コード例 #1
0
ファイル: consolidated.py プロジェクト: phisad/keras-shatt
def create_single_feature_maps_file_from_config(config, split_names):
    """
        Reads the image files from the sub-directories given as split names.
        
        Creates the according feature map files in the top directory.
    """
    images_top_directory = config.getDatasetImagesDirectoryPath()
    output_layer = config.getImageOutputLayer()
    feature_map_files = []
    for split_name in split_names:
        directory_path = "/".join([images_top_directory, split_name])
        image_paths = get_image_paths(directory_path)

        target_shape = config.getImageInputShape()
        image_features_size = config.getImageFeaturesSize()
        feature_map_file = create_single_feature_maps_file(
            output_layer, image_paths, images_top_directory,
            image_features_size, target_shape, split_name, config.run_opts)
        feature_map_files.append(feature_map_file)
    return feature_map_files
コード例 #2
0
ファイル: distributed.py プロジェクト: phisad/keras-shatt
def create_many_attention_map_files_from_config(config, split_name):
    """
        Reads the image files from the sub-directories given as split names.
        
        Creates the according feature map files in the top directory.
    """
    target_shape = config.getImageInputShape()
    image_feature_size = config.getImageFeaturesSize()
    
    image_infix = get_infix_from_config(config, split_name)
    image_prefix = "COCO_" + image_infix
    
    bounding_boxes = load_prepared_boxes_json_from_config(config, split_name)
    
    boxes = calculate_metrics(bounding_boxes)
    
    boxes_by_id = collections.defaultdict(list)
    [boxes_by_id[box["image_id"]].append(box) for box in boxes]
    
    images_top_directory = config.getDatasetImagesDirectoryPath()
    image_paths = get_image_paths(to_split_dir(images_top_directory, split_name))
    
    processables = to_processables(image_paths, boxes_by_id, target_shape, image_prefix, image_feature_size)
    preprocess_bounding_boxes(processables)
コード例 #3
0
ファイル: providers.py プロジェクト: phisad/keras-shatt
 def get_image_ids(self):
     paths = get_image_paths(self.directory_path)
     return extract_to_image_ids_ordered(paths)
コード例 #4
0
def main():
    parser = ArgumentParser(
        "Prepare the MSCOCO dataset for training adn experiments")
    parser.add_argument("command",
                        help="""One of [preprocess, featuremaps, boxes, all]. 
                        preprocess: Resizes images and stores them by image id in a TFRecord file 
                        featuremaps: Loads images from the TFRecords file and creates the feature maps using the visual model.
                                     Then stores the feature maps as individual files along with the images.
                        bxoes: Create the bounding box files based on the dataset instances file. Required for experiment.
                        all: All of the above""")
    parser.add_argument(
        "-c",
        "--configuration",
        help=
        "Determine a specific configuration to use. If not specified, the default is used."
    )
    parser.add_argument("-d", "--dryrun", action="store_true")
    parser.add_argument("-b", "--batch_size", type=int)
    parser.add_argument(
        "-n",
        "--num_images",
        type=int,
        help=
        "The expected number of images in the TFRecord file. Will show a progress bar then."
    )
    parser.add_argument(
        '-s',
        "--split_names",
        nargs='+',
        help="Specify the split names. Otherwise defaults to [train, validate]"
    )
    run_opts = parser.parse_args()

    if run_opts.configuration:
        config = Configuration(run_opts.configuration)
    else:
        config = Configuration()

    config[OPTION_DRY_RUN] = run_opts.dryrun
    config["batch_size"] = run_opts.batch_size
    config["num_images"] = run_opts.num_images

    import os
    os.environ["CUDA_VISIBLE_DEVICES"] = str(config.getGpuDevices())
    #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

    split_names = [SPLIT_TRAIN, SPLIT_VALIDATE]
    if run_opts.split_names:
        split_names = run_opts.split_names

    print("\nStarting image preparation: {}".format(run_opts.command))
    directory_path = config.getDatasetImagesDirectoryPath()

    if run_opts.command in ["all", "preprocess"]:
        print("\nPerform preprocessing for splits: " + str(split_names))
        for split_name in split_names:
            tfrecord_file = get_preprocessing_tfrecord_file(
                directory_path, split_name)
            if tfrecord_file:
                print(
                    "Skip preprocessing for split '{}' because TFRecord file already exists at {}"
                    .format(split_name, tfrecord_file))
            else:
                target_shape = config.getImageInputShape()
                image_paths = get_image_paths(
                    to_split_dir(directory_path, split_name))
                preprocess_images_and_write_tfrecord(image_paths,
                                                     directory_path,
                                                     target_shape, split_name)

    if run_opts.command in ["all", "featuremaps"]:
        print("\nCreated feature map files for splits " + str(split_names))
        for split_name in split_names:
            tfrecord_file = get_preprocessing_tfrecord_file(
                directory_path, split_name)
            if tfrecord_file:
                print(
                    "Start feature map generation for split '{}' with TFRecord file found at {}"
                    .format(split_name, tfrecord_file))
                create_many_feature_map_files_from_config(config, split_name)
            else:
                print(
                    "Cannot find TFRecord file for split '{}'. Please run 'preprocess' for the split and try again."
                )

    if run_opts.command in ["all", "boxes"]:
        print("\nCreate bounding boxes for splits: " + str(split_names))
        for split_name in split_names:
            create_many_attention_map_files_from_config(config, split_name)
コード例 #5
0
ファイル: providers.py プロジェクト: phisad/keras-shatt
 def get_image_ids(self):
     paths = get_image_paths(self.directory_path, file_ending="bbx")
     return extract_to_image_ids_ordered(paths)