コード例 #1
0
def find_nuclear_nucleoli(pixels: np.array):
    """
    Detect nuclear in nucleoli stain images

    :param pixels: np.array, nucleoli stain image
    :return: label_nuclear_sort: np.array, grey scale labeled nuclear image
    """
    bg_int = ana.get_bg_int([pixels])[0]
    # nuclear detection
    markers = np.zeros_like(pixels)
    markers[pixels < (1.7 * bg_int)] = 1
    markers[pixels > (3 * bg_int)] = 2
    seg = random_walker(pixels, markers)
    # nuclear binary mask
    nuclear = np.zeros_like(pixels)
    nuclear[seg == 2] = 1
    # fill holes
    nuclear_fill = ndimage.binary_fill_holes(nuclear)
    # separate touching nuclei
    label_nuclear = obj.label_watershed(nuclear_fill, 1)
    # filter out:
    # 1) nuclear size < 1500
    # 2) nuclear touches boundary
    label_nuclear_ft = clear_border(label_nuclear)
    label_nuclear_ft = obj.label_remove_small(label_nuclear_ft, 1500)
    label_nuclear_sort = obj.label_resort(label_nuclear_ft)

    return label_nuclear_sort
コード例 #2
0
def find_nuclear(pixels: np.array, local_thresholding_size: int, min_size: int,
                 max_size: int):
    """
    Detect nuclear in nuclear stain image

    :param pixels: np.array, nuclear stain image
    :param local_thresholding_size: int, running size for local thresholding, varies for different magnification etc.
    :param min_size: minimum allowable nuclear size
    :param max_size: maximum allowable nuclear size
    :return: nuclear: np.array, 0-and-1, nuclear mask with nuclei identified
             label_nuclear: np.array, labeled image of nuclear mask
    """
    # nuclear identification using local thresholding
    local = threshold_local(pixels, local_thresholding_size)
    # for Jose data under 60x objective, local_thresholding_size = 701
    nuclei_local = pixels > local
    for i in range(2):
        nuclei_local = binary_erosion(nuclei_local)
    for i in range(2):
        nuclei_local = binary_dilation(nuclei_local)
    nuclei_local = ndimage.binary_fill_holes(nuclei_local)
    nuclei_local = remove_small(nuclei_local, min_size)
    nuclei_local = remove_large(nuclei_local, max_size)
    # for Jose data under 60x objective, min_size = 15000

    # nuclear identification using background intensity
    bg_int = ana.get_bg_int([pixels])[0]
    nuclei_bg = pixels > 1.05 * bg_int
    nuclei_bg = ndimage.binary_fill_holes(nuclei_bg)
    nuclei_bg = binary_erosion(nuclei_bg)
    nuclei_bg = binary_dilation(nuclei_bg)
    nuclei_bg = remove_small(nuclei_bg, min_size)
    nuclei_bg = remove_large(nuclei_bg, max_size)

    # nuclear mask
    nuclear = np.zeros_like(pixels)
    nuclear[nuclei_local == 1] = 1
    nuclear[nuclei_bg == 1] = 1

    label_nuclear = label(nuclear)

    return nuclear, label_nuclear
        pointer_pd['num_ctrl_spots'] = [num_ctrl_spots] * len(pointer_pd)

        # get raw intensities for bleach spots and control spots
        pointer_pd['raw_int'] = ana.get_intensity(
            label(bleach_spots, connectivity=1), pixels_tseries)
        ctrl_pd['raw_int'] = ana.get_intensity(
            label(ctrl_spots, connectivity=1), pixels_tseries)
        ctrl_pd['pos'] = [pos] * num_ctrl_spots

        # link ctrl spots with corresponding organelle
        ctrl_pd['%s' % analyze_organelle] = obj.points_in_objects(
            label_organelle, ctrl_pd['x'], ctrl_pd['y'])

        print("### Image analysis: background correction ...")
        # background intensity measurement
        bg_int_tseries = ana.get_bg_int(pixels_tseries)
        pointer_pd['bg_int'] = [bg_int_tseries] * len(pointer_pd)

        # background intensity fitting
        bg_fit = mat.fitting_linear(np.arange(0, len(bg_int_tseries), 1),
                                    bg_int_tseries)
        pointer_pd = dat.add_columns(
            pointer_pd,
            ['bg_linear_fit', 'bg_linear_r2', 'bg_linear_a', 'bg_linear_b'],
            [[bg_fit[0]] * len(pointer_pd), [bg_fit[1]] * len(pointer_pd),
             [bg_fit[2]] * len(pointer_pd), [bg_fit[3]] * len(pointer_pd)])

        # background correction
        # use original measurement if fitting does not exist
        if np.isnan(bg_fit[2]):
            bg = bg_int_tseries
コード例 #4
0
    sg_tseries.append(sg)

    if 1 in sg:
        label_sg = label(sg, connectivity=1)
        sg_props = regionprops_table(label_sg, pix, properties=('label', 'area', 'mean_intensity'))
        sg_props1 = regionprops_table(label_sg, pix1, properties=('label', 'area', 'mean_intensity'))
        sg_pd = pd.DataFrame(sg_props)
        sg_pd1 = pd.DataFrame(sg_props1)

        num_temp = len(sg_pd)
        num.append(num_temp)
        size_temp = np.mean(sg_pd['area'])
        size.append(size_temp)
        raw_int_G3BP1_temp = np.mean(sg_pd['mean_intensity'])
        raw_int_G3BP1.append(raw_int_G3BP1_temp)
        bg_G3BP1_temp = ana.get_bg_int([pix])[0]
        bg_G3BP1.append(bg_G3BP1_temp)
        raw_int_sample_temp = np.mean(sg_pd1['mean_intensity'])
        raw_int_sample.append(raw_int_sample_temp)
        bg_sample_temp = ana.get_bg_int([pix1])[0]
        bg_sample.append(bg_sample_temp)

        raw_int_G3BP1_full = raw_int_G3BP1_full + sg_pd['mean_intensity'].tolist()
        raw_int_sample_full = raw_int_sample_full + sg_pd1['mean_intensity'].tolist()
        x_frame = x_frame + [i] * len(sg_pd)
        bg_G3BP1_full = bg_G3BP1_full + [bg_G3BP1_temp] * len(sg_pd)
        bg_sample_full = bg_sample_full + [bg_sample_temp] * len(sg_pd1)
    else:
        num.append(0)
        size.append(0)
        raw_int_G3BP1.append(0)
コード例 #5
0
 # measure stress granule properties in both channel
 sg_props = regionprops_table(label_sg,
                              pix,
                              properties=('label', 'area',
                                          'mean_intensity'))
 sg_props1 = regionprops_table(label_sg,
                               pix1,
                               properties=('label', 'area',
                                           'mean_intensity'))
 sg_pd = pd.DataFrame(sg_props)
 sg_pd1 = pd.DataFrame(sg_props1)
 # measure total intensity
 fov_G3BP1 = regionprops(fov, pix)[0].mean_intensity
 fov_sample = regionprops(fov, pix1)[0].mean_intensity
 # measure background intensity
 bg_G3BP1 = ana.get_bg_int([pix])[0]
 bg_sample = ana.get_bg_int([pix1])[0]
 # add information into list
 pos_lst = pos_lst + [pos] * len(sg_pd)
 well_lst = well_lst + [well] * len(sg_pd)
 frame_lst = frame_lst + [frame + frame_offset] * len(sg_pd)
 label_lst = label_lst + sg_pd['label'].tolist()
 size_lst = size_lst + sg_pd['area'].tolist()
 raw_int_G3BP1_lst = raw_int_G3BP1_lst + sg_pd['mean_intensity'].tolist(
 )
 bg_G3BP1_lst = bg_G3BP1_lst + [bg_G3BP1] * len(sg_pd)
 fov_G3BP1_lst = fov_G3BP1_lst + [fov_G3BP1] * len(sg_pd)
 raw_int_sample_lst = raw_int_sample_lst + sg_pd1[
     'mean_intensity'].tolist()
 bg_sample_lst = bg_sample_lst + [bg_sample] * len(sg_pd)
 fov_sample_lst = fov_sample_lst + [fov_sample] * len(sg_pd)