コード例 #1
0
def main():
	# check the given arguments
	if len(sys.argv) < 5:
		usage()
	else:
		f = shared.openFile(sys.argv[1], "r")
		directory = sys.argv[2]
		image_name = sys.argv[3]
		step_size = shared.toFlo(sys.argv[4])
	
	print 'Plotting all the cells from ' + sys.argv[1] + '...'
	# split the lines to get data
	data = [line.split() for line in f]
	max_time = len(data) - 1
	
	# calculate the tissue size
	cells_width = shared.toInt(data[0][0])
	cells_height = shared.toInt(data[0][1])
	total_cells = cells_width * cells_height + 1
	
	# create a matrix to store the concentration values we obtain from the file
	cons = numpy.zeros(shape = (max_time, total_cells))
	
	# put the concentration values from the file into the matrix
	for i in range(1, max_time + 1):
		cons[i - 1][0] = shared.toFlo(data[i][0]) * step_size
		for j in range(1, total_cells):
			cons[i - 1][j] = shared.toFlo(data[i][j])
	
	# close the file
	f.close()
	
	# plot colors
	colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
	color = 0
	
	for i in range(0, total_cells,200):
		start = 0
		
		# Adjust the plotting interval for each cell to account for different columns being staggered
		# as they enter the PSM at intervals of 6 minutes apart frome ach other
		while cons[start][i] == -1: # -1 stands for no data in the output file
			start += 1
		end = max_time - 1
		while cons[end][i] == -1:
			end -= 1;

		if (i % 4 == 0):
			pl.plot(cons[start:end, 0], cons[start:end, i], 'r')
		#elif (i % 4 == 1):
			#pl.plot(cons[start:end, 0], cons[start:end, i], 'g')
		#elif (i % 4 == 2):
			#pl.plot(cons[start:end, 0], cons[start:end, i], 'b')
		#else:
			#pl.plot(cons[start:end, 0], cons[start:end, i], 'c')
	#pl.ylim((-1,100))
        pl.axis([400, 600, 0, 300])
	pl.savefig(directory + "/" + image_name + ".png", format = "png")
	pl.close()
	print 'Done. Your plot is stored in ' + directory + "/" + image_name + ".png"
コード例 #2
0
def main():
	# check the given arguments
	if len(sys.argv) < 5:
		usage()
	else:
		f = shared.openFile(sys.argv[1], "r")
		directory = sys.argv[2]
		image_name = sys.argv[3]
		step_size = shared.toFlo(sys.argv[4])
	
	print 'Plotting all the cells from ' + sys.argv[1] + '...'
	# split the lines to get data
	data = [line.split() for line in f]
	max_time = len(data) - 1
	
	# calculate the tissue size
	cells_width = shared.toInt(data[0][0])
	cells_height = shared.toInt(data[0][1])
	total_cells = cells_width * cells_height + 1
	
	# create a matrix to store the concentration values we obtain from the file
	cons = numpy.zeros(shape = (max_time, total_cells))
	
	# put the concentration values from the file into the matrix
	for i in range(1, max_time + 1):
		cons[i - 1][0] = shared.toFlo(data[i][0]) * step_size
		for j in range(1, total_cells):
			cons[i - 1][j] = shared.toFlo(data[i][j])
	
	# close the file
	f.close()
	
	# plot colors
	colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
	color = 0
	
	for i in range(1, total_cells):
		start = 0
		
		# Adjust the plotting interval for each cell to account for different columns being staggered
		# as they enter the PSM at intervals of 6 minutes apart frome ach other
		while cons[start][i] == -1: # -1 stands for no data in the output file
			start += 1
		end = max_time - 1
		while cons[end][i] == -1:
			end -= 1;

		if (i % 4 == 0):
			pl.plot(cons[start:end, 0], cons[start:end, i], 'r')
		elif (i % 4 == 1):
			pl.plot(cons[start:end, 0], cons[start:end, i], 'g')
		elif (i % 4 == 2):
			pl.plot(cons[start:end, 0], cons[start:end, i], 'b')
		else:
			pl.plot(cons[start:end, 0], cons[start:end, i], 'c')
	
	pl.savefig(directory + "/" + image_name + ".png", format = "png")
	pl.close()
	print 'Done. Your plot is stored in ' + directory + "/" + image_name + ".png"
コード例 #3
0
def main():
	# check the given arguments
	if len(sys.argv) < 3:
		usage()
	elif len(sys.argv) == 4:
		if sys.argv[1] == "-c" or sys.argv[1] == "--no-color":
			shared.terminalRed = ""
			shared.terminalReset = ""
			filename = sys.argv[2]
			spaces = sys.argv[3]
		else:
			usage()
	else:
		filename = sys.argv[1]
		spaces = sys.argv[2]
	
	# open the input file and check to ensure 'spaces' is an integer
	f = shared.openFile(filename, "r")
	spaces = shared.toInt(spaces)
	
	# replace spaces with tabs
	ofile = ""
	for line in f:
		count = 0
		while line[:spaces] == " " * spaces:
			line = line[spaces:]
			count += 1
		ofile = ofile + "\t" * count + line
	
	f.close()
	newfile = shared.openFile(filename, "w")
	newfile.write(ofile)
コード例 #4
0
def main():
    print 'Reading command-line arguments...'
    args = sys.argv[1:]  # Remove the name of the program from the arguments
    num_args = len(args)
    if num_args == 3:  # There are three arguments, each of which is required
        input_file = shared.openFile(args[0], 'r')  # The input parameter sets
        output_fname = args[1]
        output_file = shared.openFile(output_fname,
                                      'w')  # The output parameter sets
        num_output_params = shared.toInt(
            args[2]
        )  # How many parameters each set should have in the output file
    else:
        usage()

    print 'Converting each parameter set...'
    num_input_params = -1
    for line in input_file:  # For every parameter set
        if len(line) > 1 and line[0] != '#':  # Skip blank lines and comments
            input_set = line.split(',')
            if num_input_params == -1:  # Find the input format based on the first parameter set found
                num_input_params = len(input_set)
            else:
                output_file.write(
                    '\n')  # Print a newline before each non-first set

            input_set[num_input_params - 1].replace(
                '\n', '')  # Get rid of the newline in the last parameter

            # Convert the set to the master (88) format
            base_set = ['0'] * 88
            for par in range(num_input_params):
                base_index = set_formats[num_input_params][par]
                base_set[base_index] = input_set[par]

            # Convert the master format to the specified one
            output_set = ['0'] * num_output_params
            for par in range(num_output_params):
                output_index = set_formats[num_output_params][par]
                output_set[par] = base_set[output_index]

            # Write the results to the output file
            output_file.write(output_set[0])
            for par in range(1, num_output_params):
                output_file.write(',' + output_set[par])

    print 'Closing files...'
    input_file.close()
    output_file.close()

    print 'Done. Your newly formatted parameter sets are stored in ' + output_fname
コード例 #5
0
def main():
	print 'Reading command-line arguments...'
	args = sys.argv[1:] # Remove the name of the program from the arguments
	num_args = len(args)
	if num_args == 3: # There are three arguments, each of which is required
		input_file = shared.openFile(args[0], 'r') # The input parameter sets
		output_fname = args[1]
		output_file = shared.openFile(output_fname, 'w') # The output parameter sets
		num_output_params = shared.toInt(args[2]) # How many parameters each set should have in the output file
	else:
		usage()
	
	print 'Converting each parameter set...'
	num_input_params = -1
	for line in input_file: # For every parameter set
		if len(line) > 1 and line[0] != '#': # Skip blank lines and comments
			input_set = line.split(',')
			if num_input_params == -1: # Find the input format based on the first parameter set found
				num_input_params = len(input_set)
			else:
				output_file.write('\n') # Print a newline before each non-first set
			
			input_set[num_input_params - 1].replace('\n', '') # Get rid of the newline in the last parameter
			
			# Convert the set to the master (88) format
			base_set = ['0'] * 88
			for par in range(num_input_params):
				base_index = set_formats[num_input_params][par]
				base_set[base_index] = input_set[par]
			
			# Convert the master format to the specified one
			output_set = ['0'] * num_output_params
			for par in range(num_output_params):
				output_index = set_formats[num_output_params][par]
				output_set[par] = base_set[output_index]
			
			# Write the results to the output file
			output_file.write(output_set[0])
			for par in range(1, num_output_params):
				output_file.write(',' + output_set[par])
	
	print 'Closing files...'
	input_file.close()
	output_file.close()
	
	print 'Done. Your newly formatted parameter sets are stored in ' + output_fname
コード例 #6
0
def main():
	#check the given arguments
	print "Reading command-line arguments..."
	args = sys.argv[1:]
	num_args = len(args)
	req_args = [False] * 6
	num_seeds = 0
	sim_arguments = ""

	if num_args >= 6:
		for arg in range(0, num_args - 1, 2):
			option = args[arg]
			value = args[arg + 1]
			if option == '-i' or option == '--input-file':
				ifile = value
				req_args[0] = True
			elif option == '-n' or option == '--num-params':
				num_params = shared.toInt(value)
				req_args[1] = True
			elif option == '-p' or option == '--pars-per-job':
				pars_per_job = shared.toInt(value)
				req_args[2] = True
			elif option == '-d' or option == '--directory':
				folder = value
				req_args[3] = True
			elif option == '-s' or option == '--simulation':
				simulation = value
				req_args[4] = True
			elif option == '-S' or option == '--seeds':
				num_seeds = int(value)
				req_args[5] = True
			elif option == '-a' or option == '--arguments':
				for a in range(arg + 1, num_args):
					sim_arguments += ' ' + args[a]
				break
			elif option == '-h' or option == '--help':
				usage()
			else:
				usage()
		for arg in req_args:
			if not arg:
				req_args
				usage()
	else:
		usage()
	
	index = 0
	
	input_file = shared.openFile(ifile, "r")
	shared.ensureDir(folder)
	for parset in range(0, num_params, pars_per_job):
		params = shared.openFile(folder + "/input" + str(index) + ".params", "w")
		for line in range(pars_per_job):
			params.write(input_file.readline())
		params.close()
		index += 1;
	
	for seeds in range(num_seeds):
		seed = (seeds + 1) * 1000
		for parset in range(index):
			job = shared.openFile(folder + "/pbs-job-" + str(seed) + "-" + str(parset), 'w')
			job.write('''
#PBS -N robust-test 
#PBS -l nodes=1:ppn=1
#PBS -l mem=500mb
#PBS -l file=300mb
#PBS -q biomath
#PBS -j oe
#PBS -o ''' + folder + '''/output''' + str(seed) + "-" + str(parset) + '''.txt
#PBS -l walltime=06:00:00

cd $PBS_O_WORKDIR

''' + simulation + ' ' + sim_arguments + ' -p ' + str(pars_per_job) + ' -i ' + ifile + ''' -s ''' + str(seed) + " -M 6 -E " + folder + "/scores-" + str(seed) + "-" + str(parset) + ".csv")
			job.close()
			subprocess.call(["qsub", folder + "/pbs-job-" + str(seed) + "-" + str(parset)])
コード例 #7
0
def main():
	filename = ""
	if len(sys.argv) == 8:
		directory = sys.argv[1] # directory where the mutation is
		first_run = shared.toInt(sys.argv[2])  
		last_run = shared.toInt(sys.argv[3])
		feature = sys.argv[4]
		picture = sys.argv[5]
		start = shared.toInt(sys.argv[6])
		end = shared.toInt(sys.argv[7])
	else:
		print("ofeatures.py requires 7 parameters --", len(sys.argv) - 1, "given.")
		exit(1)

	bins = 10
	miny = 999999
	maxy = 0
	x = []

	for r in range(first_run, last_run):
		filename = directory + "/run" + str(r) + "/" + feature

		f = file(filename, "r")

		index = 0
		for line in f:
			mylist = line.split()
			for i in range(len(mylist)):
				mylist[i] = float(mylist[i])
			num = min(mylist)
			if (num < miny):
				miny = num
			num = max(mylist)
			if (num > maxy):
				maxy = num
			if (r == first_run):
				x.append(mylist)
			else:
				x[index] = x[index] + mylist
			index += 1

	z = []
	minz = inf
	maxz = 0
	for line in x:
		newline = [0] * (bins + 1)
		for el in line:
			bin = ((el - start) * 100) / (end - start)
			newline[int(bin / float(100 / bins))] += 1
		if (max(newline) > maxz):
			maxz = max(newline)
		if (min(newline) < minz):
			minz = min(newline)
		z.append(newline)

	hold(True)

	cbar = plt.colorbar(imshow(z, aspect='auto', extent=[start, end , 0, 16], cmap="hot"))
	xlabel(feature[0:1].upper() + feature[1:-4])
	ylabel('Cells')
	cbar.ax.set_yticks([0, 1])
	cbar.ax.set_yticklabels(['Low', 'High'])

	savefig(picture)
コード例 #8
0
def main():
	print 'Reading command-line arguments...'
	args = sys.argv[1:] # Remove the name of the program from the arguments
	num_args = len(args)
	cons_file = None # Concentrations file
	figure_fname = 'st' # Filename to give the figure minus its extension
	image_format = 'png' # Format in which to save the figure, also serving as its extension
	image_width = 1000 # Width of the image in pixels
	image_height = 250 # Height of the image in pixels
	steps_til_growth = 60000 # Steps before growth starts
	steps_to_split = 600 # Steps each split takes
	initial_width = 10 # Initial width of the PSM in cells
	granularity = 1 # Use each <granularity> time steps of data
	start_step = 0 # Start time step relative to steps_til_growth
	end_step = 60000 # End time step relative to steps_til_growth
	for arg in range(0, num_args - 1, 2):
		option = args[arg]
		value = args[arg + 1]
		if option == '-c' or option == '--cons-file':
			cons_file = shared.openFile(value, 'r')
		elif option == '-f' or option == '--figure-name':
			figure_fname = value
		elif option == '-i' or option == '--image-format':
			image_format = value
		elif option == '-w' or option == '--image-width':
			image_width = shared.toInt(value)
		elif option == '-h' or option == '--image-height':
			image_height = shared.toInt(value)
		elif option == '-G' or option == '--steps-til-growth':
			steps_til_growth = shared.toInt(value)
		elif option == '-S' or option == '--steps-to-split':
			steps_to_split = shared.toInt(value)
		elif option == '-n' or option == '--initial-width':
			initial_width = shared.toInt(value)
		elif option == '-g' or option == '--granularity':
			granularity = shared.toInt(value)
		elif option == '-s' or option == '--start-step':
			start_step = shared.toInt(value)
		elif option == '-e' or option == '--end-step':
			end_step = shared.toInt(value)
		elif option == '-h' or option == '--help':
			usage()
		else:
			usage()
	if cons_file is None: # The concentrations file is required
		usage()
	
	print 'Parsing concentrations file...'
	raw_data = [line.split() for line in cons_file] # Split the data into lines and split each line by spaces into an array
	cons_file.close()
	
	print 'Converting data to the appropriate sizes...'
	# Take the width and height from the first line of the file
	psm_width = shared.toInt(raw_data[0][0])
	psm_height = shared.toInt(raw_data[0][1])
	raw_data = raw_data[1 + steps_til_growth:] # Remove all data before growth starts
	# Adjust step sizes for the given granularity
	steps_til_growth /= granularity
	steps_to_split /= granularity
	data = [] # Like raw data, but takes only each <granularity> time steps of data and removes the time steps column
	for line in range(len(raw_data)):
		if line % granularity == 0:
			data.append(raw_data[line])
	total_steps = len(data)
	for row in range(total_steps):
		data[row] = data[row][1:] # Remove the time steps column
	steps_when_full = (psm_width - initial_width) * steps_to_split # When the PSM is done growing
	total_width = psm_width + (total_steps - steps_when_full) / steps_to_split # The width of every cell that exists at any point
	table = [[0 for i in range(total_steps)] for j in range(total_width)] # A table containing the data formatted more closely to what the figure requires
	
	print 'Accounting for cell growth and averaging cell columns...'
	min_con = float('inf')
	max_con = 0
	
	# Fill in the table with all data from when the PSM is growing
	current_width = initial_width
	row_start = current_width - 1
	steps_elapsed = 0
	for column in range(steps_when_full):
		for row in range(current_width):
			avg_con = 0
			cell_x = row_start - row # Posterior cells should be printed on the right
			for cell_y in range(psm_height): # Average each column of cells
				cell_index = cell_y * psm_width + cell_x
				avg_con += shared.toFlo(data[column][cell_index])
			avg_con /= psm_height
			table[row][column] = avg_con
			# Update the minimum and maximum concentrations
			min_con = min(min_con, avg_con)
			max_con = max(max_con, avg_con)
		for row in range(current_width, total_width): # Nonexistent cells get concentrations of 0
			table[row][column] = -10
		steps_elapsed += 1
		if steps_elapsed == steps_to_split: # Split the PSM every steps_to_split time steps
			current_width += 1
			row_start += 1 # Adjust because the first cell in data is the new, posterior-most cell
			steps_elapsed = 0
	for column in range(steps_when_full, total_steps):
		for row in range(current_width, total_width):
			table[row][column] = -10
	
	# Fill in the table with all data from when the PSM is done growing
	arrested_cells = []
	row_start = psm_width - 1
	row_offset = 0
	for column in range(steps_when_full, total_steps):
		for row in range(psm_width):
			avg_con = 0
			cell_x = (row_start - row) % psm_width # Posterior cells should be printed on the right
			for cell_y in range(psm_height): # Average each column of cells
				cell_index = cell_y * psm_width + cell_x
				avg_con += shared.toFlo(data[column][cell_index])
			avg_con /= psm_height
			table[row + row_offset][column] = avg_con
			# Update the minimum and maximum concentrations
			min_con = min(min_con, avg_con)
			max_con = max(max_con, avg_con)
		for cell in arrested_cells: # Print the last value each arrested cell had for the rest of time
			table[cell[0]][column] = -10

		steps_elapsed += 1
		if steps_elapsed == steps_to_split: # Split the PSM every steps_to_split time steps
			arrested_cells.append((row_offset, table[row_offset][column]))
			row_offset += 1
			steps_elapsed = 0
	max_con += 1
	print 'Cropping to the specified time range...'
	start_step /= granularity
	end_step /= granularity
	total_steps = end_step - start_step
	for row in range(total_width):
		table[row] = table[row][start_step:end_step]
	print 'Creating a blank image...'
	im = Image.new('RGB', (image_width, image_height), rgb('FFFFFF')) # Make an image with a blank, white canvas
	draw = ImageDraw.Draw(im) # Get the drawing object
	
	print 'Filling the image with the concentrations...'
	# Find the factors to scale the table data into an image_width by image_height sized figure
	x_factor = shared.toFlo(total_steps) / image_width
	y_factor = shared.toFlo(total_width) / image_height
	# Darker shades indicate higher concentrations
	shades = [rgb('FEB4EF'), rgb('FEB4EF'), rgb('FE5A77'), rgb('FE2D3B'), rgb('FF0000'), rgb('BF0000'), rgb('7F0000'), rgb('3F0000'), rgb('000000'), rgb('FFFFFF')]
	num_shades = len(shades)
	for i in range(image_width):
		x = shared.toInt(i * x_factor)
		for j in range(image_height):
			reverse_j = image_height - j - 1 # In the figure, cell 0 is at the bottom, not top
			y = shared.toInt(reverse_j * y_factor)
			con = table[y][x]
			if con == -10:
				color = rgb('EEE5DE')
			else:
				color = shades[int((con - min_con) / (max_con - min_con) * (num_shades - 1))] # Find the color matching the concentration
			draw.point((i, j), fill = color)
	
	print 'Saving the image...'
	figure_fname_full = figure_fname + '.' + image_format.lower()
	im.save(figure_fname_full, image_format.upper())
	
	print 'Done. Your figure is stored in ' + figure_fname_full
コード例 #9
0
ファイル: plot_two.py プロジェクト: rlfarman/CS317_2016_base
def main():
    # check the given arguments
    if len(sys.argv) < 6:
        usage()
    elif len(sys.argv) == 7:
        if sys.argv[1] == "-c" or sys.argv[1] == "--no-color":
            shared.terminalRed = ""
            shared.terminalReset = ""
            filename = sys.argv[2]
            filename2 = sys.argv[3]
            directory = sys.argv[4]
            measuring = sys.argv[5]
            mutation = sys.argv[6]

        else:
            usage()
    else:
        filename = sys.argv[1]
        directory = sys.argv[2]
        measuring = sys.argv[3]
        mutation = sys.argv[4]

    # open the input file and ensure the directory exists
    f = shared.openFile(filename, "r")
    f2 = shared.openFile(filename2, "r")
    directory = shared.ensureDir(directory)

    # split the lines to get data
    data = [line.split() for line in f]
    file_len = len(data) - 1
    max_x = file_len
    f.close()

    data2 = [line.split() for line in f2]
    file_len2 = len(data2) - 1
    max_x2 = file_len2
    f2.close()

    if (max_x == max_x2):
        print "test"
    # number of columns we have in the files
    cn = shared.toInt(data[0][0]) * shared.toInt(data[0][1]) + 1
    cn2 = shared.toInt(data2[0][0]) * shared.toInt(data2[0][1]) + 1

    # create matrices to store the data we obtained from the files
    m2p = numpy.zeros(shape=(max_x, cn + cn2))

    # put the data coming from the files to the matrix
    for i in range(2, file_len):
        for j in range(0, cn + cn2):
            if (j < cn):
                m2p[i][j] = shared.toFlo(data[i][j])

            elif (j == cn):
                print data2[i][j - cn]
            else:
                m2p[i][j] = 2 * shared.toFlo(data2[i][j - cn])

    # plot colors
    colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
    color = 0

    for i in range(1, cn + cn2):
        if (i % 4 == 0):
            pl.plot(m2p[0:max_x, 0], m2p[0:max_x, i], 'r')
        elif (i % 4 == 1):
            pl.plot(m2p[0:max_x, 0], m2p[0:max_x, i], 'g')
        elif (i % 4 == 2):
            pl.plot(m2p[0:max_x, 0], m2p[0:max_x, i], 'b')
        else:
            pl.plot(m2p[0:max_x, 0], m2p[0:max_x, i], 'c')

    pl.title(measuring + " " + mutation + " All Cells")
    pl.savefig(directory + "/" + mutation + "_all.png", format="png")
    pl.close()

    # plot the data
    average = []
    for i in range(0, max_x):
        average.append(float(sum(m2p[i][1:])) / float(len(m2p[i][1:])))

    pl.plot(m2p[0:max_x, 0], average, colors[color])
    if color == len(colors) - 1:
        color = 0
    else:
        color += 1

    pl.title(measuring + " " + mutation + " Average")
    pl.savefig(directory + "/" + mutation + "_avg.png", format="png")
    pl.close()
コード例 #10
0
def main():
	# check the given arguments
	if len(sys.argv) < 6:
		usage()
	else:
		folder = sys.argv[1]
		parsets = shared.toInt(sys.argv[2])
		ofolder = sys.argv[3]
		image_name = sys.argv[4]
		excel_name = sys.argv[5]

	mutants = ["wildtype", "delta", "her1", "her7", "her7her13", "her13"]
	markers = ['o', '^', 's', '*', 'h', 'D']
	colors = ['k', 'b', 'g', 'r', 'c', 'm']
	num_mutants = 6
	
	# Create excel file in which the data used to create the plots will be stored
	excel_file = shared.openFile(ofolder + "/" + excel_name + "-sync.csv", "w")
	
	for index in range(num_mutants):

		mutant = mutants[index]
		marker = markers[index]
		color = colors[index]
			
		# open the first file to get the height, width and interval
		f = shared.openFile(folder + "/" + mutant + "/set_0_sync_mh1.feats", "r")

		# split the lines to get data
		data = [line.split(",") for line in f]
	
		# calculate the tissue size
		height = shared.toInt(data[0][0])
		interval = shared.toFlo(data[0][1])
		#split_time = shared.toFlo(data[0][2])
		width = len(data[1]) - 1

		indexes = [0 for i in range(width)]
		averages = [0 for i in range(width)]
		stderr = [0 for i in range(width)]
		
		for parset in range(parsets):
			f = shared.openFile(folder + "/" + mutant + "/set_" + str(parset) + "_sync_mh1.feats", "r")
	
			# split the lines to get data
			data = [line.split(",") for line in f]
		
			for col in range(width):
				for line in range(1, height + 1):
					averages[col] += shared.toFlo(data[line][col])
		
			f.close()
				
		for col in range(width):
			indexes[col] = (((interval / 2) * col + (interval / 2) * col + interval) / 2) / 6
			averages[col] /= height * parsets
			
		if mutant == "wildtype":
			excel_file.write("mutant,")
			for index in indexes:
				excel_file.write(str(index) + ",")
			excel_file.write("\n")

		for parset in range(parsets):
			f = shared.openFile(folder + "/" + mutant + "/set_" + str(parset) + "_sync_mh1.feats", "r")
		
			data = [line.split(",") for line in f]
		
			# std error = std deviation / sqrt(num data points)
			for col in range(width):
				for line in range(1, height + 1):
					stderr[col] += (shared.toFlo(data[line][col]) - averages[col]) ** 2
				stderr[col] = math.sqrt(stderr[col] / (height * parsets))
				stderr[col] /= math.sqrt(height * parsets)	

		# Print the means and standard deviations to the excel_file
		excel_file.write(mutant + ",")
		for average in averages:
			excel_file.write(str(average) + ",")
		excel_file.write("\n,")
		for stder in stderr:
			excel_file.write(str(stder) + ",")
		excel_file.write("\n")

		plt.errorbar(indexes, averages, stderr, fmt='ro', linestyle='-', marker=marker, color=color, label=mutant)
	plt.legend(prop={'size':8}, loc=3)
	pylab.xlim([0, (width + 1) * (interval / 2) / 6])
	plt.savefig(ofolder + "/" + image_name + ".png", format = "png")
	plt.close()
コード例 #11
0
def main():
    # Default argument values.
    global Y_BOUNDS
    global JOB_NAME
    global PARAM_NAMES
    nodes = 1
    feature = -1
    points = 4
    percent = 20
    file_out = "sensitivity_graphs"
    nominal_file = "../sensitivity-analysis/nominal.params"
    data_dir = "../sensitivity-analysis/sense-for-plot"
    image_dir = "plots"
    perturb_file = "../simulation/input.perturb"
    nominal_count = 1
    ex_path = "../sensitivity-analysis/sensitivity"
    sim_path = "../simulation/simulation"
    ppn = "2"
    graph = False
    elasticity = False
    sim_args = " "
    additional_args = " "
    cname = None

    #Check the commmand line input:
    if len(sys.argv) < 2 or ("-h" in sys.argv) or ("--help" in sys.argv):
        usage()
    ishift = 0
    for i in range(1, len(sys.argv), 2):
        i += ishift
        if i + 1 >= len(sys.argv):
            usage()
        #elif sys.argv[i] == "-j" or sys.argv[i] == "--job-name":
        #	global JOB_NAME = sys.argv[i+1]
        elif sys.argv[i] == "-n" or sys.argv[i] == "--nominal-file":
            nominal_file = sys.argv[i + 1]
        elif sys.argv[i] == "-c" or sys.argv[i] == "--nominal-count":
            nominal_count = shared.toInt(sys.argv[i + 1])
        elif sys.argv[i] == "-p" or sys.argv[i] == "--percent":
            percent = shared.toInt(sys.argv[i + 1])
        elif sys.argv[i] == "-P" or sys.argv[i] == "--Points":
            points = shared.toInt(sys.argv[i + 1])
        elif sys.argv[i] == "-l" or sys.argv[i] == "--ppn":
            ppn = sys.argv[i + 1]
        elif sys.argv[i] == "-N" or sys.argv[i] == "--nodes":
            nodes = shared.toInt(sys.argv[i + 1])
        elif sys.argv[i] == "-f" or sys.argv[i] == "--feature":
            feature = shared.toInt(sys.argv[i + 1])
        elif sys.argv[i] == "-e" or sys.argv[i] == "--exec":
            ex_path = sys.argv[i + 1]
        elif sys.argv[i] == "-s" or sys.argv[i] == "--sim":
            sim_path = sys.argv[i + 1]
        elif sys.argv[i] == "-o" or sys.argv[i] == "--output":
            file_out = sys.argv[i + 1]
        elif sys.argv[i] == "-d" or sys.argv[i] == "--dir":
            image_dir = sys.argv[i + 1]
        elif sys.argv[i] == "-D" or sys.argv[i] == "--data-dir":
            data_dir = sys.argv[i + 1]
        elif sys.argv[i] == "-j" or sys.argv[i] == "--job-name":
            JOB_NAME = sys.argv[i + 1]
        elif sys.argv[i] == "-C" or sys.argv[i] == "--cluster-name":
            cname = sys.argv[i + 1]
        elif sys.argv[i] == "--ymin":
            val = float(sys.argv[i + 1])
            if Y_BOUNDS == None:
                Y_BOUNDS = (val, max(1.5, 2 * val))
            else:
                Y_BOUNDS[0] = val
        elif sys.argv[i] == "--ymax":
            val = float(sys.argv[i + 1])
            if Y_BOUNDS == None:
                Y_BOUNDS = (min(0, 2 * val), val)
            else:
                Y_BOUNDS[1] = val
        elif sys.argv[i] == "-E" or sys.argv[i] == "--elasticity":
            elasticity = True
            ishift = -1
        elif sys.argv[i] == "-g" or sys.argv[i] == "--graph":
            graph = True
            ishift = -1
        elif sys.argv[i] == "-a" or sys.argv[i] == "--args":
            for a in sys.argv[i + 1:]:
                additional_args += " " + a + " "
            break

    #Ensure that the necessary directories exist -- if not, make them.
    shared.ensureDir(data_dir)
    shared.ensureDir(image_dir)

    #Additional args is a string that that is attached to the final arguments sent to the sensitivity analysis program.
    additional_args = " -p " + str(percent) + " -P " + str(
        points) + " " + additional_args

    #Depending on whether elasticity is chosen, either create sensitivity bar graphs or scatter-line plots.
    if (not elasticity):
        #This statement checks to see if simulations actually need to be run. This is mostly true, but if all the data has been created already then '-g' will cause the script to skip to the plotting.
        if (not graph):
            #dispatch_jobs takes care of running the program locally or making the pbs jobs.
            dispatch_jobs(nodes, file_out, nominal_file, data_dir, image_dir,
                          perturb_file, nominal_count, 0, ex_path, sim_path,
                          ppn, sim_args, None, additional_args, cname)
            print "\t~ Done with runs ~"

        #Once the data has been collected, load it in and make the graphs.
        print "\t ~ Generating graphs ~ "
        #Load all of the data from the sensitivity results.
        #This uses "/normalized_[number]" as the file name because that is how it's set in sensitivity-analysis/init.hpp.
        #The struct input_params has two strings, norm_file and sense_file, that determine the names of specific files to load.
        #These could be specified more generally by making a new commandline argument for the sensitivity executible, but this has not seemed necessary because there is already so much customization of the directies these files end up in.
        data = []
        names = []
        for i in range(nominal_count):
            temp_data, names = parse_files(data_dir + "/normalized_" + str(i))
            data.append(temp_data)

        #If just one feature is specified, this makes just one graph. Otherwise it loops through all features and makes a graph for each.
        bar_data = [
        ]  #This holds onto the data that was actually plotted, i.e. average sensitivity values for each parameter.
        bar_error = []  #This holds onto the standard error for each parameter.
        if feature > 0:
            temp_sense, temp_error = sense_bar(data,
                                               image_dir,
                                               feature,
                                               feat_name=names[feature])
            bar_data.append(temp_sense)
            bar_error.append(temp_error)
        else:
            sys.stdout.write("Done with normalized graphs: ")
            sys.stdout.flush()
            for i in range(len(data[0][0])):
                temp_sense, temp_error = sense_bar(data,
                                                   image_dir,
                                                   i,
                                                   feat_name=names[i])
                bar_data.append(temp_sense)
                bar_error.append(temp_error)
                sys.stdout.write(str(i) + "... ")
                sys.stdout.flush()
        #Write out the bar graph data to file
        write_bar_data(bar_data,
                       bar_error,
                       data_dir + "/bar_graph_data_normalized.csv",
                       ynames=names,
                       xnames=PARAM_NAMES)

        #Abosulte sensitivity graphs
        #Similarly, this uses "/LSA_[number]" as the file name because that is how it's set in sensitivity-analysis/init.hpp.
        data = []
        names = []
        for i in range(nominal_count):
            temp_data, names = parse_files(data_dir + "/LSA_" + str(i))
            data.append(temp_data)

        #If just one feature is specified, this makes just one graph. Otherwise it loops through all features and makes a graph for each.
        bar_data = [
        ]  #This holds onto the data that was actually plotted, i.e. average sensitivity values for each parameter.
        bar_error = []  #This holds onto the standard error for each parameter.
        if feature > 0:
            temp_sense, temp_error = sense_bar(data,
                                               image_dir,
                                               feature,
                                               feat_name=names[feature],
                                               normal=False)
            bar_data.append(temp_sense)
            bar_error.append(temp_error)
        else:
            sys.stdout.write("Done with absolute graphs: ")
            sys.stdout.flush()
            for i in range(len(data[0][0])):
                temp_sense, temp_error = sense_bar(data,
                                                   image_dir,
                                                   i,
                                                   feat_name=names[i],
                                                   normal=False)
                bar_data.append(temp_sense)
                bar_error.append(temp_error)
                sys.stdout.write(str(i) + "... ")
                sys.stdout.flush()
        #Write out the bar graph data to file
        write_bar_data(bar_data,
                       bar_error,
                       data_dir + "/bar_graph_data_absolute.csv",
                       ynames=names,
                       xnames=PARAM_NAMES)

    #If the elasticity option was included, the following code makes scatter plots of the oscillation features data at different perturbations of each nominal parameter.
    else:
        #This adds a commandline argument that is passed to the sensitivity analysis program to tell it to gather the data without caluclating the sensitivity.
        additional_args = " --generate-only " + additional_args
        #Note that for the elasticity/scatter-line plots each instance of sensitivity used to gather the data is given only one parameter set to ensure data files will be unique (and not get overwritten). This makes it slower than the sensitivity graphs.
        print "\n\t ~ Elasticity data collection ~ "
        data = [
        ]  # this will be a four dimensional list indexed by: data[which nominal set][which parameter][which perturbation amount][which oscillation feature value]
        names = []
        nominal = [
        ]  # this will be a three dimensional list indexed by: nominal[which nominal set][0][which oscillation feature], the middle index is zero because there is only one parameter set in the nominal features file.

        #This loop runs if the data needs to be collected. There are some unintuitive additions that are used to keep track of how many jobs should be sent out the index of which nominal parameter set to use.
        if not graph:
            disp = 0  # a counter used to keep track of how many jobs to dispatch.
            raw_data_dirs = [
            ]  #A list that gets filled with file name strings which get passed as arguments to the sensitivity program.
            for c in range(0, nominal_count):
                raw_data_dirs.append(data_dir + "/elastic_data_" + str(c))
                disp += 1
                if disp == nodes or c == nominal_count - 1:
                    dispatch_jobs(disp, file_out, nominal_file, data_dir,
                                  image_dir, perturb_file, disp, c - disp + 1,
                                  ex_path, sim_path, ppn, sim_args,
                                  raw_data_dirs, additional_args, cname)
                    raw_data_dirs = []
                    disp = 0

        #Now that the data files exist, load them and parse them into the appropriate arrays.
        #The "/dim_[number]" and "/nominal_0" strings are the file names that the sensitivity analysis program uses to distinguish output features files.
        #Modifying these file names would require changing nom_file and dim_file in the constructor of input_params in sensitivity-analysis/init.hpp.
        #This loop is similar to the above, but simpler -- for every nominal parameter set it opens its /elastic_data_[number] directory, parses the files in it and stores the data in data[number] and nominal[number]
        for c in range(0, nominal_count):
            data.append([])
            for d in range(44):
                temp_data, names = parse_files(data_dir + "/elastic_data_" +
                                               str(c) + "/dim_" + str(d))
                data[c].append(temp_data)
            temp_data, names = parse_files(data_dir + "/elastic_data_" +
                                           str(c) + "/nominal_0")
            nominal.append(temp_data)

        #data[] and nominal[] should have everything we need for the graphs now, so plot them.
        print "\n\t ~ Elasticity graphing ~ "
        sys.stdout.write("Done with parameter: ")
        sys.stdout.flush()

        #Loop through each parameter
        for p in range(len(data[0])):
            #Loop through each feature
            for f in range(len(data[0][0][0])):
                #Plot!
                line_plot(data, nominal, p, f, names[f], PARAM_NAMES[p],
                          image_dir, percent, points)
            sys.stdout.write(str(p) + "...")
            sys.stdout.flush()
    print "\n\t ~ Graphs complete ~ "
    return
コード例 #12
0
def main():
    # check the given arguments
    if len(sys.argv) < 6:
        usage()
    else:
        folder = sys.argv[1]
        parsets = shared.toInt(sys.argv[2])
        ofolder = sys.argv[3]
        image_name = sys.argv[4]
        excel_name = sys.argv[5]

    mutants = ["wildtype", "delta", "her1", "her7", "her7her13", "her13"]
    markers = ['o', '^', 's', '*', 'h', 'D']
    colors = ['k', 'b', 'g', 'r', 'c', 'm']
    num_mutants = 6

    # Create excel file in which the data used to create the plots will be stored
    excel_file = shared.openFile(ofolder + "/" + excel_name + "-sync.csv", "w")

    for index in range(num_mutants):

        mutant = mutants[index]
        marker = markers[index]
        color = colors[index]

        # open the first file to get the height, width and interval
        f = shared.openFile(folder + "/" + mutant + "/set_0_sync_mh1.feats",
                            "r")

        # split the lines to get data
        data = [line.split(",") for line in f]

        # calculate the tissue size
        height = shared.toInt(data[0][0])
        interval = shared.toFlo(data[0][1])
        #split_time = shared.toFlo(data[0][2])
        width = len(data[1]) - 1

        indexes = [0 for i in range(width)]
        averages = [0 for i in range(width)]
        stderr = [0 for i in range(width)]

        for parset in range(parsets):
            f = shared.openFile(
                folder + "/" + mutant + "/set_" + str(parset) +
                "_sync_mh1.feats", "r")

            # split the lines to get data
            data = [line.split(",") for line in f]

            for col in range(width):
                for line in range(1, height + 1):
                    averages[col] += shared.toFlo(data[line][col])

            f.close()

        for col in range(width):
            indexes[col] = (((interval / 2) * col +
                             (interval / 2) * col + interval) / 2) / 6
            averages[col] /= height * parsets

        if mutant == "wildtype":
            excel_file.write("mutant,")
            for index in indexes:
                excel_file.write(str(index) + ",")
            excel_file.write("\n")

        for parset in range(parsets):
            f = shared.openFile(
                folder + "/" + mutant + "/set_" + str(parset) +
                "_sync_mh1.feats", "r")

            data = [line.split(",") for line in f]

            # std error = std deviation / sqrt(num data points)
            for col in range(width):
                for line in range(1, height + 1):
                    stderr[col] += (shared.toFlo(data[line][col]) -
                                    averages[col])**2
                stderr[col] = math.sqrt(stderr[col] / (height * parsets))
                stderr[col] /= math.sqrt(height * parsets)

        # Print the means and standard deviations to the excel_file
        excel_file.write(mutant + ",")
        for average in averages:
            excel_file.write(str(average) + ",")
        excel_file.write("\n,")
        for stder in stderr:
            excel_file.write(str(stder) + ",")
        excel_file.write("\n")

        plt.errorbar(indexes,
                     averages,
                     stderr,
                     fmt='ro',
                     linestyle='-',
                     marker=marker,
                     color=color,
                     label=mutant)
    plt.legend(prop={'size': 8}, loc=3)
    pylab.xlim([0, (width + 1) * (interval / 2) / 6])
    plt.savefig(ofolder + "/" + image_name + ".png", format="png")
    plt.close()
コード例 #13
0
def main():
    print 'Reading command-line arguments...'
    args = sys.argv[1:]
    if len(args) == 3:
        cons_fname1 = args[0]
        cons_fname2 = args[1]
        directory = args[2]
    else:
        usage()

    print 'Reading concentrations file 1...'
    min_con1 = float('inf')
    max_con1 = 0
    cons_data1 = []
    if cons_fname1.endswith('.cons'):  # Read ASCII file
        cons_file1 = shared.openFile(cons_fname1, 'r')
        width, height = map(
            lambda num: shared.toInt(num),
            cons_file1.readline().split(
                ' '))  # The first line contains the width and height
        checkSize(width, height)
        for line in cons_file1:
            cons = map(
                lambda num: shared.toFlo(num),
                line.split(' ')[1:-1]
            )  # Remove the time step column and newline when taking the concentrations
            for con in cons:
                min_con1 = min(min_con1, con)
                max_con1 = max(max_con1, con)

            cons_data1.append(cons)
    elif cons_fname1.endswith('.bcons'):  # Read binary file
        cons_file1 = shared.openFile(cons_fname1,
                                     'rb')  # Read the file as a binary
        # The first two ints are the width and height
        width, = struct.unpack('i', cons_file1.read(4))
        height, = struct.unpack('i', cons_file1.read(4))
        checkSize(width, height)
        size = width * height
        cons1 = []
        cons_length1 = 0
        while True:
            con_str1 = cons_file1.read(4)
            if con_str1 == '':  # While not EOF
                break
            else:
                # There are width * height concentration floats per time step
                con, = struct.unpack('f', con_str1)
                min_con1 = min(min_con1, con)
                max_con1 = max(max_con1, con)
                cons1.append(con)
                cons_length1 += 1
                if cons_length1 == height:
                    cons_data1.append(cons)
                    cons1 = []
    else:
        usage()

    print 'Reading concentrations file 2...'
    min_con2 = float('inf')
    max_con2 = 0
    cons_data2 = []
    if cons_fname2.endswith('.cons'):  # Read ASCII file
        cons_file2 = shared.openFile(cons_fname2, 'r')
        width, height = map(
            lambda num: shared.toInt(num),
            cons_file2.readline().split(
                ' '))  # The first line contains the width and height
        checkSize(width, height)
        for line in cons_file2:
            cons = map(
                lambda num: shared.toFlo(num),
                line.split(' ')[1:-1]
            )  # Remove the time step column and newline when taking the concentrations
            for con in cons:
                min_con2 = min(min_con2, con)
                max_con2 = max(max_con2, con)
            cons_data2.append(cons)
    elif cons_fname2.endswith('.bcons'):  # Read binary file
        cons_file2 = shared.openFile(cons_fname2,
                                     'rb')  # Read the file as a binary
        # The first two ints are the width and height
        width, = struct.unpack('i', cons_file2.read(4))
        height, = struct.unpack('i', cons_file2.read(4))
        checkSize(width, height)
        size = width * height
        cons2 = []
        cons_length2 = 0
        while True:
            con_str2 = cons_file2.read(4)
            if con_str2 == '':  # While not EOF
                break
            else:
                # There are width * height concentration floats per time step
                con, = struct.unpack('f', con_str2)
                min_con2 = min(min_con2, con)
                max_con2 = max(max_con2, con)
                cons2.append(con)
                cons_length2 += 1
                if cons_length2 == height:
                    cons_data2.append(cons)
                    cons2 = []
    else:
        usage()

    print 'Creating the directory if necessary...'
    directory = shared.ensureDir(directory)
    if (directory[-1] != '/'):
        directory = directory + '/'

    cons_data = combine_cons(cons_data1, cons_data2, max_con1, min_con1,
                             max_con2, min_con2)

    print 'Creating snapshots...'
    edge, size = findSizes(
        width, height
    )  # Configure the hexagon edge and window size based on the grid size
    index = 0
    for line in cons_data:
        if (index % 10 == 0 and index >= 21000):

            plotHexagons(directory, size, index, line, edge, width, height)
        index += 1

    print 'Done. Your snapshots are stored in ' + directory
コード例 #14
0
def main():
	print 'Reading command-line arguments...'
	args = sys.argv[1:] # Remove the name of the program from the arguments
	num_args = len(args)
	req_args = [False] * 3 # If every required argument was given then req_args will be all true
	if num_args >= 3:
		# Arguments with default values
		stdevs_away = 2
		round_to = 5
		
		for arg in range(0, num_args - 1, 2):
			option = args[arg]
			value = args[arg + 1]
			if option == '-s' or option == '--sets':
				sets_file = shared.openFile(value, 'r')
				req_args[0] = True
			elif option == '-c' or option == '--current-ranges':
				cur_ranges_file = shared.openFile(value, 'r')
				req_args[1] = True
			elif option == '-n' or option == '--new-ranges':
				new_ranges_fname = value
				new_ranges_file = shared.openFile(new_ranges_fname, 'w')
				req_args[2] = True
			elif option == '-d' or option == '--standard-dev':
				stdevs_away = shared.toInt(value)
			elif option == '-r' or option == '--round-to':
				round_to = shared.toInt(value)
			elif option == '-h' or option == '--help':
				usage()
			else:
				usage()
		for arg in req_args: # Check to ensure every required argument was entered
			if not arg:
				usage()
	else:
		usage()
	
	print 'Reading the parameter sets file...'
	# Parse the sets file to get the list of parameter sets
	sets = []
	for line in sets_file:
		if not(line == '' or line[0] == '#'): # Ignore blank lines and comments
			sets.append(line)
	if len(sets) < 1: # Ensure at least one set was given
		usage()
	
	print 'Reading the current ranges file...'
	# Parse the current ranges file to find the existing ranges
	par_names = []
	cur_ranges = []
	for line in cur_ranges_file:
		line = line.replace('\t', ' ')
		if not(line == '' or line[0] == '#'): # Ignore blank lines and comments
			# Get the human-readable description
			space = line.find(' ')
			if space <= 0:
				parsing_error()
			par_names.append(line[: space])
			line = line[space + 1:] # Skip past the description
			
			# Find the range bounds
			start = 0
			if line[start] == '\0':
				parsing_error()
			while line[start] == ' ':
				start += 1
			if line[start] != '[':
				parsing_error()
			end = start + 1
			while line[end] != ']' and line[end] != '\0':
				end += 1
			if line[end] == '\0':
				parsing_error()
			line = line[start + 1 : end]
			bounds = map(shared.toFlo, line.split(',')) # Convert the bounds to floats
			if len(bounds) != 2:
				parsing_error()
			cur_ranges.append(bounds)
	
	print 'Calculating new ranges...'
	# Calculate each parameter's new range
	flo_sets = map(lambda ls: map(shared.toFlo, ls), map(lambda s: s.split(','), sets)) # Convert each parameter set string into an array of floats
	num_sets = len(flo_sets)
	new_ranges = []
	for p in range(len(cur_ranges)): # For every range
		# Get the mean range based on every set
		vals = []
		for s in flo_sets:
			vals.append(s[p])
		mean = sum(vals) / num_sets
		# Calculate the standard deviation from the mean
		stdev_sum = 0
		for f in vals:
			stdev_sum += (f - mean) ** 2
		stdev = math.sqrt(stdev_sum / num_sets)
		# Define new ranges based on the mean and standard deviation that are at least as narrow as the current ranges
		lower_bound = max(cur_ranges[p][0], round(mean - stdev * stdevs_away, round_to))
		upper_bound = min(cur_ranges[p][1], round(mean + stdev * stdevs_away, round_to))
		new_ranges.append([lower_bound, upper_bound])
	
	print 'Writing the new ranges to the specified output file...'
	# Write the parameter ranges to the new ranges file
	for r in range(len(new_ranges)):
		new_ranges_file.write(par_names[r] + ' [' + str(new_ranges[r][0]) + ',' + str(new_ranges[r][1]) + ']\n')
	new_ranges_file.close()
	
	print 'Done. The new ranges are in ' + new_ranges_fname
コード例 #15
0
def main():
    print 'Reading command line arguments...'
    # check the given arguments
    if len(sys.argv) < 8:
        usage()
    else:
        folder = sys.argv[1]
        parsets = shared.toInt(sys.argv[2])
        image_name = sys.argv[3]
        feature = sys.argv[4]
        ofolder = sys.argv[5]
        post_width = shared.toInt(sys.argv[6])
        excel_name = sys.argv[7]

    num_mutants = 6
    index = 0
    mutants = ["wildtype", "delta", "her1", "her7", "her7her13", "her13"]
    markers = ['o', '^', 's', '*', 'h', 'D']
    colors = ['k', 'b', 'g', 'r', 'c', 'm']

    features = []
    if (feature == "period" or feature == "amplitude"):
        features.append(feature)
    else:
        features.append("period")
        features.append("amplitude")

    for feat in features:
        # Create excel file in which the data used to create the plots will be stored
        excel_file = shared.openFile(
            ofolder + "/" + excel_name + "-" + feat + ".csv", "w")
        print "Plotting ", feat, "..."
        first_avg = 0
        num_first = 0

        for index in range(num_mutants):
            mutant = mutants[index]
            print '    Running ' + mutant + '...'
            marker = markers[index]
            color = colors[index]
            # open the input file
            f = shared.openFile(
                folder + "/" + mutant + "/set_0_" + feat + "_mh1.feats", "r")

            # split the lines to get data
            data = [line.split(",") for line in f]

            # calculate the tissue size
            height = shared.toInt(data[0][0])
            width = shared.toInt(data[0][1])
            xmin = 0
            xmax = 0.9 * width

            buckets = 9  # split the interval into 9 chunks
            chunk = (width - post_width) / (
                buckets - 1)  # the width of the intervals after the posterior

            indexes = [0 for i in range(buckets)]
            for bucket in range(buckets):
                if bucket == 0:
                    indexes[bucket] = post_width / 2
                else:
                    indexes[bucket] = (post_width +
                                       (bucket - 1) * chunk) + (chunk / 2.0)
            averages = [0 for i in range(buckets)]
            num_points = [0 for i in range(buckets)]
            stderr = [0 for i in range(buckets)]

            if mutant == "wildtype":
                excel_file.write("mutant,")
                for index in indexes:
                    excel_file.write(str(index) + ",")
                excel_file.write("\n")

                print '        Averaging the first bucket for the wildtype...'  # all other data points will be averaged to this value
                for parset in range(parsets):
                    # open the input file and ensure the directory exists
                    f = shared.openFile(
                        folder + "/" + mutant + "/set_" + str(parset) + "_" +
                        feat + "_mh1.feats", "r")

                    # split the lines to get data
                    data = [line.split(",") for line in f]
                    lines = len(data)

                    for line in range(1, lines, 2):
                        for col in range(len(data[line]) - 1):
                            pos = shared.toInt(data[line][col])
                            val = shared.toFlo(data[line + 1][col])
                            if pos < post_width:
                                first_avg += val
                                num_first += 1

                first_avg /= num_first

            for parset in range(parsets):
                print '        Normalizing and analyzing data from set ' + str(
                    parset) + '...'
                # open the input file and ensure the directory exists
                f = shared.openFile(
                    folder + "/" + mutant + "/set_" + str(parset) + "_" +
                    feat + "_mh1.feats", "r")

                # split the lines to get data
                data = [line.split(",") for line in f]
                lines = len(data)

                for line in range(1, lines, 2):
                    for col in range(len(data[line]) - 1):
                        pos = shared.toInt(data[line][col])
                        val = shared.toFlo(data[line + 1][col]) / first_avg

                        if pos < post_width:
                            averages[0] += val
                            num_points[0] += 1
                        else:
                            averages[(pos - post_width) / chunk + 1] += val
                            num_points[(pos - post_width) / chunk + 1] += 1

            # ignore the buckets which don't have data
            buckets_with_data = buckets

            for bucket in range(buckets):
                if post_width + (
                    (bucket - 1) * chunk) + chunk - 1 > (0.9 * width):
                    buckets_with_data -= 1
                else:
                    if num_points[bucket] > 0:
                        averages[bucket] /= num_points[bucket]
                    elif feat == "amplitude":
                        averages[bucket] = 0
                    else:
                        buckets_with_data -= 1

            buckets = buckets_with_data

            print '        Calculating standard error...'
            for parset in range(parsets):
                f = shared.openFile(
                    folder + "/" + mutant + "/set_" + str(parset) + "_" +
                    feat + "_mh1.feats", "r")

                data = [line.split(",") for line in f]
                lines = len(data)

                for line in range(1, lines, 2):
                    for col in range(len(data[line]) - 1):
                        pos = shared.toInt(data[line][col])
                        val = shared.toFlo(data[line + 1][col]) / first_avg

                        if pos < post_width:
                            stderr[0] += (val - averages[0])**2
                        else:
                            stderr[(pos - post_width) / chunk + 1] += (
                                val -
                                averages[(pos - post_width) / chunk + 1])**2

            for bucket in range(buckets):
                if (num_points[bucket] > 0):
                    stderr[bucket] = math.sqrt(stderr[bucket] /
                                               num_points[bucket])
                    stderr[bucket] /= math.sqrt(num_points[bucket])
                else:
                    stderr[bucket] = 0

            indexes = indexes[:buckets]
            averages = averages[:buckets]
            stderr = stderr[:buckets]
            # Print the means and standard deviations to the excel_file
            excel_file.write(mutant + ",")
            for average in averages:
                excel_file.write(str(average) + ",")
            excel_file.write("\n,")
            for stder in stderr:
                excel_file.write(str(stder) + ",")
            excel_file.write("\n")

            plt.errorbar(indexes,
                         averages,
                         stderr,
                         fmt='ro',
                         linestyle='-',
                         marker=marker,
                         color=color,
                         label=mutant)
        plt.legend(prop={'size': 8}, loc=2)
        pylab.xlim([xmin, xmax])
        excel_file.close()
        plt.savefig(ofolder + "/" + image_name + "_" + feat + ".png",
                    format="png")
        plt.close()
        print "Done. Your " + feat + " plot is stored in " + ofolder + "/" + image_name + "_" + feat + ".png"
        print "The data behind the plot can be found in " + ofolder + "/" + excel_name + "-" + feat + ".csv"
コード例 #16
0
def main():
    print "Reading command-line arguments..."
    args = sys.argv[1:]
    if len(args) == 3:
        cons_fname1 = args[0]
        cons_fname2 = args[1]
        directory = args[2]
    else:
        usage()

    print "Reading concentrations file 1..."
    min_con1 = float("inf")
    max_con1 = 0
    cons_data1 = []
    if cons_fname1.endswith(".cons"):  # Read ASCII file
        cons_file1 = shared.openFile(cons_fname1, "r")
        width, height = map(
            lambda num: shared.toInt(num), cons_file1.readline().split(" ")
        )  # The first line contains the width and height
        checkSize(width, height)
        for line in cons_file1:
            cons = map(
                lambda num: shared.toFlo(num), line.split(" ")[1:-1]
            )  # Remove the time step column and newline when taking the concentrations
            for con in cons:
                min_con1 = min(min_con1, con)
                max_con1 = max(max_con1, con)

            cons_data1.append(cons)
    elif cons_fname1.endswith(".bcons"):  # Read binary file
        cons_file1 = shared.openFile(cons_fname1, "rb")  # Read the file as a binary
        # The first two ints are the width and height
        width, = struct.unpack("i", cons_file1.read(4))
        height, = struct.unpack("i", cons_file1.read(4))
        checkSize(width, height)
        size = width * height
        cons1 = []
        cons_length1 = 0
        while True:
            con_str1 = cons_file1.read(4)
            if con_str1 == "":  # While not EOF
                break
            else:
                # There are width * height concentration floats per time step
                con, = struct.unpack("f", con_str1)
                min_con1 = min(min_con1, con)
                max_con1 = max(max_con1, con)
                cons1.append(con)
                cons_length1 += 1
                if cons_length1 == height:
                    cons_data1.append(cons)
                    cons1 = []
    else:
        usage()

    print "Reading concentrations file 2..."
    min_con2 = float("inf")
    max_con2 = 0
    cons_data2 = []
    if cons_fname2.endswith(".cons"):  # Read ASCII file
        cons_file2 = shared.openFile(cons_fname2, "r")
        width, height = map(
            lambda num: shared.toInt(num), cons_file2.readline().split(" ")
        )  # The first line contains the width and height
        checkSize(width, height)
        for line in cons_file2:
            cons = map(
                lambda num: shared.toFlo(num), line.split(" ")[1:-1]
            )  # Remove the time step column and newline when taking the concentrations
            for con in cons:
                min_con2 = min(min_con2, con)
                max_con2 = max(max_con2, con)
            cons_data2.append(cons)
    elif cons_fname2.endswith(".bcons"):  # Read binary file
        cons_file2 = shared.openFile(cons_fname2, "rb")  # Read the file as a binary
        # The first two ints are the width and height
        width, = struct.unpack("i", cons_file2.read(4))
        height, = struct.unpack("i", cons_file2.read(4))
        checkSize(width, height)
        size = width * height
        cons2 = []
        cons_length2 = 0
        while True:
            con_str2 = cons_file2.read(4)
            if con_str2 == "":  # While not EOF
                break
            else:
                # There are width * height concentration floats per time step
                con, = struct.unpack("f", con_str2)
                min_con2 = min(min_con2, con)
                max_con2 = max(max_con2, con)
                cons2.append(con)
                cons_length2 += 1
                if cons_length2 == height:
                    cons_data2.append(cons)
                    cons2 = []
    else:
        usage()

    print "Creating the directory if necessary..."
    directory = shared.ensureDir(directory)
    if directory[-1] != "/":
        directory = directory + "/"

    cons_data = combine_cons(cons_data1, cons_data2, max_con1, min_con1, max_con2, min_con2)

    print "Creating snapshots..."
    edge, size = findSizes(width, height)  # Configure the hexagon edge and window size based on the grid size
    index = 0
    for line in cons_data:
        if index % 10 == 0 and index >= 21000:

            plotHexagons(directory, size, index, line, edge, width, height)
        index += 1

    print "Done. Your snapshots are stored in " + directory
コード例 #17
0
def main():
    #check the given arguments
    print "Reading command-line arguments..."
    args = sys.argv[1:]
    num_args = len(args)
    req_args = [False] * 6
    num_seeds = 0
    sim_arguments = ""

    if num_args >= 6:
        for arg in range(0, num_args - 1, 2):
            option = args[arg]
            value = args[arg + 1]
            if option == '-i' or option == '--input-file':
                ifile = value
                req_args[0] = True
            elif option == '-n' or option == '--num-params':
                num_params = shared.toInt(value)
                req_args[1] = True
            elif option == '-p' or option == '--pars-per-job':
                pars_per_job = shared.toInt(value)
                req_args[2] = True
            elif option == '-d' or option == '--directory':
                folder = value
                req_args[3] = True
            elif option == '-s' or option == '--simulation':
                simulation = value
                req_args[4] = True
            elif option == '-S' or option == '--seeds':
                num_seeds = int(value)
                req_args[5] = True
            elif option == '-a' or option == '--arguments':
                for a in range(arg + 1, num_args):
                    sim_arguments += ' ' + args[a]
                break
            elif option == '-h' or option == '--help':
                usage()
            else:
                usage()
        for arg in req_args:
            if not arg:
                req_args
                usage()
    else:
        usage()

    index = 0

    input_file = shared.openFile(ifile, "r")
    shared.ensureDir(folder)
    for parset in range(0, num_params, pars_per_job):
        params = shared.openFile(folder + "/input" + str(index) + ".params",
                                 "w")
        for line in range(pars_per_job):
            params.write(input_file.readline())
        params.close()
        index += 1

    for seeds in range(num_seeds):
        seed = (seeds + 1) * 1000
        for parset in range(index):
            job = shared.openFile(
                folder + "/pbs-job-" + str(seed) + "-" + str(parset), 'w')
            job.write('''
#PBS -N robust-test 
#PBS -l nodes=1:ppn=1
#PBS -l mem=500mb
#PBS -l file=300mb
#PBS -q biomath
#PBS -j oe
#PBS -o ''' + folder + '''/output''' + str(seed) + "-" + str(parset) + '''.txt
#PBS -l walltime=06:00:00

cd $PBS_O_WORKDIR

''' + simulation + ' ' + sim_arguments + ' -p ' + str(pars_per_job) + ' -i ' +
                      ifile + ''' -s ''' + str(seed) + " -M 6 -E " + folder +
                      "/scores-" + str(seed) + "-" + str(parset) + ".csv")
            job.close()
            subprocess.call(
                ["qsub", folder + "/pbs-job-" + str(seed) + "-" + str(parset)])
コード例 #18
0
def main():
    #check the given arguments
    print "Reading command-line arguments..."
    args = sys.argv[1:]
    num_args = len(args)
    req_args = [False] * 8

    if num_args == 16:
        for arg in range(0, num_args - 1, 2):
            option = args[arg]
            value = args[arg + 1]
            if option == '-S' or option == '--seeds':
                num_seeds = shared.toInt(value)
                req_args[0] = True
            elif option == '-n' or option == '--num-params':
                num_sets = shared.toInt(value)
                req_args[1] = True
            elif option == '-o' or option == '--output-file':
                output_file = value
                req_args[2] = True
            elif option == '-f' or option == '--num-files':
                num_files = shared.toInt(value)
                req_args[3] = True
            elif option == '-d' or option == '--directory':
                folder = value
                req_args[4] = True
            elif option == '-m' or option == '--max-score':
                max_score = shared.toInt(value)
                req_args[5] = True
            elif option == '-i' or option == '--input-file':
                input_file = value
                req_args[6] = True
            elif option == '-t' or option == '--threshold':
                threshold = shared.toInt(value)
                req_args[7] = True
            elif option == '-h' or option == '--help':
                usage()
            else:
                usage()
        for arg in req_args:
            if not arg:
                usage()
    else:
        usage()

    parsets = [[0 for i in range(num_seeds)] for i in range(num_sets)]
    robust = open(output_file, "w")

    for seeds in range(num_seeds):
        seed = (seeds + 1) * 1000
        parindex = 0
        for i in range(0, num_files):
            scores = open(folder + "/scores-" + str(seed) + "-" + str(i) +
                          ".csv")
            scores.readline()  #skip the header line in the scores file

            for result in scores:
                line = result.split(",")
                if (
                        int(line[-2]) == max_score
                ):  #the total score is the last column in the scores file, after the '\n' character
                    parsets[parindex][seed / 1000] += 1
                parindex += 1

    num_robust = 0
    pars = open(input_file, "r")
    for i in range(parindex):
        parset = pars.readline()
        if sum(parsets[i]) >= threshold:
            num_robust += 1
            robust.write(parset)

    print num_robust, " sets passed in more than ", threshold, " seeds "
    robust.close()
コード例 #19
0
def main():
	#check the given arguments
	print "Reading command-line arguments..."
	args = sys.argv[1:]
	num_args = len(args)
	req_args = [False] * 8

	if num_args == 16:
		for arg in range(0, num_args - 1, 2):
			option = args[arg]
			value = args[arg + 1]
			if option == '-S' or option == '--seeds':
				num_seeds = shared.toInt(value)
				req_args[0] = True
			elif option == '-n' or option == '--num-params':
				num_sets = shared.toInt(value)
				req_args[1] = True
			elif option == '-o' or option == '--output-file':
				output_file = value
				req_args[2] = True
			elif option == '-f' or option == '--num-files':
				num_files = shared.toInt(value)
				req_args[3] = True
			elif option == '-d' or option == '--directory':
				folder = value
				req_args[4] = True
			elif option == '-m' or option == '--max-score':
				max_score = shared.toInt(value)
				req_args[5] = True
			elif option == '-i' or option == '--input-file':
				input_file = value
				req_args[6] = True
			elif option == '-t' or option == '--threshold':
				threshold = shared.toInt(value)
				req_args[7] = True
			elif option == '-h' or option == '--help':
				usage()
			else:
				usage()
		for arg in req_args:
			if not arg:
				usage()
	else:
		usage()
				
	parsets = [[0 for i in range(num_seeds)] for i in range(num_sets)]
	robust = open(output_file, "w")
	
	for seeds in range(num_seeds):
		seed = (seeds + 1) * 1000
		parindex = 0
		for i in range(0, num_files):
			scores = open(folder + "/scores-" + str(seed) + "-" + str(i) + ".csv")
			scores.readline() #skip the header line in the scores file

			for result in scores:			
				line = result.split(",")
				if (int(line[-2]) == max_score): #the total score is the last column in the scores file, after the '\n' character
					parsets[parindex][seed / 1000] += 1
				parindex += 1
	
	num_robust = 0
	pars = open(input_file, "r")
	for i in range(parindex):
		parset = pars.readline()
		if sum(parsets[i]) >= threshold:
			num_robust += 1
			robust.write(parset)
		
	print num_robust, " sets passed in more than ", threshold, " seeds "
	robust.close()
コード例 #20
0
def main():
	# check the given arguments
	if len(sys.argv) < 6:
		usage()
	else:
		f = shared.openFile(sys.argv[1], "r")
		directory = sys.argv[2]
		image_name = sys.argv[3]
		step_size = shared.toFlo(sys.argv[4])
		plot_style= sys.argv[5]
		plot_helper1= int(shared.toFlo(sys.argv[6]))
		plot_helper2= int(shared.toFlo(sys.argv[7]))


        print 'Plotting all the cells from ' + sys.argv[1] + '...'
	# split the lines to get data
	data = [line.split() for line in f]
	max_time = len(data) - 1
	
	# calculate the tissue size
	cells_width = shared.toInt(data[0][0])
	cells_height = shared.toInt(data[0][1])
	total_cells = cells_width * cells_height + 1
        #print cells_width
	# create a matrix to store the concentration values we obtain from the file
	cons = numpy.zeros(shape = (max_time, total_cells))
        cons_t = [0]*max_time
        # create array for row plotting
	pos = [0]*50
        for i in range (0, 49):
            pos[i]=i
        time = [0]*max_time
        for i in range (1,max_time+1):
            time[i-1]=i*step_size
	# put the concentration values from the file into the matrix
	for i in range(1, max_time + 1):
		cons[i - 1][0] = shared.toFlo(data[i][0]) * step_size
		for j in range(1, total_cells):
			cons[i - 1][j] = shared.toFlo(data[i][j])
	
	# close the file
	f.close()
	
	# plot colors
	colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
	color = 0
        
        # decide which row/column/cells to plot
        #plot_col = 1
        if (plot_style == "col"):
            startpoint = plot_helper1
            interval = cells_width 
        elif (plot_style == "all"):
            startpoint =1
            interval =1
        elif (plot_style =="cell"):
            startpoint = plot_helper1
            interval = total_cells
        elif (plot_style == "col_t"):
            startpoint = plot_helper1
            interval= cells_width
            start_time = plot_helper2
            
        if (plot_style!= "row" and plot_style!="col_t"):    
            print "not in row"
            for j in range(0,plot_helper2):
	       for i in range(startpoint+j, total_cells, interval):
        
		  start = 0
		
		# Adjust the plotting interval for each cell to account for different columns being staggered
		# as they enter the PSM at intervals of 6 minutes apart frome ach other
	  	  while cons[start][i] == -1: # -1 stands for no data in the output file
		 	    start += 1
		  end = max_time - 1
		  while cons[end][i] == -1:
			 end -= 1;

		  if (i % 4 == 0):
			 pl.plot(cons[start:end, 0], cons[start:end, i], 'r')
		  elif (i % 4 == 1):
			 pl.plot(cons[start:end, 0], cons[start:end, i], 'g')
		  elif (i % 4 == 2):
			 pl.plot(cons[start:end, 0], cons[start:end, i], 'b')
		  else:
			 pl.plot(cons[start:end, 0], cons[start:end, i], 'c')
        
	elif (plot_style == "row"):
            print "in row"
            pl.plot(pos[0:49],cons[plot_helper1, 1:50],'r')
            pl.plot(pos[0:49],cons[plot_helper1, 51:100],'g')
	    pl.plot(pos[0:49],cons[plot_helper1, 101:150],'b')
            pl.plot(pos[0:49],cons[plot_helper1, 151:200],'c')


        elif (plot_style == "col_t"):
            difference=0
            if start_time > 29999:
                difference= start_time-29999
            print "tracking column"
            if (startpoint <=9):
                if start_time<29999:
                    timetodie= 24000
                    timetilappear=0   
                    i=1
                    while i<=29999:
                        #print i
                        #print startpoint
                        #print cons[timetilappear+i,startpoint]
                        cons_t[timetilappear+i]=cons[timetilappear+i,startpoint]
                        i+=1
                    timetilappear=29999
                else:
                    for i in range (start_time):
                        cons_t[i]=0
                    timetilappear=start_time
                    timetodie= (cells_width-1- startpoint)*600-1
            elif (startpoint>9 and startpoint <=49): 
                print ">9"
                timetodie= (cells_width-1- startpoint)*600
                timetilappear= (startpoint +1-10)*600+29999+difference
                #print timetodie
                #print timetilappear
                for i in range (timetilappear):
                    cons_t[i]=0      
            growth=1
            i=1
            while i<=timetodie:
                #print i
                #print growth
                #print startpoint
                #print cons[timetilappear+i,startpoint]
                if (timetilappear+i>= 90000):
                    break
                if (startpoint>= 93000):
                    break
                cons_t[timetilappear+i]=cons[timetilappear+i,startpoint]
                growth+=1
                i+=1
                if (growth %600==0 ):
                    startpoint+=1
                    growth=1
            pl.plot(time[0:max_time], cons_t, 'r')
            
        
        
       
        #new_array=[500,520,540,560,580,600,620,640,660,680,700,720,740,760,780,800,820,840]
        #pl.grid(True)
        #pl.axis([600, 700,0,1100])
        #pl.xticks(new_array)
	pl.savefig(directory + "/" + image_name + ".png", format = "png")
	pl.close()
	print 'Done. Your plot is stored in ' + directory + "/" + image_name + ".png"
コード例 #21
0
def main():
	# Default argument values.
	global Y_BOUNDS
	global JOB_NAME
	global PARAM_NAMES
	nodes = 1
	feature = -1
	points = 4
	percent = 20
	file_out = "sensitivity_graphs"
	nominal_file = "../sensitivity-analysis/nominal.params"
	data_dir = "../sensitivity-analysis/sense-for-plot"
	image_dir = "plots"
	perturb_file = "../simulation/input.perturb"
	nominal_count = 1
	ex_path = "../sensitivity-analysis/sensitivity"
	sim_path = "../simulation/simulation"
	ppn = "2"
	graph = False
	elasticity = False
	sim_args = " "
	additional_args = " "
	cname = None
	
	#Check the commmand line input:
	if len(sys.argv) < 2 or ("-h" in sys.argv) or ("--help" in sys.argv):
		usage()
	ishift = 0
	for i in range(1, len(sys.argv), 2):
		i += ishift
		if i+1 >= len(sys.argv):
			usage()
		#elif sys.argv[i] == "-j" or sys.argv[i] == "--job-name":
		#	global JOB_NAME = sys.argv[i+1]
		elif sys.argv[i] == "-n" or sys.argv[i] == "--nominal-file":
			nominal_file = sys.argv[i+1]
		elif sys.argv[i] == "-c" or sys.argv[i] == "--nominal-count":
			nominal_count = shared.toInt(sys.argv[i+1])
		elif sys.argv[i] == "-p" or sys.argv[i] == "--percent":
			percent = shared.toInt(sys.argv[i+1])
		elif sys.argv[i] == "-P" or sys.argv[i] == "--Points":
			points = shared.toInt(sys.argv[i+1])
		elif sys.argv[i] == "-l" or sys.argv[i] == "--ppn":
			ppn = sys.argv[i+1]
		elif sys.argv[i] == "-N" or sys.argv[i] == "--nodes":
			nodes = shared.toInt(sys.argv[i+1])
		elif sys.argv[i] == "-f" or sys.argv[i] == "--feature":
			feature = shared.toInt(sys.argv[i+1])
		elif sys.argv[i] == "-e" or sys.argv[i] == "--exec":
			ex_path = sys.argv[i+1]
		elif sys.argv[i] == "-s" or sys.argv[i] == "--sim":
			sim_path = sys.argv[i+1]
		elif sys.argv[i] == "-o" or sys.argv[i] == "--output":
			file_out = sys.argv[i+1]
		elif sys.argv[i] == "-d" or sys.argv[i] == "--dir":
			image_dir = sys.argv[i+1]
		elif sys.argv[i] == "-D" or sys.argv[i] == "--data-dir":
			data_dir = sys.argv[i+1]
		elif sys.argv[i] == "-j" or sys.argv[i] == "--job-name":
			JOB_NAME = sys.argv[i+1]
		elif sys.argv[i] == "-C" or sys.argv[i] == "--cluster-name":
			cname = sys.argv[i+1]
		elif sys.argv[i] == "--ymin":
			val = float(sys.argv[i+1])
			if Y_BOUNDS == None:
				Y_BOUNDS = (val , max(1.5, 2*val) )
			else:
				Y_BOUNDS[0] = val
		elif sys.argv[i] == "--ymax":
			val = float(sys.argv[i+1])
			if Y_BOUNDS == None:
				Y_BOUNDS = (min(0, 2*val) , val)
			else:
				Y_BOUNDS[1] = val
		elif sys.argv[i] == "-E" or sys.argv[i] == "--elasticity":
			elasticity = True
			ishift = -1
		elif sys.argv[i] == "-g" or sys.argv[i] == "--graph":
			graph = True
			ishift = -1
		elif sys.argv[i] == "-a" or sys.argv[i] == "--args":
			for a in sys.argv[i+1:]:
				additional_args += " " + a + " "
			break
			
	#Ensure that the necessary directories exist -- if not, make them.
	shared.ensureDir(data_dir)
	shared.ensureDir(image_dir)
	
	#Additional args is a string that that is attached to the final arguments sent to the sensitivity analysis program.
	additional_args = " -p " + str(percent) + " -P " + str(points) + " " + additional_args
	
	#Depending on whether elasticity is chosen, either create sensitivity bar graphs or scatter-line plots. 
	if(not elasticity):
		#This statement checks to see if simulations actually need to be run. This is mostly true, but if all the data has been created already then '-g' will cause the script to skip to the plotting.
		if(not graph):
			#dispatch_jobs takes care of running the program locally or making the pbs jobs.
			dispatch_jobs(nodes, file_out, nominal_file , data_dir , image_dir , perturb_file, nominal_count, 0, ex_path, sim_path, ppn, sim_args , None, additional_args, cname)
			print "\t~ Done with runs ~"
		
		#Once the data has been collected, load it in and make the graphs.
		print "\t ~ Generating graphs ~ "
		#Load all of the data from the sensitivity results. 
		#This uses "/normalized_[number]" as the file name because that is how it's set in sensitivity-analysis/init.hpp.
		#The struct input_params has two strings, norm_file and sense_file, that determine the names of specific files to load. 
		#These could be specified more generally by making a new commandline argument for the sensitivity executible, but this has not seemed necessary because there is already so much customization of the directies these files end up in.
		data = []
		names = []
		for i in range(nominal_count):
			temp_data, names = parse_files(data_dir+"/normalized_"+str(i))
			data.append(temp_data)
	
		#If just one feature is specified, this makes just one graph. Otherwise it loops through all features and makes a graph for each.
		bar_data = [] 	#This holds onto the data that was actually plotted, i.e. average sensitivity values for each parameter.
		bar_error = []	#This holds onto the standard error for each parameter.
		if feature > 0:
			temp_sense, temp_error = sense_bar(data, image_dir, feature, feat_name = names[feature])
			bar_data.append(temp_sense)
			bar_error.append(temp_error)
		else:
			sys.stdout.write("Done with normalized graphs: ")
			sys.stdout.flush()
			for i in range(len(data[0][0])):
				temp_sense, temp_error = sense_bar(data, image_dir, i, feat_name = names[i])
				bar_data.append(temp_sense)
				bar_error.append(temp_error)				
				sys.stdout.write(str(i) + "... ")
				sys.stdout.flush()
		#Write out the bar graph data to file
		write_bar_data(bar_data, bar_error, data_dir+"/bar_graph_data_normalized.csv", ynames=names, xnames=PARAM_NAMES)
		
		#Abosulte sensitivity graphs
		#Similarly, this uses "/LSA_[number]" as the file name because that is how it's set in sensitivity-analysis/init.hpp.
		data = []
		names = []
		for i in range(nominal_count):
			temp_data, names = parse_files(data_dir+"/LSA_"+str(i))
			data.append(temp_data)
	
		#If just one feature is specified, this makes just one graph. Otherwise it loops through all features and makes a graph for each.
		bar_data = [] 	#This holds onto the data that was actually plotted, i.e. average sensitivity values for each parameter.
		bar_error = []	#This holds onto the standard error for each parameter.
		if feature > 0:
			temp_sense, temp_error = sense_bar(data, image_dir, feature, feat_name = names[feature], normal=False)
			bar_data.append(temp_sense)
			bar_error.append(temp_error)
		else:
			sys.stdout.write("Done with absolute graphs: ")
			sys.stdout.flush()
			for i in range(len(data[0][0])):
				temp_sense, temp_error = sense_bar(data, image_dir, i, feat_name = names[i], normal=False)
				bar_data.append(temp_sense)
				bar_error.append(temp_error)
				sys.stdout.write(str(i) + "... ")
				sys.stdout.flush()	
		#Write out the bar graph data to file
		write_bar_data(bar_data, bar_error, data_dir+"/bar_graph_data_absolute.csv", ynames=names, xnames=PARAM_NAMES)
	
	#If the elasticity option was included, the following code makes scatter plots of the oscillation features data at different perturbations of each nominal parameter.
	else:
		#This adds a commandline argument that is passed to the sensitivity analysis program to tell it to gather the data without caluclating the sensitivity.
		additional_args = " --generate-only " + additional_args
		#Note that for the elasticity/scatter-line plots each instance of sensitivity used to gather the data is given only one parameter set to ensure data files will be unique (and not get overwritten). This makes it slower than the sensitivity graphs.
		print "\n\t ~ Elasticity data collection ~ "
		data = [] 		# this will be a four dimensional list indexed by: data[which nominal set][which parameter][which perturbation amount][which oscillation feature value]
		names = []	
		nominal = []	# this will be a three dimensional list indexed by: nominal[which nominal set][0][which oscillation feature], the middle index is zero because there is only one parameter set in the nominal features file.
		
		#This loop runs if the data needs to be collected. There are some unintuitive additions that are used to keep track of how many jobs should be sent out the index of which nominal parameter set to use.	 
		if not graph:
			disp = 0		# a counter used to keep track of how many jobs to dispatch.
			raw_data_dirs = [] #A list that gets filled with file name strings which get passed as arguments to the sensitivity program. 
			for c in range(0, nominal_count):
				raw_data_dirs.append(data_dir +"/elastic_data_" + str(c))
				disp += 1
				if disp == nodes or c == nominal_count - 1:
					dispatch_jobs(disp, file_out, nominal_file , data_dir , image_dir , perturb_file, disp, c-disp+1, ex_path, sim_path, ppn, sim_args , raw_data_dirs,  additional_args, cname)
					raw_data_dirs = []
					disp = 0
		
		#Now that the data files exist, load them and parse them into the appropriate arrays. 
		#The "/dim_[number]" and "/nominal_0" strings are the file names that the sensitivity analysis program uses to distinguish output features files. 
		#Modifying these file names would require changing nom_file and dim_file in the constructor of input_params in sensitivity-analysis/init.hpp.
		#This loop is similar to the above, but simpler -- for every nominal parameter set it opens its /elastic_data_[number] directory, parses the files in it and stores the data in data[number] and nominal[number]
		for c in range(0, nominal_count):
			data.append([])
			for d in range(44):
				temp_data, names = parse_files(data_dir +"/elastic_data_" + str(c) + "/dim_" + str(d))
				data[c].append(temp_data)
			temp_data , names = parse_files(data_dir +"/elastic_data_" + str(c) + "/nominal_0")
			nominal.append(temp_data)
			
		#data[] and nominal[] should have everything we need for the graphs now, so plot them.
		print "\n\t ~ Elasticity graphing ~ "
		sys.stdout.write("Done with parameter: ")
		sys.stdout.flush()
		
		#Loop through each parameter 
		for p in range(len(data[0])):
			#Loop through each feature
			for f in range(len(data[0][0][0])):
				#Plot!
				line_plot(data, nominal, p, f, names[f], PARAM_NAMES[p], image_dir, percent, points)
			sys.stdout.write(str(p) + "...")
			sys.stdout.flush()
	print "\n\t ~ Graphs complete ~ "
	return	
コード例 #22
0
def main():
	print 'Reading command-line arguments...'
	args = sys.argv[1:]
	if len(args) == 2:
		cons_fname = args[0]
		directory = args[1]
	else:
		usage()
	
	print 'Reading the concentrations file...'
	min_con = float('inf')
	max_con = 0
	cons_data = []
	if cons_fname.endswith('.cons'): # Read ASCII file
		cons_file = shared.openFile(cons_fname, 'r')
		width, height = map(lambda num: shared.toInt(num), cons_file.readline().split(' ')) # The first line contains the width and height
		checkSize(width, height)
		for line in cons_file:
			cons = map(lambda num: shared.toFlo(num), line.split(' ')[1:-1]) # Remove the time step column and newline when taking the concentrations
			for con in cons:
				min_con = min(min_con, con)
				max_con = max(max_con, con)
			cons_data.append(cons)
	elif cons_fname.endswith('.bcons'): # Read binary file
		cons_file = shared.openFile(cons_fname, 'rb') # Read the file as a binary
		# The first two ints are the width and height
		width, = struct.unpack('i', cons_file.read(4))
		height, = struct.unpack('i', cons_file.read(4))
		checkSize(width, height)
		size = width * height
		cons = []
		cons_length = 0
		while True:
			con_str = cons_file.read(4)
			if con_str == '': # While not EOF
				break;
			else:
				# There are width * height concentration floats per time step
				con, = struct.unpack('f', con_str)
				min_con = min(min_con, con)
				max_con = max(max_con, con)
				cons.append(con)
				cons_length += 1
				if cons_length == height:
					cons_data.append(cons)
					cons = []
	else:
		usage()
	
	print 'Creating the directory if necessary...'
	directory = shared.ensureDir(directory)
	if (directory[-1] != '/'):
		directory = directory + '/'
	
	print 'Creating snapshots...'
	edge, size = findSizes(width, height) # Configure the hexagon edge and window size based on the grid size
	index = 0
	for line in cons_data:
		if (index % 10 == 0 and index >= 50000):
			plotHexagons(directory, size, index, line, min_con, max_con, edge, width, height)
		index += 1
	
	print 'Done. Your snapshots are stored in ' + directory
コード例 #23
0
def main():
	print 'Reading command line arguments...'
	# check the given arguments
	if len(sys.argv) < 8:
		usage()
	else:
		folder = sys.argv[1]
		parsets = shared.toInt(sys.argv[2])
		image_name = sys.argv[3]
		feature = sys.argv[4]
		ofolder = sys.argv[5]
		post_width = shared.toInt(sys.argv[6])
		excel_name = sys.argv[7]
		
	num_mutants = 6
	index = 0
	mutants = ["wildtype", "delta", "her1", "her7", "her7her13", "her13"]
	markers = ['o', '^', 's', '*', 'h', 'D']
	colors = ['k', 'b', 'g', 'r', 'c', 'm']
	

	features = []
	if (feature == "period" or feature == "amplitude"):
		features.append(feature)
	else:
		features.append("period")
		features.append("amplitude")
	
	for feat in features:
		# Create excel file in which the data used to create the plots will be stored
		excel_file = shared.openFile(ofolder + "/" + excel_name + "-" + feat + ".csv", "w")
		print "Plotting ", feat, "..."
		first_avg = 0
		num_first = 0
	
		for index in range(num_mutants):
			mutant = mutants[index]
			print '    Running ' + mutant + '...'
			marker = markers[index]
			color = colors[index]
			# open the input file
			f = shared.openFile(folder + "/" + mutant + "/set_0_" + feat + "_mh1.feats", "r")

			# split the lines to get data
			data = [line.split(",") for line in f]
	
			# calculate the tissue size
			height = shared.toInt(data[0][0])
			width = shared.toInt(data[0][1])
			xmin = 0
			xmax = 0.9 * width

			buckets = 9 # split the interval into 9 chunks
			chunk = (width - post_width) / (buckets - 1) # the width of the intervals after the posterior
				
			indexes = [0 for i in range(buckets)]
			for bucket in range(buckets):
				if bucket == 0:
					indexes[bucket] = post_width / 2
				else:
					indexes[bucket] = (post_width + (bucket - 1) * chunk) + (chunk / 2.0)
			averages = [0 for i in range(buckets)]
			num_points = [0 for i in range(buckets)]
			stderr = [0 for i in range(buckets)]

			if mutant == "wildtype":
				excel_file.write("mutant,")
				for index in indexes:
					excel_file.write(str(index) + ",")
				excel_file.write("\n")
			
				print '        Averaging the first bucket for the wildtype...' # all other data points will be averaged to this value
				for parset in range(parsets):
					# open the input file and ensure the directory exists
					f = shared.openFile(folder + "/" + mutant + "/set_" + str(parset) + "_" + feat + "_mh1.feats", "r")
	
					# split the lines to get data
					data = [line.split(",") for line in f]
					lines = len(data)
		
					for line in range(1, lines, 2):
						for col in range(len(data[line]) - 1):
							pos = shared.toInt(data[line][col])
							val = shared.toFlo(data[line + 1][col])
							if pos < post_width:
								first_avg += val
								num_first += 1
					
				first_avg /= num_first
	
			for parset in range(parsets):
				print '        Normalizing and analyzing data from set ' + str(parset) + '...'
				# open the input file and ensure the directory exists
				f = shared.openFile(folder + "/" + mutant + "/set_" + str(parset) + "_" + feat + "_mh1.feats", "r")
	
				# split the lines to get data
				data = [line.split(",") for line in f]
				lines = len(data)
		
				for line in range(1, lines, 2):
					for col in range(len(data[line]) - 1):
						pos = shared.toInt(data[line][col])
						val = shared.toFlo(data[line + 1][col]) / first_avg

						if pos < post_width:
							averages[0] += val
							num_points[0] += 1
						else:
							averages[(pos - post_width) / chunk + 1] += val
							num_points[(pos - post_width) / chunk + 1] += 1
		
			# ignore the buckets which don't have data
			buckets_with_data = buckets	

			for bucket in range(buckets):
				if post_width + ((bucket - 1) * chunk) + chunk - 1 > (0.9 * width):
					buckets_with_data -= 1
				else:
					if num_points[bucket] > 0:
						averages[bucket] /= num_points[bucket]
					elif feat == "amplitude":
						averages[bucket] = 0
					else:
						buckets_with_data -= 1

			buckets = buckets_with_data

			print '        Calculating standard error...'
			for parset in range(parsets):
				f = shared.openFile(folder + "/" + mutant + "/set_" + str(parset) + "_" + feat + "_mh1.feats", "r")
		
				data = [line.split(",") for line in f]
				lines = len(data)
		
				for line in range(1, lines, 2):
					for col in range(len(data[line]) - 1):
						pos = shared.toInt(data[line][col])
						val = shared.toFlo(data[line + 1][col]) / first_avg

						if pos < post_width:
							stderr[0] += (val - averages[0]) ** 2
						else:
							stderr[(pos - post_width) / chunk + 1] += (val - averages[(pos - post_width) / chunk + 1]) ** 2
			
			for bucket in range(buckets):
				if (num_points[bucket] > 0):
					stderr[bucket] = math.sqrt(stderr[bucket] / num_points[bucket])
					stderr[bucket] /= math.sqrt(num_points[bucket])
				else:
					stderr[bucket] = 0

			indexes = indexes[:buckets]
			averages = averages[:buckets]
			stderr = stderr[:buckets]
			# Print the means and standard deviations to the excel_file
			excel_file.write(mutant + ",")
			for average in averages:
				excel_file.write(str(average) + ",")
			excel_file.write("\n,")
			for stder in stderr:
				excel_file.write(str(stder) + ",")
			excel_file.write("\n")
			
			plt.errorbar(indexes, averages, stderr, fmt='ro', linestyle='-', marker=marker, color=color, label=mutant)
		plt.legend(prop={'size':8}, loc=2)
		pylab.xlim([xmin, xmax])
		excel_file.close()
		plt.savefig(ofolder + "/" + image_name + "_" + feat + ".png", format = "png")
		plt.close()
		print "Done. Your " + feat + " plot is stored in " + ofolder + "/" + image_name + "_" + feat + ".png"
		print "The data behind the plot can be found in " + ofolder + "/" + excel_name + "-" + feat + ".csv"
コード例 #24
0
def main():
    print 'Reading command-line arguments...'
    args = sys.argv[1:]  # Remove the name of the program from the arguments
    num_args = len(args)
    req_args = [
        False
    ] * 3  # If every required argument was given then req_args will be all true
    if num_args >= 3:
        # Arguments with default values
        stdevs_away = 2
        round_to = 5

        for arg in range(0, num_args - 1, 2):
            option = args[arg]
            value = args[arg + 1]
            if option == '-s' or option == '--sets':
                sets_file = shared.openFile(value, 'r')
                req_args[0] = True
            elif option == '-c' or option == '--current-ranges':
                cur_ranges_file = shared.openFile(value, 'r')
                req_args[1] = True
            elif option == '-n' or option == '--new-ranges':
                new_ranges_fname = value
                new_ranges_file = shared.openFile(new_ranges_fname, 'w')
                req_args[2] = True
            elif option == '-d' or option == '--standard-dev':
                stdevs_away = shared.toInt(value)
            elif option == '-r' or option == '--round-to':
                round_to = shared.toInt(value)
            elif option == '-h' or option == '--help':
                usage()
            else:
                usage()
        for arg in req_args:  # Check to ensure every required argument was entered
            if not arg:
                usage()
    else:
        usage()

    print 'Reading the parameter sets file...'
    # Parse the sets file to get the list of parameter sets
    sets = []
    for line in sets_file:
        if not (line == ''
                or line[0] == '#'):  # Ignore blank lines and comments
            sets.append(line)
    if len(sets) < 1:  # Ensure at least one set was given
        usage()

    print 'Reading the current ranges file...'
    # Parse the current ranges file to find the existing ranges
    par_names = []
    cur_ranges = []
    for line in cur_ranges_file:
        line = line.replace('\t', ' ')
        if not (line == ''
                or line[0] == '#'):  # Ignore blank lines and comments
            # Get the human-readable description
            space = line.find(' ')
            if space <= 0:
                parsing_error()
            par_names.append(line[:space])
            line = line[space + 1:]  # Skip past the description

            # Find the range bounds
            start = 0
            if line[start] == '\0':
                parsing_error()
            while line[start] == ' ':
                start += 1
            if line[start] != '[':
                parsing_error()
            end = start + 1
            while line[end] != ']' and line[end] != '\0':
                end += 1
            if line[end] == '\0':
                parsing_error()
            line = line[start + 1:end]
            bounds = map(shared.toFlo,
                         line.split(','))  # Convert the bounds to floats
            if len(bounds) != 2:
                parsing_error()
            cur_ranges.append(bounds)

    print 'Calculating new ranges...'
    # Calculate each parameter's new range
    flo_sets = map(
        lambda ls: map(shared.toFlo, ls),
        map(lambda s: s.split(','),
            sets))  # Convert each parameter set string into an array of floats
    num_sets = len(flo_sets)
    new_ranges = []
    for p in range(len(cur_ranges)):  # For every range
        # Get the mean range based on every set
        vals = []
        for s in flo_sets:
            vals.append(s[p])
        mean = sum(vals) / num_sets
        # Calculate the standard deviation from the mean
        stdev_sum = 0
        for f in vals:
            stdev_sum += (f - mean)**2
        stdev = math.sqrt(stdev_sum / num_sets)
        # Define new ranges based on the mean and standard deviation that are at least as narrow as the current ranges
        lower_bound = max(cur_ranges[p][0],
                          round(mean - stdev * stdevs_away, round_to))
        upper_bound = min(cur_ranges[p][1],
                          round(mean + stdev * stdevs_away, round_to))
        new_ranges.append([lower_bound, upper_bound])

    print 'Writing the new ranges to the specified output file...'
    # Write the parameter ranges to the new ranges file
    for r in range(len(new_ranges)):
        new_ranges_file.write(par_names[r] + ' [' + str(new_ranges[r][0]) +
                              ',' + str(new_ranges[r][1]) + ']\n')
    new_ranges_file.close()

    print 'Done. The new ranges are in ' + new_ranges_fname
コード例 #25
0
def main():
	# check the given arguments
	if len(sys.argv) < 6:
		usage()
	elif len(sys.argv) == 7:
		if sys.argv[1] == "-c" or sys.argv[1] == "--no-color":
			shared.terminalRed = ""
			shared.terminalReset = ""
			filename = sys.argv[2]
			filename2 = sys.argv[3]
			directory = sys.argv[4]
			measuring = sys.argv[5]
			mutation = sys.argv[6]

		else:
			usage()
	else:
		filename = sys.argv[1]
		directory = sys.argv[2]
		measuring = sys.argv[3]
		mutation = sys.argv[4]
	
	# open the input file and ensure the directory exists
	f = shared.openFile(filename, "r")
	f2 = shared.openFile(filename2, "r")
	directory = shared.ensureDir(directory)
	
	# split the lines to get data
	data = [line.split() for line in f]
	file_len = len(data) - 1
	max_x = file_len
	f.close()
	

	data2 = [line.split() for line in f2]
	file_len2 = len(data2) - 1
	max_x2 = file_len2
	f2.close()

	if (max_x == max_x2):
		print "test"
	# number of columns we have in the files
	cn = shared.toInt(data[0][0]) * shared.toInt(data[0][1]) + 1
	cn2 = shared.toInt(data2[0][0]) * shared.toInt(data2[0][1]) + 1
	
	# create matrices to store the data we obtained from the files
	m2p=numpy.zeros(shape = (max_x,cn + cn2))
	
	# put the data coming from the files to the matrix
	for i in range(2, file_len):
		for j in range(0, cn+cn2):
			if (j <cn):
				m2p[i][j] = shared.toFlo(data[i][j])
				
			elif (j==cn):
				print data2[i][j-cn]
			else:
				m2p[i][j] = 2*shared.toFlo(data2[i][j-cn])
				
	
	# plot colors
	colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
	color = 0
	
	for i in range(1, cn+cn2):
		if (i % 4 == 0):
			pl.plot(m2p[0:max_x, 0], m2p[0:max_x, i], 'r')
		elif (i % 4 == 1):
			pl.plot(m2p[0:max_x, 0], m2p[0:max_x, i], 'g')
		elif (i % 4 == 2):
			pl.plot(m2p[0:max_x, 0], m2p[0:max_x, i], 'b')
		else:
			pl.plot(m2p[0:max_x, 0], m2p[0:max_x, i], 'c')
	
	pl.title(measuring + " " + mutation + " All Cells")
	pl.savefig(directory + "/" + mutation + "_all.png", format = "png")
	pl.close()
	
	# plot the data
	average = []
	for i in range(0, max_x):
		average.append(float(sum(m2p[i][1:])) / float(len(m2p[i][1:])))
	
	pl.plot(m2p[0:max_x, 0], average, colors[color])
	if color == len(colors) - 1:
		color = 0
	else:
		color += 1
	
	pl.title(measuring + " " + mutation + " Average")
	pl.savefig(directory + "/" + mutation + "_avg.png", format = "png")
	pl.close()