コード例 #1
0
ファイル: test_matrices.py プロジェクト: mstf1985/shenfun
def test_biharmonic2D(family, axis):
    la = lla
    if family == 'chebyshev':
        la = cla
    N = (16, 16)
    SD = FunctionSpace(N[axis], family=family, bc='Biharmonic')
    K1 = FunctionSpace(N[(axis + 1) % 2], family='F', dtype='d')
    subcomms = mpi4py_fft.pencil.Subcomm(MPI.COMM_WORLD, allaxes2D[axis])
    bases = [K1]
    bases.insert(axis, SD)
    T = TensorProductSpace(subcomms, bases, axes=allaxes2D[axis])
    u = shenfun.TrialFunction(T)
    v = shenfun.TestFunction(T)
    if family == 'chebyshev':
        mat = inner(v, div(grad(div(grad(u)))))
    else:
        mat = inner(div(grad(v)), div(grad(u)))

    H = la.Biharmonic(*mat)
    u = Function(T)
    u[:] = np.random.random(u.shape) + 1j * np.random.random(u.shape)
    f = Function(T)
    f = H.matvec(u, f)

    g0 = Function(T)
    g1 = Function(T)
    g2 = Function(T)
    M = {d.get_key(): d for d in mat}
    g0 = M['SBBmat'].matvec(u, g0)
    g1 = M['ABBmat'].matvec(u, g1)
    g2 = M['BBBmat'].matvec(u, g2)

    assert np.linalg.norm(f - (g0 + g1 + g2)) < 1e-8
コード例 #2
0
def test_cylinder():
    T = get_function_space('cylinder')
    u = TrialFunction(T)
    du = div(grad(u))
    assert du.tolatex() == '\\frac{\\partial^2 u}{\\partial x^2 }+\\frac{1}{x}\\frac{\\partial  u}{\\partial x  }+\\frac{1}{x^{2}}\\frac{\\partial^2 u}{\\partial y^2 }+\\frac{\\partial^2 u}{\\partial z^2 }'
    V = VectorSpace(T)
    u = TrialFunction(V)
    du = div(grad(u))
    assert du.tolatex() == '\\left( \\frac{\\partial^2 u^{x}}{\\partial x^2 }+\\frac{1}{x}\\frac{\\partial  u^{x}}{\\partial x  }+\\frac{1}{x^{2}}\\frac{\\partial^2 u^{x}}{\\partial y^2 }- \\frac{2}{x}\\frac{\\partial  u^{y}}{\\partial y  }- \\frac{1}{x^{2}}u^{x}+\\frac{\\partial^2 u^{x}}{\\partial z^2 }\\right) \\mathbf{b}_{x} \\\\+\\left( \\frac{\\partial^2 u^{y}}{\\partial x^2 }+\\frac{3}{x}\\frac{\\partial  u^{y}}{\\partial x  }+\\frac{2}{x^{3}}\\frac{\\partial  u^{x}}{\\partial y  }+\\frac{1}{x^{2}}\\frac{\\partial^2 u^{y}}{\\partial y^2 }+\\frac{\\partial^2 u^{y}}{\\partial z^2 }\\right) \\mathbf{b}_{y} \\\\+\\left( \\frac{\\partial^2 u^{z}}{\\partial x^2 }+\\frac{1}{x}\\frac{\\partial  u^{z}}{\\partial x  }+\\frac{1}{x^{2}}\\frac{\\partial^2 u^{z}}{\\partial y^2 }+\\frac{\\partial^2 u^{z}}{\\partial z^2 }\\right) \\mathbf{b}_{z} \\\\'
コード例 #3
0
def test_quasiGalerkin(basis):
    N = 40
    T = FunctionSpace(N, 'C')
    S = FunctionSpace(N, 'C', basis=basis)
    u = TrialFunction(S)
    v = TestFunction(T)
    A = inner(v, div(grad(u)))
    B = inner(v, u)
    Q = chebyshev.quasi.QIGmat(N)
    A = Q*A
    B = Q*B
    M = B-A
    sol = la.Solve(M, S)
    f_hat = inner(v, Array(T, buffer=fe))
    f_hat[:-2] = Q.diags('csc')*f_hat[:-2]
    u_hat = Function(S)
    u_hat = sol(f_hat, u_hat)
    uj = u_hat.backward()
    ua = Array(S, buffer=ue)
    bb = Q*np.ones(N)
    assert abs(np.sum(bb[:8])) < 1e-8
    if S.boundary_condition().lower() == 'neumann':
        xj, wj = S.points_and_weights()
        ua -= np.sum(ua*wj)/np.pi # normalize
        uj -= np.sum(uj*wj)/np.pi # normalize
    assert np.sqrt(inner(1, (uj-ua)**2)) < 1e-5
コード例 #4
0
def test_eval_expression():
    import sympy as sp
    from shenfun import div, grad
    x, y, z = sp.symbols('x,y,z')
    B0 = Basis(16, 'C')
    B1 = Basis(17, 'C')
    B2 = Basis(20, 'F', dtype='d')

    TB = TensorProductSpace(comm, (B0, B1, B2))

    f = sp.sin(x)+sp.sin(y)+sp.sin(z)
    dfx = f.diff(x, 2) + f.diff(y, 2) + f.diff(z, 2)
    fa = Array(TB, buffer=f).forward()
    dfe = div(grad(fa))
    dfa = project(dfe, TB)

    xyz = np.array([[0.25, 0.5, 0.75],
                    [0.25, 0.5, 0.75],
                    [0.25, 0.5, 0.75]])

    f0 = lambdify((x, y, z), dfx)(*xyz)
    f1 = dfe.eval(xyz)
    f2 = dfa.eval(xyz)
    assert np.allclose(f0, f1, 1e-7)
    assert np.allclose(f1, f2, 1e-7)
コード例 #5
0
def test_solve(quad):
    SD = Basis(N, 'C', bc=(0, 0), quad=quad, plan=True)
    u = TrialFunction(SD)
    v = TestFunction(SD)
    A = inner(div(grad(u)), v)
    b = np.ones(N)
    u_hat = Function(SD)
    u_hat = A.solve(b, u=u_hat)

    w_hat = Function(SD)
    B = SparseMatrix(dict(A), (N - 2, N - 2))
    w_hat[:-2] = B.solve(b[:-2], w_hat[:-2])
    assert np.all(abs(w_hat[:-2] - u_hat[:-2]) < 1e-8)

    ww = w_hat[:-2].repeat(N - 2).reshape((N - 2, N - 2))
    bb = b[:-2].repeat(N - 2).reshape((N - 2, N - 2))
    ww = B.solve(bb, ww, axis=0)
    assert np.all(
        abs(ww - u_hat[:-2].repeat(N - 2).reshape((N - 2, N - 2))) < 1e-8)

    bb = bb.transpose()
    ww = B.solve(bb, ww, axis=1)
    assert np.all(
        abs(ww - u_hat[:-2].repeat(N - 2).reshape(
            (N - 2, N - 2)).transpose()) < 1e-8)
コード例 #6
0
ファイル: CoupledRK3.py プロジェクト: rmatsumiya/spectralDNS
def get_divergence(U_hat, FST, mask, **context):
    div_hat = project(div(U_hat), FST)
    if mask is not None:
        div_hat.mask_nyquist(mask)
    div_ = Array(FST)
    div_ = div_hat.backward(div_)
    return div_
コード例 #7
0
def test_helmholtz2D(family, axis):
    la = lla
    if family == 'chebyshev':
        la = cla
    N = (8, 9)
    SD = shenfun.Basis(N[axis], family=family, bc=(0, 0))
    K1 = shenfun.Basis(N[(axis + 1) % 2], family='F', dtype='d')
    subcomms = mpi4py_fft.pencil.Subcomm(MPI.COMM_WORLD, allaxes2D[axis])
    bases = [K1]
    bases.insert(axis, SD)
    T = shenfun.TensorProductSpace(subcomms, bases, axes=allaxes2D[axis])
    u = shenfun.TrialFunction(T)
    v = shenfun.TestFunction(T)
    if family == 'chebyshev':
        mat = shenfun.inner(v, shenfun.div(shenfun.grad(u)))
    else:
        mat = shenfun.inner(shenfun.grad(v), shenfun.grad(u))

    H = la.Helmholtz(*mat)
    H = la.Helmholtz(*mat)
    u = shenfun.Function(T)
    u[:] = np.random.random(u.shape) + 1j * np.random.random(u.shape)
    f = shenfun.Function(T)
    f = H.matvec(u, f)
    f = H.matvec(u, f)

    g0 = shenfun.Function(T)
    g1 = shenfun.Function(T)
    M = {d.get_key(): d for d in mat}
    g0 = M['ADDmat'].matvec(u, g0)
    g1 = M['BDDmat'].matvec(u, g1)

    assert np.linalg.norm(f - (g0 + g1)) < 1e-12, np.linalg.norm(f - (g0 + g1))
コード例 #8
0
def test_helmholtz2D(family, axis):
    la = lla
    if family == 'chebyshev':
        la = cla
    N = (8, 9)
    SD = FunctionSpace(N[axis], family=family, bc=(0, 0))
    K1 = FunctionSpace(N[(axis+1)%2], family='F', dtype='d')
    subcomms = mpi4py_fft.pencil.Subcomm(MPI.COMM_WORLD, allaxes2D[axis])
    bases = [K1]
    bases.insert(axis, SD)
    T = TensorProductSpace(subcomms, bases, axes=allaxes2D[axis], modify_spaces_inplace=True)
    u = shenfun.TrialFunction(T)
    v = shenfun.TestFunction(T)
    if family == 'chebyshev':
        mat = inner(v, div(grad(u)))
    else:
        mat = inner(grad(v), grad(u))

    H = la.Helmholtz(*mat)
    u = Function(T)
    s = SD.sl[SD.slice()]
    u[s] = np.random.random(u[s].shape) + 1j*np.random.random(u[s].shape)
    f = Function(T)
    f = H.matvec(u, f)

    g0 = Function(T)
    g1 = Function(T)
    M = {d.get_key(): d for d in mat}
    g0 = M['ADDmat'].matvec(u, g0)
    g1 = M['BDDmat'].matvec(u, g1)
    assert np.linalg.norm(f-(g0+g1)) < 1e-12, np.linalg.norm(f-(g0+g1))

    uc = Function(T)
    uc = H(uc, f)
    assert np.linalg.norm(uc-u) < 1e-12
コード例 #9
0
def test_curl(typecode):
    K0 = Basis(N[0], 'F', dtype=typecode.upper())
    K1 = Basis(N[1], 'F', dtype=typecode.upper())
    K2 = Basis(N[2], 'F', dtype=typecode)
    T = TensorProductSpace(comm, (K0, K1, K2), dtype=typecode)
    X = T.local_mesh(True)
    K = T.local_wavenumbers()
    Tk = VectorTensorProductSpace(T)
    u = TrialFunction(Tk)
    v = TestFunction(Tk)

    U = Array(Tk)
    U_hat = Function(Tk)
    curl_hat = Function(Tk)
    curl_ = Array(Tk)

    # Initialize a Taylor Green vortex
    U[0] = np.sin(X[0]) * np.cos(X[1]) * np.cos(X[2])
    U[1] = -np.cos(X[0]) * np.sin(X[1]) * np.cos(X[2])
    U[2] = 0
    U_hat = Tk.forward(U, U_hat)
    Uc = U_hat.copy()
    U = Tk.backward(U_hat, U)
    U_hat = Tk.forward(U, U_hat)
    assert allclose(U_hat, Uc)

    divu_hat = project(div(U_hat), T)
    divu = Array(T)
    divu = T.backward(divu_hat, divu)
    assert allclose(divu, 0)

    curl_hat[0] = 1j * (K[1] * U_hat[2] - K[2] * U_hat[1])
    curl_hat[1] = 1j * (K[2] * U_hat[0] - K[0] * U_hat[2])
    curl_hat[2] = 1j * (K[0] * U_hat[1] - K[1] * U_hat[0])

    curl_ = Tk.backward(curl_hat, curl_)

    w_hat = Function(Tk)
    w_hat = inner(v, curl(U_hat), output_array=w_hat)
    A = inner(v, u)
    for i in range(3):
        w_hat[i] = A[i].solve(w_hat[i])

    w = Array(Tk)
    w = Tk.backward(w_hat, w)
    #from IPython import embed; embed()
    assert allclose(w, curl_)

    u_hat = Function(Tk)
    u_hat = inner(v, U, output_array=u_hat)
    for i in range(3):
        u_hat[i] = A[i].solve(u_hat[i])

    uu = Array(Tk)
    uu = Tk.backward(u_hat, uu)

    assert allclose(u_hat, U_hat)
コード例 #10
0
def test_biharmonic3D(family, axis):
    la = lla
    if family == 'chebyshev':
        la = cla
    N = (16, 16, 16)
    SD = shenfun.Basis(N[allaxes3D[axis][0]], family=family, bc='Biharmonic')
    K1 = shenfun.Basis(N[allaxes3D[axis][1]], family='F', dtype='D')
    K2 = shenfun.Basis(N[allaxes3D[axis][2]], family='F', dtype='d')
    subcomms = mpi4py_fft.pencil.Subcomm(MPI.COMM_WORLD, [0, 1, 1])
    bases = [0] * 3
    bases[allaxes3D[axis][0]] = SD
    bases[allaxes3D[axis][1]] = K1
    bases[allaxes3D[axis][2]] = K2
    T = shenfun.TensorProductSpace(subcomms, bases, axes=allaxes3D[axis])
    u = shenfun.TrialFunction(T)
    v = shenfun.TestFunction(T)
    if family == 'chebyshev':
        mat = shenfun.inner(
            v, shenfun.div(shenfun.grad(shenfun.div(shenfun.grad(u)))))
    else:
        mat = shenfun.inner(shenfun.div(shenfun.grad(v)),
                            shenfun.div(shenfun.grad(u)))

    H = la.Biharmonic(*mat)
    H = la.Biharmonic(*mat)
    u = shenfun.Function(T)
    u[:] = np.random.random(u.shape) + 1j * np.random.random(u.shape)
    f = shenfun.Function(T)
    f = H.matvec(u, f)
    f = H.matvec(u, f)

    g0 = shenfun.Function(T)
    g1 = shenfun.Function(T)
    g2 = shenfun.Function(T)
    M = {d.get_key(): d for d in mat}
    amat = 'ABBmat' if family == 'chebyshev' else 'PBBmat'
    g0 = M['SBBmat'].matvec(u, g0)
    g1 = M[amat].matvec(u, g1)
    g2 = M['BBBmat'].matvec(u, g2)

    assert np.linalg.norm(f - (g0 + g1 + g2)) < 1e-8, np.linalg.norm(f -
                                                                     (g0 + g1 +
                                                                      g2))
コード例 #11
0
    def check_with_pde(self, u_hat, material_parameters, body_forces):
        assert isinstance(u_hat, sf.Function)
        assert len(material_parameters) == self._n_material_parameters
        for comp in body_forces:
            assert isinstance(comp, (sp.Expr, float, int))

        lambd, mu = material_parameters
        V = u_hat.function_space().get_orthogonal()
        # left hand side of pde
        lhs = (lambd + mu) * grad(div(u_hat)) + mu * div(grad(u_hat))

        error_array = sf.Array(V, buffer=body_forces)
        error_array += sf.project(lhs, V).backward()

        error = np.sqrt(inner((1, 1), error_array ** 2))
        # scale by magnitude of solution
        scale = np.sqrt(inner((1, 1), u_hat.backward() ** 2))

        return error / scale
コード例 #12
0
    def dw_int(self, u, v):
        assert isinstance(u, sf.TrialFunction)
        assert isinstance(v, sf.TestFunction)
        assert hasattr(self, "_material_parameters")
        assert len(self._material_parameters) == self._n_material_parameters

        self.dim = u.dimensions
        lmbda, mu, c1, c2, c3, c4, c5 = self._material_parameters
        dw_int = []

        if c1 != 0.0:
            dw_int += inner(c1 * div(grad(u)), div(grad(v)))
        if c2 != 0.0:
            dw_int += inner(c2 * div(grad(u)), grad(div(v)))
        if c3 != 0.0:
            dw_int += inner(c3 * grad(div(u)), grad(div(v)))
        if c4 != 0.0:
            for i in range(self.dim):
                for j in range(self.dim):
                    for k in range(self.dim):
                        mat = inner(c4 * Dx(Dx(u[i], j), k),
                                    Dx(Dx(v[i], j), k))
                        if isinstance(mat, list):
                            dw_int += mat
                        else:
                            dw_int += [mat]
        if c5 != 0.0:
            for i in range(self.dim):
                for j in range(self.dim):
                    for k in range(self.dim):
                        mat = inner(c5 * Dx(Dx(u[j], i), k),
                                    Dx(Dx(v[i], j), k))
                        if isinstance(mat, list):
                            dw_int += mat
                        else:
                            dw_int += [mat]

        # add the classical cauchy-terms
        dw_int += inner(mu * grad(u), grad(v))

        for i in range(self.dim):
            for j in range(self.dim):
                mat = inner(mu * Dx(u[i], j), Dx(v[j], i))
                if isinstance(mat, list):
                    dw_int += mat
                else:
                    dw_int += [mat]
        dw_int += inner(lmbda * div(u), div(v))

        return dw_int
コード例 #13
0
    def dw_int(self, u, v):
        assert isinstance(u, sf.TrialFunction)
        assert isinstance(v, sf.TestFunction)
        assert hasattr(self, "_material_parameters")
        assert len(self._material_parameters) == self._n_material_parameters

        self.dim = u.dimensions
        lmbda, mu = self._material_parameters

        A = inner(mu * grad(u), grad(v))
        B = []
        for i in range(self.dim):
            for j in range(self.dim):
                mat = inner(mu * Dx(u[i], j), Dx(v[j], i))
                if isinstance(mat, list):
                    B += mat
                else:
                    B += [mat]
        C = inner(lmbda * div(u), div(v))
        dw_int = A + B + C

        return dw_int
コード例 #14
0
def test_vector_laplace(space):
    """Test that

    div(grad(u)) = grad(div(u)) - curl(curl(u))

    """
    T = get_function_space(space)
    V = VectorSpace(T)
    u = TrialFunction(V)
    v = _TestFunction(V)
    du = div(grad(u))
    dv = grad(div(u)) - curl(curl(u))
    u_hat = Function(V)
    u_hat[:] = np.random.random(u_hat.shape) + np.random.random(u_hat.shape)*1j
    A0 = inner(v, du)
    A1 = inner(v, dv)
    a0 = BlockMatrix(A0)
    a1 = BlockMatrix(A1)
    b0 = Function(V)
    b1 = Function(V)
    b0 = a0.matvec(u_hat, b0)
    b1 = a1.matvec(u_hat, b1)
    assert np.linalg.norm(b0-b1) < 1e-8
コード例 #15
0
ファイル: test_la.py プロジェクト: thoeschler/shenfun
def test_TwoDMA():
    N = 12
    SD = FunctionSpace(N, 'C', basis='ShenDirichlet')
    HH = FunctionSpace(N, 'C', basis='Heinrichs')
    u = TrialFunction(HH)
    v = TestFunction(SD)
    points, weights = SD.points_and_weights(N)
    fj = Array(SD, buffer=np.random.randn(N))
    f_hat = Function(SD)
    f_hat = inner(v, fj, output_array=f_hat)
    A = inner(v, div(grad(u)))
    sol = TwoDMA(A)
    u_hat = Function(HH)
    u_hat = sol(f_hat, u_hat)
    sol2 = la.Solve(A, HH)
    u_hat2 = Function(HH)
    u_hat2 = sol2(f_hat, u_hat2)
    assert np.allclose(u_hat2, u_hat)
コード例 #16
0
ファイル: test_la.py プロジェクト: thoeschler/shenfun
def test_PDMA(quad):
    SB = FunctionSpace(N, 'C', bc=(0, 0, 0, 0), quad=quad)
    u = TrialFunction(SB)
    v = TestFunction(SB)
    points, weights = SB.points_and_weights(N)
    fj = Array(SB, buffer=np.random.randn(N))
    f_hat = Function(SB)
    f_hat = inner(v, fj, output_array=f_hat)
    A = inner(v, div(grad(u)))
    B = inner(v, u)
    s = SB.slice()
    H = A + B
    P = PDMA(A, B, A.scale, B.scale, solver='cython')
    u_hat = Function(SB)
    u_hat[s] = solve(H.diags().toarray()[s, s], f_hat[s])
    u_hat2 = Function(SB)
    u_hat2 = P(u_hat2, f_hat)
    assert np.allclose(u_hat2, u_hat)
コード例 #17
0
ファイル: test_forms.py プロジェクト: mstf1985/shenfun
def test_inner():
    v = shenfun.TestFunction(TT)
    u = shenfun.TrialFunction(TT)
    p = shenfun.TrialFunction(T)
    q = shenfun.TestFunction(T)
    A = inner(div(u), div(v))
    B = inner(grad(u), grad(v))
    C = inner(q, div(u))
    D = inner(curl(v), curl(u))
    E = inner(grad(q), grad(p))
    F = inner(v, grad(div(u)))
    wq = shenfun.TrialFunction(VT)
    w, q = wq
    hf = shenfun.TestFunction(VT)
    h, f = hf
    G = inner(h, div(grad(w)))
    H = inner(f, div(div(grad(w))))
    I = inner(h, curl(w))
    J = inner(curl(h), curl(w))
    K = inner(h, grad(div(w)))
コード例 #18
0
def main(N, family, bci, bcj, plotting=False):
    global fe, ue
    BX = FunctionSpace(N, family=family, bc=bcx[bci], domain=xdomain)
    BY = FunctionSpace(N, family=family, bc=bcy[bcj], domain=ydomain)
    T = TensorProductSpace(comm, (BX, BY))
    u = TrialFunction(T)
    v = TestFunction(T)

    # Get f on quad points
    fj = Array(T, buffer=fe)

    # Compare with analytical solution
    ua = Array(T, buffer=ue)

    if T.use_fixed_gauge:
        mean = dx(ua, weighted=True) / inner(1, Array(T, val=1))

    # Compute right hand side of Poisson equation
    f_hat = Function(T)
    f_hat = inner(v, fj, output_array=f_hat)

    # Get left hand side of Poisson equation
    A = inner(v, -div(grad(u)))

    u_hat = Function(T)

    sol = la.Solver2D(A, fixed_gauge=mean if T.use_fixed_gauge else None)
    u_hat = sol(f_hat, u_hat)
    uj = u_hat.backward()

    assert np.allclose(uj, ua), np.linalg.norm(uj - ua)
    print("Error=%2.16e" % (np.sqrt(dx((uj - ua)**2))))

    if 'pytest' not in os.environ and plotting is True:
        import matplotlib.pyplot as plt
        X, Y = T.local_mesh(True)
        plt.contourf(X, Y, uj, 100)
        plt.colorbar()
        plt.figure()
        plt.contourf(X, Y, ua, 100)
        plt.colorbar()
        plt.figure()
        plt.contourf(X, Y, ua - uj, 100)
        plt.colorbar()
コード例 #19
0
ファイル: KMM.py プロジェクト: yangyang14641/spectralDNS
def get_pressure(context, solver):
    FCT = context.FCT
    FST = context.FST

    U_hat = context.U_hat
    U_hat0 = context.U_hat0
    Um = Function(context.FST)
    Um[:] = 0.5*(U_hat[0] + U_hat0[0])
    U = U_hat.backward(context.U)
    U0 = U_hat0.backward(context.U0)
    dt = solver.params.dt

    Hx = Function(context.FST)
    Hx[:] = solver.get_convection(**context)[0]

    v = TestFunction(FCT)
    p = TrialFunction(FCT)
    rhs_hat = inner(context.nu*div(grad(Um)), v)
    Hx -= 1./dt*(U_hat[0]-U_hat0[0])
    rhs_hat += inner(Hx, v)

    CT = inner(Dx(p, 0, 1), v)

    # Should implement fast solver. Just a backwards substitution
    # Apply integral constraint
    A = CT.mats[0]
    N = A.shape[0]
    A[-(N-1)] = 1

    p_hat = Function(context.FCT)
    p_hat = CT.solve(rhs_hat, p_hat)

    p = Array(FCT)
    p = FCT.backward(p_hat, p)

    uu = 0.
    if params.convection == 'Vortex':
        uu = np.sum((0.5*(U+U0))**2, 0)
        uu *= 0.5


    return p-uu
コード例 #20
0
ファイル: KMM.py プロジェクト: natj/spectralDNS
def get_pressure(context, solver):
    FCT = context.FCT
    FST = context.FST

    U = solver.get_velocity(**context)
    U0 = context.VFS.backward(context.U_hat0, context.U0)
    dt = solver.params.dt

    H_hat = solver.get_convection(**context)
    Hx = Array(FST)
    Hx = FST.backward(H_hat[0], Hx)

    v = TestFunction(FCT)
    p = TrialFunction(FCT)
    U = U.as_function()
    U0 = U0.as_function()

    rhs_hat = inner((0.5 * context.nu) * div(grad(U[0] + U0[0])), v)
    Hx -= 1. / dt * (U[0] - U0[0])
    rhs_hat += inner(Hx, v)

    CT = inner(Dx(p, 0), v)

    # Should implement fast solver. Just a backwards substitution
    A = CT.diags().toarray() * CT.scale[0]
    A[-1, 0] = 1
    a_i = np.linalg.inv(A)

    p_hat = Function(context.FCT)

    for j in range(p_hat.shape[1]):
        for k in range(p_hat.shape[2]):
            p_hat[:, j, k] = np.dot(a_i, rhs_hat[:, j, k])

    p = Array(FCT)
    p = FCT.backward(p_hat, p)

    uu = np.sum((0.5 * (U + U0))**2, 0)
    uu *= 0.5

    return p - uu + 3. / 16.
コード例 #21
0
ファイル: KMMr.py プロジェクト: spectralDNS/spectralDNS
def get_pressure(context, solver):
    FCT = context.FCT
    FST = context.FST

    U = solver.get_velocity(**context)
    U0 = context.VFS.backward(context.U_hat0, context.U0)
    dt = solver.params.dt

    H_hat = solver.get_convection(**context)
    Hx = Array(FST)
    Hx = FST.backward(H_hat[0], Hx)

    v = TestFunction(FCT)
    p = TrialFunction(FCT)
    U = U.as_function()
    U0 = U0.as_function()

    rhs_hat = inner((0.5*context.nu)*div(grad(U[0]+U0[0])), v)
    Hx -= 1./dt*(U[0]-U0[0])
    rhs_hat += inner(Hx, v)

    CT = inner(Dx(p, 0), v)

    # Should implement fast solver. Just a backwards substitution
    A = CT.diags().toarray()*CT.scale[0]
    A[-1, 0] = 1
    a_i = np.linalg.inv(A)

    p_hat = Function(context.FCT)

    for j in range(p_hat.shape[1]):
        for k in range(p_hat.shape[2]):
            p_hat[:, j, k] = np.dot(a_i, rhs_hat[:, j, k])

    p = Array(FCT)
    p = FCT.backward(p_hat, p)

    uu = np.sum((0.5*(U+U0))**2, 0)
    uu *= 0.5

    return p-uu+3./16.
コード例 #22
0
def main(N, family, bci):
    bc = bcs[bci]
    if bci == 0:
        SD = FunctionSpace(N,
                           family=family,
                           bc=bc,
                           domain=domain,
                           mean=mean[family.lower()])
    else:
        SD = FunctionSpace(N, family=family, bc=bc, domain=domain)

    u = TrialFunction(SD)
    v = TestFunction(SD)

    # Get f on quad points
    fj = Array(SD, buffer=fe)

    # Compute right hand side of Poisson equation
    f_hat = Function(SD)
    f_hat = inner(v, fj, output_array=f_hat)

    # Get left hand side of Poisson equation
    A = inner(v, div(grad(u)))

    u_hat = Function(SD).set_boundary_dofs()
    if isinstance(A, list):
        bc_mat = extract_bc_matrices([A])
        A = A[0]
        f_hat -= bc_mat[0].matvec(u_hat, Function(SD))

    u_hat = A.solve(f_hat, u_hat)
    uj = u_hat.backward()
    uh = uj.forward()

    # Compare with analytical solution
    ua = Array(SD, buffer=ue)
    assert np.allclose(uj, ua), np.linalg.norm(uj - ua)
    if 'pytest' not in os.environ:
        print("Error=%2.16e" % (np.sqrt(dx((uj - ua)**2))))
        import matplotlib.pyplot as plt
        plt.plot(SD.mesh(), uj, 'b', SD.mesh(), ua, 'r')
コード例 #23
0
ファイル: test_matrices.py プロジェクト: mstf1985/shenfun
def test_helmholtz3D(family, axis):
    la = lla
    if family == 'chebyshev':
        la = cla
    N = (8, 9, 10)
    SD = FunctionSpace(N[allaxes3D[axis][0]], family=family, bc=(0, 0))
    K1 = FunctionSpace(N[allaxes3D[axis][1]], family='F', dtype='D')
    K2 = FunctionSpace(N[allaxes3D[axis][2]], family='F', dtype='d')
    subcomms = mpi4py_fft.pencil.Subcomm(MPI.COMM_WORLD, [0, 1, 1])
    bases = [0] * 3
    bases[allaxes3D[axis][0]] = SD
    bases[allaxes3D[axis][1]] = K1
    bases[allaxes3D[axis][2]] = K2
    T = TensorProductSpace(subcomms, bases, axes=allaxes3D[axis])
    u = shenfun.TrialFunction(T)
    v = shenfun.TestFunction(T)
    if family == 'chebyshev':
        mat = inner(v, div(grad(u)))
    else:
        mat = inner(grad(v), grad(u))

    H = la.Helmholtz(*mat)
    u = Function(T)
    s = SD.sl[SD.slice()]
    u[s] = np.random.random(u[s].shape) + 1j * np.random.random(u[s].shape)
    f = Function(T)
    f = H.matvec(u, f)

    g0 = Function(T)
    g1 = Function(T)
    M = {d.get_key(): d for d in mat}
    g0 = M['ADDmat'].matvec(u, g0)
    g1 = M['BDDmat'].matvec(u, g1)

    assert np.linalg.norm(f - (g0 + g1)) < 1e-12, np.linalg.norm(f - (g0 + g1))

    uc = Function(T)
    uc = H(uc, f)
    assert np.linalg.norm(uc - u) < 1e-12
コード例 #24
0
def test_quasiTau(bc):
    N = 40
    T = FunctionSpace(N, 'C')
    u = TrialFunction(T)
    v = TestFunction(T)
    A = inner(v, div(grad(u)))
    B = inner(v, u)
    Q = chebyshev.quasi.QITmat(N)
    A = Q*A
    B = Q*B
    bb = Q*np.ones(N)
    assert abs(np.sum(bb[:8])) < 1e-8
    M = B-A
    M0 = M.diags().tolil()
    if bc == 'Dirichlet':
        M0[0] = np.ones(N)
        nn = np.ones(N)
        nn[1::2] = -1
        M0[1] = nn
    elif bc == 'Neumann':
        nn = np.arange(N)**2
        M0[0] = nn.copy()
        nn[1::2] *= -1
        M0[1] = nn
    M0 = M0.tocsc()
    f_hat = inner(v, Array(T, buffer=fe))
    gh = Q.diags('csc')*f_hat
    gh[:2] = 0
    u_hat = Function(T)
    u_hat[:] = scp.linalg.spsolve(M0, gh)
    uj = u_hat.backward()
    ua = Array(T, buffer=ue)

    if bc == 'Neumann':
        xj, wj = T.points_and_weights()
        ua -= np.sum(ua*wj)/np.pi # normalize
        uj -= np.sum(uj*wj)/np.pi # normalize
    assert np.sqrt(inner(1, (uj-ua)**2)) < 1e-5
コード例 #25
0
def test_eval_expression2(fam):
    import sympy as sp
    from shenfun import div, grad
    x, y = sp.symbols('x,y')
    B0 = FunctionSpace(16, fam, domain=(-2, 2))
    B1 = FunctionSpace(17, fam, domain=(-1, 3))

    T = TensorProductSpace(comm, (B0, B1))
    f = sp.sin(x)+sp.sin(y)
    dfx = f.diff(x, 2) + f.diff(y, 2)
    fa = Function(T, buffer=f)

    dfe = div(grad(fa))
    dfa = project(dfe, T)

    xy = np.array([[0.25, 0.5, 0.75],
                   [0.25, 0.5, 0.75]])

    f0 = lambdify((x, y), dfx)(*xy)
    f1 = dfe.eval(xy)
    f2 = dfa.eval(xy)
    assert np.allclose(f0, f1, 1e-7)
    assert np.allclose(f1, f2, 1e-7)
コード例 #26
0
ファイル: CoupledRK3.py プロジェクト: rmatsumiya/spectralDNS
def get_context():
    """Set up context for solver"""

    collapse_fourier = False if params.dealias == '3/2-rule' else True
    family = 'C'
    ST = FunctionSpace(params.N[0], family, bc=(0, 0), quad=params.Dquad)
    CT = FunctionSpace(params.N[0], family, quad=params.Dquad)
    CP = FunctionSpace(params.N[0], family, quad=params.Dquad)
    K0 = FunctionSpace(params.N[1], 'F', domain=(0, params.L[1]), dtype='D')
    K1 = FunctionSpace(params.N[2], 'F', domain=(0, params.L[2]), dtype='d')
    #CP.slice = lambda: slice(0, CP.N-2)

    constraints = ((3, 0, 0), (3, params.N[0] - 1, 0))

    kw0 = {
        'threads': params.threads,
        'planner_effort': params.planner_effort["dct"],
        'slab': (params.decomposition == 'slab'),
        'collapse_fourier': collapse_fourier
    }
    FST = TensorProductSpace(comm, (ST, K0, K1), **kw0)  # Dirichlet
    FCT = TensorProductSpace(comm, (CT, K0, K1), **kw0)  # Regular Chebyshev N
    FCP = TensorProductSpace(comm, (CP, K0, K1),
                             **kw0)  # Regular Chebyshev N-2
    VFS = VectorSpace(FST)
    VCT = VectorSpace(FCT)
    VQ = CompositeSpace([VFS, FCP])

    mask = FST.get_mask_nyquist() if params.mask_nyquist else None

    # Padded
    kw = {
        'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
        'dealias_direct': params.dealias == '2/3-rule'
    }
    if params.dealias == '3/2-rule':
        # Requires new bases due to planning and transforms on different size arrays
        STp = FunctionSpace(params.N[0], family, bc=(0, 0), quad=params.Dquad)
        CTp = FunctionSpace(params.N[0], family, quad=params.Dquad)
    else:
        STp, CTp = ST, CT
    K0p = FunctionSpace(params.N[1],
                        'F',
                        dtype='D',
                        domain=(0, params.L[1]),
                        **kw)
    K1p = FunctionSpace(params.N[2],
                        'F',
                        dtype='d',
                        domain=(0, params.L[2]),
                        **kw)
    FSTp = TensorProductSpace(comm, (STp, K0p, K1p), **kw0)
    FCTp = TensorProductSpace(comm, (CTp, K0p, K1p), **kw0)
    VFSp = VectorSpace(FSTp)
    VCp = CompositeSpace([FSTp, FCTp, FCTp])

    float, complex, mpitype = datatypes("double")

    # Mesh variables
    X = FST.local_mesh(True)
    x0, x1, x2 = FST.mesh()
    K = FST.local_wavenumbers(scaled=True)

    # Solution variables
    UP_hat = Function(VQ)
    UP_hat0 = Function(VQ)
    U_hat, P_hat = UP_hat
    U_hat0, P_hat0 = UP_hat0

    UP = Array(VQ)
    UP0 = Array(VQ)
    U, P = UP
    U0, P0 = UP0

    # RK parameters
    a = (8. / 15., 5. / 12., 3. / 4.)
    b = (0.0, -17. / 60., -5. / 12.)

    # primary variable
    u = UP_hat

    H_hat = Function(VFS)

    dU = Function(VQ)
    hv = np.zeros((2, ) + H_hat.shape, dtype=np.complex)

    Source = Array(
        VFS)  # Note - not using VQ. Only used for constant pressure gradient
    Sk = Function(VFS)

    K2 = K[1] * K[1] + K[2] * K[2]

    for i in range(3):
        K[i] = K[i].astype(float)

    work = work_arrays()
    u_dealias = Array(VFSp)
    curl_hat = Function(VCp)
    curl_dealias = Array(VCp)

    nu, dt, N = params.nu, params.dt, params.N

    up = TrialFunction(VQ)
    vq = TestFunction(VQ)

    ut, pt = up
    vt, qt = vq

    M = []
    for rk in range(3):
        a0 = inner(vt, (2. / nu / dt / (a[rk] + b[rk])) * ut - div(grad(ut)))
        a1 = inner(vt, (2. / nu / (a[rk] + b[rk])) * grad(pt))
        a2 = inner(qt, (2. / nu / (a[rk] + b[rk])) * div(ut))
        M.append(BlockMatrix(a0 + a1 + a2))

    # Collect all matrices
    if ST.family() == 'chebyshev':
        mat = config.AttributeDict(
            dict(AB=[
                HelmholtzCoeff(N[0], 1.,
                               -(K2 - 2. / nu / dt / (a[rk] + b[rk])), 0,
                               ST.quad) for rk in range(3)
            ], ))
    else:
        mat = config.AttributeDict(
            dict(ADD=inner_product((ST, 0), (ST, 2)),
                 BDD=inner_product((ST, 0), (ST, 0))))

    la = None

    hdf5file = CoupledRK3File(config.params.solver,
                              checkpoint={
                                  'space': VQ,
                                  'data': {
                                      '0': {
                                          'UP': [UP_hat]
                                      }
                                  }
                              },
                              results={
                                  'space': VFS,
                                  'data': {
                                      'U': [U]
                                  }
                              })

    del rk
    return config.AttributeDict(locals())
コード例 #27
0
S0 = Basis(N[0], family=family, bc='Biharmonic')
S1 = Basis(N[1], family=family, bc='Biharmonic')
T = TensorProductSpace(comm, (S0, S1), axes=(0, 1))
X = T.local_mesh(True)
u = TrialFunction(T)
v = TestFunction(T)

# Get f on quad points
fj = Array(T, buffer=fl(*X))

# Compute right hand side of biharmonic equation
f_hat = inner(v, fj)

# Get left hand side of biharmonic equation
if family == 'chebyshev':  # No integration by parts due to weights
    matrices = inner(v, div(grad(div(grad(u)))))
else:  # Use form with integration by parts.
    matrices = inner(div(grad(v)), div(grad(u)))

# Create linear algebra solver
H = SolverGeneric2NP(matrices)

# Solve and transform to real space
u_hat = Function(T)  # Solution spectral space
u_hat = H(f_hat, u_hat)  # Solve
uq = u_hat.backward()

# Compare with analytical solution
uj = ul(*X)
print(abs(uj - uq).max())
assert np.allclose(uj, uq)
コード例 #28
0
X = SD.mesh()
u = TrialFunction(SD)
v = TestFunction(SD)

# Get f on quad points
fj = Array(SD, buffer=fl(X))

# Compute right hand side of Poisson equation
f_hat = Function(SD)
f_hat = inner(v, fj, output_array=f_hat)
if family == 'legendre':
    f_hat *= -1.

# Get left hand side of Poisson equation
if family == 'chebyshev':
    A = inner(v, div(grad(u))) + alpha*inner(v, grad(u))
else:
    A = inner(grad(v), grad(u)) - alpha*inner(v, grad(u))

if family == 'chebyshev':
    f_hat[0] -= 0.5*np.pi*alpha*a
    f_hat[0] += 0.5*np.pi*alpha*b
elif family == 'legendre':
    f_hat[0] += alpha*a
    f_hat[0] -= alpha*b

f_hat[:-2] = A.solve(f_hat[:-2])
f_hat[-2] = a
f_hat[-1] = b
uj = SD.backward(f_hat)
コード例 #29
0
SD = FunctionSpace(N[0], family=family, scaled=True, bc=(a, b))
K1 = FunctionSpace(N[1], family='F', dtype='d', domain=(-2*np.pi, 2*np.pi))
T = TensorProductSpace(comm, (SD, K1), axes=(0, 1))
u = TrialFunction(T)
v = TestFunction(T)

# Get f on quad points
fj = Array(T, buffer=fe)

# Compute right hand side of Poisson equation
f_hat = Function(T)
f_hat = inner(v, fj, output_array=f_hat)

# Get left hand side of Poisson equation
matrices = inner(v, div(grad(u)))

# Create Helmholtz linear algebra solver
H = Solver(*matrices)

# Solve and transform to real space
u_hat = Function(T)           # Solution spectral space
u_hat = H(u_hat, f_hat)       # Solve
uq = u_hat.backward()
uh = uq.forward()

# Compare with analytical solution
uj = Array(T, buffer=ue)
assert np.allclose(uj, uq)

if 'pytest' not in os.environ:
コード例 #30
0
ファイル: roundoff.py プロジェクト: spectralDNS/spectralDNS
        err += " & {:2.2e}  & {:2.2e} ".format(errb/M, errs/M)
    err += " \\\ "
    print(err)

print("\hline")
for z in Z:
    err = str(z)
    for n in N:
        errh = 0
        vh = zeros(n)
        sh = zeros(n)
        alfa = sqrt(z**2+2.0/nu/dt)
        basis = chebyshev.bases.ShenDirichletBasis(n, plan=True, quad='GC')
        u = TrialFunction(basis)
        v = TestFunction(basis)
        A = inner(v, div(grad(u)))
        A.axis = 0
        B = inner(v, u)
        B.axis = 0
        HS = chebyshev.la.Helmholtz(A, B, array([1.]), array([alfa]))
        for m in range(M):
            u = random.randn(n)
            u[-2:] = 0
            vh = HS.matvec(u, vh)
            sh = HS(sh, vh)
            errh += max(abs(sh-u)) / max(abs(u))
        err += " & {:2.2e} ".format(errh/M)
    err += " \\\ "
    print(err)

コード例 #31
0
K1 = R2CBasis(N[1])
T = TensorProductSpace(comm, (SD, K1), axes=(0, 1))
X = T.local_mesh(True) # With broadcasting=True the shape of X is local_shape, even though the number of datapoints are still the same as in 1D
u = TrialFunction(T)
v = TestFunction(T)

# Get f on quad points
fj = fl(*X)

# Compute right hand side of Poisson equation
f_hat = Array(T)
f_hat = inner(v, fj, output_array=f_hat)

# Get left hand side of Helmholtz equation
if basis == 'chebyshev':
    matrices = inner(v, alpha*u - div(grad(u)))
else:
    matrices = inner(grad(v), grad(u))    # Both ADDmat and BDDmat
    B = inner(v, alpha*u)
    matrices['BDDmat'] += B

# Create Helmholtz linear algebra solver
H = Solver(**matrices)

# Solve and transform to real space
u_hat = Function(T)           # Solution spectral space
u_hat = H(u_hat, f_hat)       # Solve
uq = Function(T, False)
uq = T.backward(u_hat, uq)

# Compare with analytical solution
コード例 #32
0
# Size of discretization
N = int(sys.argv[-2])

SD = FunctionSpace(N, family=family, bc='NeumannDirichlet', domain=domain)
u = TrialFunction(SD)
v = TestFunction(SD)

# Get f on quad points
fj = Array(SD, buffer=fe)

# Compute right hand side of Poisson equation
f_hat = Function(SD)
f_hat = inner(v, fj, output_array=f_hat)

# Get left hand side of Poisson equation
A = inner(v, div(grad(u)))

u_hat = Function(SD)
u_hat = A.solve(f_hat, u_hat)
uj = u_hat.backward()
uh = uj.forward()

# Compare with analytical solution
ua = Array(SD, buffer=ue)
print("Error=%2.16e" % (np.sqrt(dx((uj - ua)**2))))
assert np.allclose(uj, ua)
if 'pytest' not in os.environ:
    import matplotlib.pyplot as plt
    plt.plot(SD.mesh(), uj, 'b', SD.mesh(), ua, 'r')
    plt.show()