コード例 #1
0
def piteca_excepthook(exctype, value, tb):
    """
    A method to catch all unhandled exception during PITECA's run .
    :param exctype: the type of exception
    :param value: the message of the exception (use str(value))
    :param tb: traceback
    """

    # if not gb.should_exit_on_error:
    # # If we are on main thread but don't want to close PITECA
    #     dialog_utils.print_error(constants.UNEXPECTED_EXCEPTION_MSG[:-1] + ": " + str(value))
    #     return

    # Show user the full error value only if it is a PITECA error
    if exctype == definitions.PitecaError:
        msg = str(value.message)
    else:
        msg = constants.UNEXPECTED_EXCEPTION_MSG

    if int(QThread.currentThreadId()) == main_thread_id:
        definitions.print_in_debug(value)
        traceback.print_tb(tb)
        dialog_utils.print_error(msg + ". PITECA will be now closed")
        sys.exit()
    else:
        # The exception_occurred_sig should be defined in every thread class in PITECA
        definitions.print_in_debug(value)
        definitions.print_in_debug(exctype)
        traceback.print_tb(tb)
        QThread.currentThread().exception_occurred_sig.emit(msg)
コード例 #2
0
ファイル: analyze_controller.py プロジェクト: udiNaveh/PITECA
 def __handle_unexpected_exception(self, dlg, thread, value):
     """
     The function to be called when unhandled exception occurs in param thread.
     Terminates the thread, closing the progress dialog and pops up an error message.
     :param dlg: Progress dialog, to be closed.
     :param thread: The analysis thread where the exception occured, to be terminated.
     """
     dlg.close()
     thread.quit()
     dialog_utils.print_error(value)
コード例 #3
0
    def onClick(self, event):
        """
        The function that should be called when user clicks on the graph.
        Changes the label that shows the exact correlation if user clicked inside graph borders,
        or do nothing if user clicks elsewhere.
        """

        if event.button == 1 and event.xdata and event.ydata:
            subject_x_index = math.floor(event.xdata)
            subject_y_index = math.floor(event.ydata)

            if self.analysis_task == AnalysisTask.Analysis_Correlations:
                # graph (1)
                if event.inaxes.get_xlabel(
                ) == self.SUBJECTS_X_LABEL and event.inaxes.get_ylabel(
                ) == self.SUBJECTS_Y_LABEL:
                    correlation = self.subj_subj_data[subject_x_index,
                                                      subject_y_index]
                    between1 = "subject {}".format(self.ids[subject_x_index])
                    between2 = "subject {}".format(self.ids[subject_y_index])
                # graph (2)
                # elif event.inaxes.get_xlabel() == "" and event.inaxes.get_ylabel() == MEAN_Y_LABEL:
                #     correlation = self.subj_mean_data[subject_x_index]
                #     between1 = self.ids[subject_x_index]
                #     between2 = "mean activation"
                # graph (3)
                elif event.inaxes.get_xlabel(
                ) == "" and event.inaxes.get_ylabel() == CANONICAL_Y_LABEL:
                    correlation = self.subj_canonical_data[subject_x_index]
                    between1 = "subject {}".format(self.ids[subject_x_index])
                    between2 = "canonical activation"
                # not a heat map location
                else:
                    return

            elif self.analysis_task == AnalysisTask.Compare_Correlations:
                # graph 4
                if event.inaxes.get_xlabel(
                ) == self.SUBJECTS_X_LABEL and event.inaxes.get_ylabel(
                ) == self.SUBJECTS_Y_LABEL:
                    correlation = self.subj_subj_data[subject_y_index,
                                                      subject_x_index]
                    between1 = "subject {}".format(self.ids[subject_x_index])
                    between2 = "subject {}".format(self.ids[subject_y_index])
                # not a heat map location
                else:
                    return

            else:
                dialog_utils.print_error(constants.UNEXPECTED_EXCEPTION_MSG)

            self.correlation_label.setText(
                "Value: {:.2f} (Correlation between {} and {})".format(
                    correlation, between1, between2))
コード例 #4
0
ファイル: predict_controller.py プロジェクト: udiNaveh/PITECA
 def onRunPredictClicked(self):
     inputFiles = self.ui.inputFilesLineEdit.text()
     outputDir = get_prediction_outputs_folder()
     tasks = self.findCheckedTasks()
     if not inputFiles:
         dialog_utils.print_error(PROVIDE_INPUT_FILES_MSG)
         return
     if not tasks:
         dialog_utils.print_error(SELECT_TASKS_MSG)
         return
     predictModel = PredictTabModel(inputFiles, outputDir, tasks)
     predictModel.run_prediction_flow(self.ui)
コード例 #5
0
ファイル: analyze_controller.py プロジェクト: udiNaveh/PITECA
    def onRunComparisonButtonClicked(self):
        """
        The function to be called when user clicked on "Compare" button.
        Starts the analysis progress according to the action selected in the UI.
        """
        predicted_files_str = self.ui.selectPredictedLineEdit.text()
        actual_files_str = self.ui.addActualLineEdit.text()

        if not predicted_files_str or not actual_files_str:
            dialog_utils.print_error(constants.PROVIDE_INPUT_MSG)
            return

        self.task = constants.Task[self.ui.taskComboBox.currentText()]
        subjects = self.__create_subjects(self.task, predicted_files_str,
                                          actual_files_str)
        if not subjects:
            return

        if len(subjects) > constants.MAX_SUBJECTS:
            dialog_utils.inform_user(
                "Too many files to process. Maximum number is 25 files.")
            return

        # Prepare additional analysis parameters
        analysis_task = None
        outputdir = get_analysis_results_folder()
        other_path = path_utils.get_canonical_path(self.task)

        if self.ui.comparisonCorrelationsRadioButton.isChecked():
            analysis_task = AnalysisTask.Compare_Correlations

        elif self.ui.comparisonSignificantRadioButton.isChecked():
            analysis_task = AnalysisTask.Compare_Significance

        else:
            dialog_utils.print_error(constants.SELECT_ACTION_MSG)
            return

        thread = AnalysisWorkingThread(analysis_task, subjects, self.task,
                                       outputdir, other_path)
        dlg = analysis_working_dlg_controller.AnalysisWorkingDlg()
        dlg.closeEvent = lambda event: self.wait_dlg_close_event(
            event, dlg, thread)
        dlg.setWindowModality(Qt.ApplicationModal)
        dlg.show()
        thread.progress_finished_sig.connect(lambda: self.__handle_results(
            analysis_task, dlg, thread.results, subjects))
        thread.exception_occurred_sig.connect(
            lambda value: self.__handle_unexpected_exception(
                dlg, thread, value))
        thread.start()
コード例 #6
0
ファイル: analyze_controller.py プロジェクト: udiNaveh/PITECA
    def __create_subjects(self,
                          task,
                          predicted_files_str,
                          actual_files_str=None):
        '''
        Creates subjects with minimal info required for analysis.
        :param task: The task chosen for the analysis
        :param predicted_files_str: The input string from the user
        :param actual_files_str: The input string from the user (oprional)
        :return: a list of Subjects
        '''
        subjects = []
        predicted_files = path_utils.extract_filenames(predicted_files_str)
        for file in predicted_files:
            curr_subject = subject.Subject()
            curr_subject.subject_id = path_utils.get_id(file)
            if curr_subject.subject_id == None:
                dialog_utils.inform_user(constants.NAMING_CONVENTION_ERROR)
                return []
            curr_subject.predicted = {task: file}
            subjects.append(curr_subject)

        if actual_files_str:
            actual_files = path_utils.extract_filenames(actual_files_str)

            # Check predicted and actual match
            predicted_ids = [subject.subject_id for subject in subjects]
            actual_ids = [path_utils.get_id(file) for file in actual_files]
            if not set(predicted_ids) == set(actual_ids):
                dialog_utils.print_error(
                    "The files provided as the actual activation do not match the predicted files."
                )
                return None
            else:
                # Add subjects the "actual" property
                for file in actual_files:
                    match_subject = next(
                        subject for subject in subjects
                        if subject.subject_id == path_utils.get_id(file))
                    match_subject.actual = {task: file}

        # assert only unique subjects
        ids = [subject.subject_id for subject in subjects]
        if len(ids) != len(set(ids)):
            dialog_utils.print_error(constants.DUP_IDS)
            return None
        return subjects
コード例 #7
0
    def __init__(self, analysis_task, data, subjects, title, parent=None):
        super(GraphicDlg, self).__init__(parent)

        # a figure instance to plot on
        self.figure = plt.figure()

        # this is the Canvas Widget that displays the `figure`
        # it takes the `figure` instance as a parameter to __init__
        self.canvas = FigureCanvas(self.figure)

        # this is the Navigation widget
        # it takes the Canvas widget and a parent
        self.toolbar = NavigationToolbar(self.canvas, self)

        # save button
        self.save_button = QtWidgets.QPushButton('Save data')
        self.save_button.setMaximumWidth(max_width_button)
        self.save_button.clicked.connect(self.save_data)

        # set the layout
        self.layout = QVBoxLayout()
        self.layout.addWidget(self.toolbar)
        self.layout.addWidget(self.canvas)
        self.layout.addWidget(self.save_button)
        self.setLayout(self.layout)
        self.setWindowTitle("PITECA")
        icon = QtGui.QIcon()
        icon.addPixmap(QtGui.QPixmap(definitions.PITECA_ICON_PATH),
                       QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.setWindowIcon(icon)

        # Add results illustration
        self.ids = [subject.subject_id for subject in subjects]
        self.analysis_task = analysis_task
        self.data = data
        self.title = title
        self.named_data = {}

        # calculate x tick labels font
        num_of_chars = len(''.join(self.ids)) + len(self.ids)
        self.font_size = (
            14 / (math.ceil(num_of_chars / 29))) if num_of_chars > 29 else 7

        # Set graph attributes specifically by tasks
        if self.analysis_task == AnalysisTask.Analysis_Correlations:
            self.SUBJECTS_X_LABEL = "subjects"
            self.SUBJECTS_Y_LABEL = "subjects"
            self.subj_subj_data = data[0]  # 2 dims
            # self.subj_mean_data = data[1] # 1 dim
            self.subj_canonical_data = data[2]  # 1 dim
            self.named_data = {
                'inter-subject predictions correlation':
                self.subj_subj_data,
                'subjects predictions correlations with canonical':
                self.subj_canonical_data
            }
            self.plot_heatmap()
        elif analysis_task == AnalysisTask.Compare_Correlations:
            self.SUBJECTS_X_LABEL = "subjects: Actual"
            self.SUBJECTS_Y_LABEL = "subjects: Predicted"
            self.subj_subj_data = data  # 2 dims
            self.named_data = {
                'inter-subject predicted-actual correlations':
                self.subj_subj_data,
            }
            self.plot_heatmap()
        if analysis_task == AnalysisTask.Analysis_Correlations or analysis_task == AnalysisTask.Compare_Correlations:
            if analysis_task == AnalysisTask.Compare_Correlations:
                mean_of_diagonal = np.mean(np.diagonal(self.subj_subj_data))
                self.mean_correlation_label = QtWidgets.QLabel(
                    'Mean correlation: {:01.2f}'.format(mean_of_diagonal))
                self.layout.addWidget(self.mean_correlation_label)
            # a label to show correlation
            self.correlation_label = QtWidgets.QLabel(
                'Click on entry to see the exact correlation value')
            self.layout.addWidget(self.correlation_label)
        elif analysis_task == AnalysisTask.Compare_Significance:
            # self.data is 2 dimensional array
            self.named_data = {
                'subjects predicted-actual positive significance iou ':
                self.data[0],
                'subjects predicted-actual negative significance iou ':
                self.data[1]
            }
            self.plot_barchart()
        else:
            dialog_utils.print_error("Unsupported analysis action")
            return

        if self.analysis_task in [
                AnalysisTask.Analysis_Correlations,
                AnalysisTask.Compare_Correlations
        ]:
            self.plot_heatmap()