コード例 #1
0
def test_model():
    freq_dim = 120
    vocab_size = 10

    np.random.seed(1337)
    torch.manual_seed(1337)

    conf = shared.model_config
    rnn_dim = conf['encoder']['rnn']['dim']
    conf["decoder"] = {"embedding_dim": rnn_dim, "layers": 2}
    model = Seq2Seq(freq_dim, vocab_size + 1, conf)
    batch = shared.gen_fake_data(freq_dim, vocab_size)
    batch_size = len(batch[0])

    out = model(batch)
    loss = model.loss(batch)

    assert out.size()[0] == batch_size
    assert out.size()[2] == vocab_size
    assert len(out.size()) == 3

    x, y = model.collate(*batch)
    x_enc = model.encode(x)

    state = None
    out_s = []
    for t in range(y.size()[1] - 1):
        ox, state = model.decode_step(x_enc, y[:, t:t + 1], state=state)
        out_s.append(ox)
    out_s = torch.stack(out_s, dim=1)
    assert out.size() == out_s.size()
    assert np.allclose(out_s.data.numpy(),
                       out.data.numpy(),
                       rtol=1e-5,
                       atol=1e-7)
コード例 #2
0
def test_ctc_model():
    freq_dim = 40
    output_dim = 10

    batch = shared.gen_fake_data(freq_dim, output_dim)
    batch_size = len(batch[0])

    model = CTC(freq_dim, output_dim, shared.model_config)
    out = model(batch)

    assert out.size()[0] == batch_size
    assert out.size()[2] == output_dim
    assert len(out.size()) == 3

    loss = model.loss(batch)
    preds = model.infer(batch)
    assert len(preds) == batch_size
コード例 #3
0
def test_ctc_model():
    freq_dim = 40
    vocab_size = 10

    batch = shared.gen_fake_data(freq_dim, vocab_size)
    batch_size = len(batch[0])

    model = CTC(freq_dim, vocab_size, shared.model_config)
    out = model(batch)

    assert out.size()[0] == batch_size

    # CTC model adds the blank token to the vocab
    assert out.size()[2] == (vocab_size + 1)

    assert len(out.size()) == 3

    loss = model.loss(batch)
    preds = model.infer(batch)
    assert len(preds) == batch_size