:
            metrics_set = metrics.load(metrics_set)
        except ValueError as e:
            raise _RunAlgoError(str(e))

    if isinstance(blotter, six.string_types):
        try:
            blotter = load(Blotter, blotter)
        except ValueError as e:
            raise _RunAlgoError(str(e))

    # Special defaults for live trading
    if broker:
        data_frequency = 'minute'

        # No benchmark
        benchmark_sid = None
        benchmark_returns = pd.Series(index=pd.date_range(start, end,
                                                          tz='utc'),
                                      data=0.0)

        broker.daily_bar_reader = bundle_data.equity_daily_bar_reader

        if start.date() < now.date():
            backtest_start = start
            backtest_end = bundle_data.equity_daily_bar_reader.last_available_dt

            if not os.path.exists(state_filename):
                log.info("Backtest from %s to %s." %
                         (backtest_start.date(), backtest_end.date()))
                backtest_data = DataPortal(
                    bundle_data.asset_finder,
                    trading_calendar=trading_calendar,
                    first_trading_day=first_trading_day,
                    equity_minute_reader=bundle_data.equity_minute_bar_reader,
                    equity_daily_reader=bundle_data.equity_daily_bar_reader,
                    adjustment_reader=bundle_data.adjustment_reader,
                )
                backtest = create_algo_class(
                    TradingAlgorithm, backtest_start, backtest_end, algofile,
                    algotext, analyze, before_trading_start, benchmark_returns,
                    benchmark_sid, blotter, bundle_data, capital_base,
                    backtest_data, 'daily', emission_rate, handle_data,
                    initialize, metrics_set, namespace, trading_calendar)

                ctx_blacklist = ['trading_client']
                ctx_whitelist = ['perf_tracker']
                ctx_excludes = ctx_blacklist + [
                    e
                    for e in backtest.__dict__.keys() if e not in ctx_whitelist
                ]
                backtest.run()
                #TODO better logic for the checksumq
                checksum = getattr(algofile, 'name', '<algorithm>')
                store_context(state_filename,
                              context=backtest,
                              checksum=checksum,
                              exclude_list=ctx_excludes)
            else:
                log.warn("State file already exists. Do not run the backtest.")

            # Set start and end to now for live trading
            start = pd.Timestamp.utcnow()
            if not trading_calendar.is_session(start.date()):
                start = trading_calendar.next_open(start)
            end = start

    # TODO inizia qui per creare un prerun dell'algo prima del live trading
    # usare store_context prima di passare da TradingAlgorithm a LiveTradingAlgorithm
    TradingAlgorithmClass = (partial(
        LiveTradingAlgorithm, broker=broker, state_filename=state_filename)
                             if broker else TradingAlgorithm)

    DataPortalClass = (partial(DataPortalLive, broker)
                       if broker else DataPortal)
    data = DataPortalClass(
        bundle_data.asset_finder,
        trading_calendar=trading_calendar,
        first_trading_day=first_trading_day,
        equity_minute_reader=bundle_data.equity_minute_bar_reader,
        equity_daily_reader=bundle_data.equity_daily_bar_reader,
        adjustment_reader=bundle_data.adjustment_reader,
    )
    algo = create_algo_class(TradingAlgorithmClass, start, end, algofile,
                             algotext, analyze, before_trading_start,
                             benchmark_returns, benchmark_sid, blotter,
                             bundle_data, capital_base, data, data_frequency,
                             emission_rate, handle_data, initialize,
                             metrics_set, namespace, trading_calendar)

    perf = algo.run()

    if output == '-':
        click.echo(str(perf))
    elif output != os.devnull:  # make the zipline magic not write any data
        perf.to_pickle(output)

    return perf
コード例 #3
0
 def teardown(self):
     store_context(self.state_filename,
                   context=self,
                   checksum=self.algo_filename,
                   exclude_list=self._context_persistence_excludes)
コード例 #4
0
 def handle_data(self, data):
     super(self.__class__, self).handle_data(data)
     store_context(self.state_filename,
                   context=self,
                   checksum=self.algo_filename,
                   exclude_list=self._context_persistence_excludes)