def get_thermo(self): ''' Function to generate thermodynamic indices. Function returns nothing, but sets the following variables: self.k_idx - K Index, a severe weather index self.pwat - Precipitable Water Vapor (inches) self.lapserate_3km - 0 to 3km AGL lapse rate (C/km) self.lapserate_3_6km - 3 to 6km AGL lapse rate (C/km) self.lapserate_850_500 - 850 to 500mb lapse rate (C/km) self.lapserate_700_500 - 700 to 500mb lapse rate (C/km) self.convT - The Convective Temperature (F) self.maxT - The Maximum Forecast Surface Temp (F) self.mean_mixr - Mean Mixing Ratio self.low_rh - low level mean relative humidity self.mid_rh - mid level mean relative humidity self.totals_totals - Totals Totals index, a severe weather index Parameters ---------- None Returns ------- None ''' ## either get or calculate the indices, round to the nearest int, and ## convert them to strings. ## K Index self.k_idx = params.k_index( self ) ## precipitable water self.pwat = params.precip_water( self ) ## 0-3km agl lapse rate self.lapserate_3km = params.lapse_rate( self, 0., 3000., pres=False ) ## 3-6km agl lapse rate self.lapserate_3_6km = params.lapse_rate( self, 3000., 6000., pres=False ) ## 850-500mb lapse rate self.lapserate_850_500 = params.lapse_rate( self, 850., 500., pres=True ) ## 700-500mb lapse rate self.lapserate_700_500 = params.lapse_rate( self, 700., 500., pres=True ) ## 2-6 km max lapse rate self.max_lapse_rate_2_6 = params.max_lapse_rate( self ) ## convective temperature self.convT = thermo.ctof( params.convective_temp( self ) ) ## sounding forecast surface temperature self.maxT = thermo.ctof( params.max_temp( self ) ) #fzl = str(int(self.sfcparcel.hght0c)) ## 100mb mean mixing ratio self.mean_mixr = params.mean_mixratio( self ) ## 150mb mean rh self.low_rh = params.mean_relh( self ) self.mid_rh = params.mean_relh( self, pbot=(self.pres[self.sfc] - 150), ptop=(self.pres[self.sfc] - 350) ) ## calculate the totals totals index self.totals_totals = params.t_totals( self ) ## calculate the inferred temperature advection self.inf_temp_adv = params.inferred_temp_adv(self, lat=self.latitude)
def get_thermo(self): ''' Function to generate thermodynamic indices. Function returns nothing, but sets the following variables: self.k_idx - K Index, a severe weather index self.pwat - Precipitable Water Vapor (inches) self.lapserate_3km - 0 to 3km AGL lapse rate (C/km) self.lapserate_3_6km - 3 to 6km AGL lapse rate (C/km) self.lapserate_850_500 - 850 to 500mb lapse rate (C/km) self.lapserate_700_500 - 700 to 500mb lapse rate (C/km) self.convT - The Convective Temperature (F) self.maxT - The Maximum Forecast Surface Temp (F) self.mean_mixr - Mean Mixing Ratio self.low_rh - low level mean relative humidity self.mid_rh - mid level mean relative humidity self.totals_totals - Totals Totals index, a severe weather index Parameters ---------- None Returns ------- None ''' ## either get or calculate the indices, round to the nearest int, and ## convert them to strings. ## K Index self.k_idx = params.k_index( self ) ## precipitable water self.pwat = params.precip_water( self ) ## 0-3km agl lapse rate self.lapserate_3km = params.lapse_rate( self, 0., 3000., pres=False ) ## 3-6km agl lapse rate self.lapserate_3_6km = params.lapse_rate( self, 3000., 6000., pres=False ) ## 850-500mb lapse rate self.lapserate_850_500 = params.lapse_rate( self, 850., 500., pres=True ) ## 700-500mb lapse rate self.lapserate_700_500 = params.lapse_rate( self, 700., 500., pres=True ) ## convective temperature self.convT = thermo.ctof( params.convective_temp( self ) ) ## sounding forecast surface temperature self.maxT = thermo.ctof( params.max_temp( self ) ) #fzl = str(int(self.sfcparcel.hght0c)) ## 100mb mean mixing ratio self.mean_mixr = params.mean_mixratio( self ) ## 150mb mean rh self.low_rh = params.mean_relh( self ) self.mid_rh = params.mean_relh( self, pbot=(self.pres[self.sfc] - 150), ptop=(self.pres[self.sfc] - 350) ) ## calculate the totals totals index self.totals_totals = params.t_totals( self ) ## calculate the inferred temperature advection self.inf_temp_adv = params.inferred_temp_adv(self)
def possible_watch(prof): ''' Possible Weather/Hazard/Watch Type This function generates a list of possible significant weather types one can expect given a Profile object. (Currently works only for ConvectiveProfile.) These possible weather types are computed via fuzzy logic through set thresholds that have been found through a.) analyzing ingredients within the profile and b.) combining those ingredients with forecasting experience to produce a suggestion of what hazards may exist. Some of the logic is based on experience, some of it is based on actual National Weather Service criteria. This function has not been formally verified and is not meant to be comprehensive nor a source of strict guidance for weather forecasters. As always, the raw data is to be consulted. This code base is currently under development. Wx Categories (ranked in terms of severity): - PDS TOR - TOR - MRGL TOR - SVR - MRGL SVR - FLASH FLOOD - BLIZZARD - WINTER STORM - WIND CHILL - FIRE WEATHER - EXCESSIVE HEAT - FREEZE Suggestions for severe/tornado thresholds were contributed by Rich Thompson - NOAA Storm Prediction Center Parameters ---------- prof : ConvectiveProfile object Returns ------- watch_types : a list of strings containing the weather types in code colors : a list of the HEX colors corresponding to each weather type ''' watch_types = [] colors = [] lr1 = params.lapse_rate(prof, 0, 1000, pres=False) stp_eff = prof.stp_cin stp_fixed = prof.stp_fixed srw_4_6km = utils.mag(prof.srw_4_6km[0], prof.srw_4_6km[1]) sfc_8km_shear = utils.mag(prof.sfc_8km_shear[0], prof.sfc_8km_shear[1]) right_esrh = prof.right_esrh[0] srh1km = prof.srh1km[0] right_scp = prof.right_scp ## Cambios para el hemisferio sur JP JP if prof.latitude < 0: srh1km = -srh1km stp_eff = -stp_eff stp_fixed = -stp_fixed right_scp = -prof.left_scp right_esrh = -prof.left_esrh[0] if stp_eff >= 3 and stp_fixed >= 3 and srh1km >= 200 and right_esrh >= 200 and srw_4_6km >= 15.0 and \ sfc_8km_shear > 45.0 and prof.sfcpcl.lclhght < 1000. and prof.mlpcl.lclhght < 1200 and lr1 >= 5.0 and \ prof.mlpcl.bminus >= -50 and prof.ebotm == 0: watch_types.append("SPP TOR") colors.append(constants.MAGENTA) elif (stp_eff >= 3 or stp_fixed >= 4) and prof.mlpcl.bminus >= -125. and prof.ebotm == 0: watch_types.append("TOR") colors.append("#FF0000") elif (stp_eff >= 1 or stp_fixed >= 1) and (srw_4_6km >= 15.0 or sfc_8km_shear >= 40) and \ prof.mlpcl.bminus >= -50 and prof.ebotm == 0: watch_types.append("TOR") colors.append("#FF0000") elif (stp_eff >= 1 or stp_fixed >= 1) and ((prof.low_rh + prof.mid_rh)/2. >= 60) and lr1 >= 5.0 and \ prof.mlpcl.bminus >= -50 and prof.ebotm == 0: watch_types.append("TOR") colors.append("#FF0000") elif (stp_eff >= 1 or stp_fixed >= 1) and prof.mlpcl.bminus >= -150 and prof.ebotm == 0.: watch_types.append("MRGL TOR") colors.append("#FF0000") elif (stp_eff >= 0.5 and prof.right_esrh >= 150) or (stp_fixed >= 0.5 and srh1km >= 150) and \ prof.mlpcl.bminus >= -50 and prof.ebotm == 0.: watch_types.append("MRGL TOR") colors.append("#FF0000") #t1 = tab.utils.FLOAT2STR(stp_eff, 1) #t2 = tab.utils.FLOAT2STR(stp_fixed, 1) #t3 = tab.utils.FLOAT2STR(srw_4_6km, 1) #t4 = tab.utils.INT2STR(sfc_8km_shear) #t5 = tab.utils.INT2STR(prof.mlpcl.bminus) #t6 = tab.utils.INT2STR(prof.ebotm) #with open('C:\\temp.txt', 'a') as f: # f.write(t1 + ',' + t2 + ',' + t3 + ',' + t4 + ',' + t5 + ',' + t6 + '\n') #SVR LOGIC if (stp_fixed >= 1.0 or right_scp >= 4.0 or stp_eff >= 1.0) and prof.mupcl.bminus >= -50: colors.append("#FFFF00") watch_types.append("SVR") elif right_scp >= 2.0 and (prof.ship >= 1.0 or prof.dcape >= 750) and prof.mupcl.bminus >= -50: colors.append("#FFFF00") watch_types.append("SVR") elif prof.sig_severe >= 30000 and prof.mmp >= 0.6 and prof.mupcl.bminus >= -50: colors.append("#FFFF00") watch_types.append("SVR") elif prof.mupcl.bminus >= -75.0 and (prof.wndg >= 0.5 or prof.ship >= 0.5 or right_scp >= 0.5): colors.append("#0099CC") watch_types.append("MRGL SVR") # Flash Flood Watch PWV is larger than normal and cloud layer mean wind speeds are slow # This is trying to capture the ingredients of moisture and advection speed, but cannot # handle precipitation efficiency or vertical motion pw_climo_flag = prof.pwv_flag pwat = prof.pwat upshear = utils.comp2vec(prof.upshear_downshear[0], prof.upshear_downshear[1]) if pw_climo_flag >= 2 and upshear[1] < 25: watch_types.append("INUND REPENT") colors.append("#5FFB17") #elif pwat > 1.3 and upshear[1] < 25: # watch_types.append("FLASH FLOOD") # colors.append("#5FFB17") # Blizzard if sfc winds > 35 mph and precip type detects snow # Still needs to be tied into the sfc_wspd = utils.KTS2MPH(prof.wspd[prof.get_sfc()]) if sfc_wspd > 35. and prof.tmpc[ prof.get_sfc()] <= 0 and "Snow" in prof.precip_type: watch_types.append("TORM NIEVE") colors.append("#3366FF") # Wind Chill (if wind chill gets below -20 F) if wind_chill(prof) < -20.: watch_types.append("ST VIENTO") colors.append("#3366FF") # Fire WX (sfc RH < 30% and sfc_wind speed > 15 mph) (needs to be updated to include SPC Fire Wx Indices) if sfc_wspd > 15. and thermo.relh(prof.pres[prof.get_sfc()], prof.tmpc[prof.get_sfc()], prof.tmpc[prof.get_sfc()]) < 30.: watch_types.append("INCENDIOS") colors.append("#FF9900") # Excessive Heat (if Max_temp > 105 F and sfc dewpoint > 75 F) if thermo.ctof(prof.dwpc[prof.get_sfc()]) > 75. and thermo.ctof( params.max_temp(prof)) >= 105.: watch_types.append("CALOR INTENSO") colors.append("#CC33CC") # Freeze (checks to see if wetbulb is below freezing and temperature isn't and wind speeds are low) # Still in testing. if thermo.ctof(prof.dwpc[prof.get_sfc()]) <= 32. and thermo.ctof( prof.wetbulb[prof.get_sfc()]) <= 32 and prof.wspd[ prof.get_sfc()] < 5.: watch_types.append("HELADAS") colors.append("#3366FF") watch_types.append("NINGUNA") colors.append("#FFCC33") return np.asarray(watch_types), np.asarray(colors)
''' Create the Sounding (Profile) Object '''
def possible_watch(prof): ''' Possible Weather/Hazard/Watch Type This function generates a list of possible significant weather types one can expect given a Profile object. (Currently works only for ConvectiveProfile.) These possible weather types are computed via fuzzy logic through set thresholds that have been found through a.) analyzing ingredients within the profile and b.) combining those ingredients with forecasting experience to produce a suggestion of what hazards may exist. Some of the logic is based on experience, some of it is based on actual National Weather Service criteria. This function has not been formally verified and is not meant to be comprehensive nor a source of strict guidance for weather forecasters. As always, the raw data is to be consulted. This code base is currently under development. Wx Categories (ranked in terms of severity): - PDS TOR - TOR - MRGL TOR - SVR - MRGL SVR - FLASH FLOOD - BLIZZARD - WINTER STORM - WIND CHILL - FIRE WEATHER - EXCESSIVE HEAT - FREEZE Suggestions for severe/tornado thresholds were contributed by Rich Thompson - NOAA Storm Prediction Center Parameters ---------- prof : ConvectiveProfile object Returns ------- watch_types : a list of strings containing the weather types in code colors : a list of the HEX colors corresponding to each weather type ''' watch_types = [] colors = [] lr1 = params.lapse_rate( prof, 0, 1000, pres=False ) stp_eff = prof.stp_cin stp_fixed = prof.stp_fixed srw_4_6km = utils.mag(prof.srw_4_6km[0],prof.srw_4_6km[1]) sfc_8km_shear = utils.mag(prof.sfc_8km_shear[0],prof.sfc_8km_shear[1]) right_esrh = prof.right_esrh[0] srh1km = prof.srh1km[0] if stp_eff >= 3 and stp_fixed >= 3 and srh1km >= 200 and right_esrh >= 200 and srw_4_6km >= 15.0 and \ sfc_8km_shear > 45.0 and prof.sfcpcl.lclhght < 1000. and prof.mlpcl.lclhght < 1200 and lr1 >= 5.0 and \ prof.mlpcl.bminus > -50 and prof.ebotm == 0: watch_types.append("PDS TOR") colors.append(constants.MAGENTA) elif (stp_eff >= 3 or stp_fixed >= 4) and prof.mlpcl.bminus > -125. and prof.ebotm == 0: watch_types.append("TOR") colors.append("#FF0000") elif (stp_eff >= 1 or stp_fixed >= 1) and (srw_4_6km >= 15.0 or sfc_8km_shear >= 40) and \ prof.mlpcl.bminus > -50 and prof.ebotm == 0: watch_types.append("TOR") colors.append("#FF0000") elif (stp_eff >= 1 or stp_fixed >= 1) and ((prof.low_rh + prof.mid_rh)/2. >= 60) and lr1 >= 5.0 and \ prof.mlpcl.bminus > -50 and prof.ebotm == 0: watch_types.append("TOR") colors.append("#FF0000") elif (stp_eff >= 1 or stp_fixed >= 1) and prof.mlpcl.bminus > -150 and prof.ebotm == 0.: watch_types.append("MRGL TOR") colors.append("#FF0000") elif (stp_eff >= 0.5 and prof.right_esrh >= 150) or (stp_fixed >= 0.5 and srh1km >= 150) and \ prof.mlpcl.bminus > -50 and prof.ebotm == 0.: watch_types.append("MRGL TOR") colors.append("#FF0000") #SVR LOGIC if (stp_fixed >= 1.0 or prof.right_scp >= 4.0 or stp_eff >= 1.0) and prof.mupcl.bminus >= -50: colors.append("#FFFF00") watch_types.append("SVR") elif prof.right_scp >= 2.0 and (prof.ship >= 1.0 or prof.dcape >= 750) and prof.mupcl.bminus >= -50: colors.append("#FFFF00") watch_types.append("SVR") elif prof.sig_severe >= 30000 and prof.mmp >= 0.6 and prof.mupcl.bminus >= -50: colors.append("#FFFF00") watch_types.append("SVR") elif prof.mupcl.bminus >= -75.0 and (prof.wndg >= 0.5 or prof.ship >= 0.5 or prof.right_scp >= 0.5): colors.append("#0099CC") watch_types.append("MRGL SVR") # Flash Flood Watch PWV is larger than normal and cloud layer mean wind speeds are slow # This is trying to capture the ingredients of moisture and advection speed, but cannot # handle precipitation efficiency or vertical motion pw_climo_flag = prof.pwv_flag pwat = prof.pwat upshear = utils.comp2vec(prof.upshear_downshear[0],prof.upshear_downshear[1]) if pw_climo_flag >= 2 and upshear[1] < 25: watch_types.append("FLASH FLOOD") colors.append("#5FFB17") #elif pwat > 1.3 and upshear[1] < 25: # watch_types.append("FLASH FLOOD") # colors.append("#5FFB17") # Blizzard if sfc winds > 35 mph and precip type detects snow # Still needs to be tied into the sfc_wspd = utils.KTS2MPH(prof.wspd[prof.get_sfc()]) if sfc_wspd > 35. and prof.tmpc[prof.get_sfc()] <= 0: watch_types.append("BLIZZARD") colors.append("#3366FF") # Wind Chill (if wind chill gets below -20 F) if wind_chill(prof) < -20.: watch_types.append("WIND CHILL") colors.append("#3366FF") # Fire WX (sfc RH < 30% and sfc_wind speed > 15 mph) (needs to be updated to include SPC Fire Wx Indices) if sfc_wspd > 15. and thermo.relh(prof.pres[prof.get_sfc()], prof.tmpc[prof.get_sfc()], prof.dwpc[prof.get_sfc()]) < 30. : watch_types.append("FIRE WEATHER") colors.append("#FF9900") # Excessive Heat (if Max_temp > 105 F and sfc dewpoint > 75 F) if thermo.ctof(prof.dwpc[prof.get_sfc()]) > 75. and thermo.ctof(params.max_temp(prof)) >= 105.: watch_types.append("EXCESSIVE HEAT") colors.append("#CC33CC") # Freeze (checks to see if wetbulb is below freezing and temperature isn't and wind speeds are low) # Still in testing. if thermo.ctof(prof.dwpc[prof.get_sfc()]) <= 32. and thermo.ctof(prof.wetbulb[prof.get_sfc()]) <= 32 and prof.wspd[prof.get_sfc()] < 5.: watch_types.append("FREEZE") colors.append("#3366FF") watch_types.append("NONE") colors.append("#FFCC33") return np.asarray(watch_types), np.asarray(colors)