コード例 #1
0
def test_refine():
    assert comm.Get_size() < 7
    N = (8, 9, 10)
    F0 = Basis(8, 'F', dtype='D')
    F1 = Basis(9, 'F', dtype='D')
    F2 = Basis(10, 'F', dtype='d')
    T = TensorProductSpace(comm, (F0, F1, F2), slab=True, collapse_fourier=True)
    u_hat = Function(T)
    u = Array(T)
    u[:] = np.random.random(u.shape)
    u_hat = u.forward(u_hat)
    Tp = T.get_dealiased(padding_factor=(2, 2, 2))
    u_ = Array(Tp)
    up_hat = Function(Tp)
    assert up_hat.commsizes == u_hat.commsizes
    u2 = u_hat.refine(2*np.array(N))
    V = VectorTensorProductSpace(T)
    u_hat = Function(V)
    u = Array(V)
    u[:] = np.random.random(u.shape)
    u_hat = u.forward(u_hat)
    Vp = V.get_dealiased(padding_factor=(2, 2, 2))
    u_ = Array(Vp)
    up_hat = Function(Vp)
    assert up_hat.commsizes == u_hat.commsizes
    u3 = u_hat.refine(2*np.array(N))
コード例 #2
0
def test_assign(fam):
    x, y = symbols("x,y")
    for bc in (None, 'Dirichlet', 'Biharmonic'):
        dtype = 'D' if fam == 'F' else 'd'
        bc = 'periodic' if fam == 'F' else bc
        if bc == 'Biharmonic' and fam in ('La', 'H'):
            continue
        tol = 1e-12 if fam in ('C', 'L', 'F') else 1e-5
        N = (10, 12)
        B0 = Basis(N[0], fam, dtype=dtype, bc=bc)
        B1 = Basis(N[1], fam, dtype=dtype, bc=bc)
        u_hat = Function(B0)
        u_hat[1:4] = 1
        ub_hat = Function(B1)
        u_hat.assign(ub_hat)
        assert abs(inner(1, u_hat)-inner(1, ub_hat)) < tol
        T = TensorProductSpace(comm, (B0, B1))
        u_hat = Function(T)
        u_hat[1:4, 1:4] = 1
        Tp = T.get_refined((2*N[0], 2*N[1]))
        ub_hat = Function(Tp)
        u_hat.assign(ub_hat)
        assert abs(inner(1, u_hat)-inner(1, ub_hat)) < tol
        VT = VectorTensorProductSpace(T)
        u_hat = Function(VT)
        u_hat[:, 1:4, 1:4] = 1
        Tp = T.get_refined((2*N[0], 2*N[1]))
        VTp = VectorTensorProductSpace(Tp)
        ub_hat = Function(VTp)
        u_hat.assign(ub_hat)
        assert abs(inner((1, 1), u_hat)-inner((1, 1), ub_hat)) < tol
コード例 #3
0
def test_curl2():
    # Test projection of curl

    K0 = Basis(N[0], 'C', bc=(0, 0))
    K1 = Basis(N[1], 'F', dtype='D')
    K2 = Basis(N[2], 'F', dtype='d')
    K3 = Basis(N[0], 'C')

    T = TensorProductSpace(comm, (K0, K1, K2))
    TT = TensorProductSpace(comm, (K3, K1, K2))
    X = T.local_mesh(True)
    K = T.local_wavenumbers(False)
    Tk = VectorTensorProductSpace(T)
    TTk = MixedTensorProductSpace([T, T, TT])

    U = Array(Tk)
    U_hat = Function(Tk)
    curl_hat = Function(TTk)
    curl_ = Array(TTk)

    # Initialize a Taylor Green vortex
    U[0] = np.sin(X[0]) * np.cos(X[1]) * np.cos(X[2]) * (1 - X[0]**2)
    U[1] = -np.cos(X[0]) * np.sin(X[1]) * np.cos(X[2]) * (1 - X[0]**2)
    U[2] = 0
    U_hat = Tk.forward(U, U_hat)
    Uc = U_hat.copy()
    U = Tk.backward(U_hat, U)
    U_hat = Tk.forward(U, U_hat)
    assert allclose(U_hat, Uc)

    # Compute curl first by computing each term individually
    curl_hat[0] = 1j * (K[1] * U_hat[2] - K[2] * U_hat[1])
    curl_[0] = T.backward(
        curl_hat[0], curl_[0])  # No x-derivatives, still in Dirichlet space
    dwdx_hat = project(Dx(U_hat[2], 0, 1), TT)  # Need to use space without bc
    dvdx_hat = project(Dx(U_hat[1], 0, 1), TT)  # Need to use space without bc
    dwdx = Array(TT)
    dvdx = Array(TT)
    dwdx = TT.backward(dwdx_hat, dwdx)
    dvdx = TT.backward(dvdx_hat, dvdx)
    curl_hat[1] = 1j * K[2] * U_hat[0]
    curl_hat[2] = -1j * K[1] * U_hat[0]
    curl_[1] = T.backward(curl_hat[1], curl_[1])
    curl_[2] = T.backward(curl_hat[2], curl_[2])
    curl_[1] -= dwdx
    curl_[2] += dvdx

    # Now do it with project
    w_hat = project(curl(U_hat), TTk)
    w = Array(TTk)
    w = TTk.backward(w_hat, w)
    assert allclose(w, curl_)
コード例 #4
0
ファイル: NS_shenfun.py プロジェクト: moulin1024/spectralDNS
def get_context():
    """Set up context for classical (NS) solver"""
    V0 = C2CBasis(params.N[0], domain=(0, params.L[0]))
    V1 = C2CBasis(params.N[1], domain=(0, params.L[1]))
    V2 = R2CBasis(params.N[2], domain=(0, params.L[2]))
    T = TensorProductSpace(comm, (V0, V1, V2), **{'threads': params.threads})
    VT = VectorTensorProductSpace([T]*3)

    kw = {'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
          'dealias_direct': params.dealias == '2/3-rule'}
    V0p = C2CBasis(params.N[0], domain=(0, params.L[0]), **kw)
    V1p = C2CBasis(params.N[1], domain=(0, params.L[1]), **kw)
    V2p = R2CBasis(params.N[2], domain=(0, params.L[2]), **kw)
    Tp = TensorProductSpace(comm, (V0p, V1p, V2p), **{'threads': params.threads})
    VTp = VectorTensorProductSpace([Tp]*3)

    float, complex, mpitype = datatypes(params.precision)
    FFT = T  # For compatibility - to be removed

    # Mesh variables
    X = T.local_mesh(True)
    K = T.local_wavenumbers(scaled=True)
    K2 = K[0]*K[0] + K[1]*K[1] + K[2]*K[2]

    # Set Nyquist frequency to zero on K that is, from now on, used for odd derivatives
    Kx = T.local_wavenumbers(scaled=True, eliminate_highest_freq=True)
    K_over_K2 = np.zeros((3,)+VT.local_shape())
    for i in range(3):
        K_over_K2[i] = K[i] / np.where(K2==0, 1, K2)

    # Velocity and pressure
    U = Array(VT, False)
    U_hat = Array(VT)
    P = Array(T, False)
    P_hat = Array(T)

    # Primary variable
    u = U_hat

    # RHS array
    dU = Array(VT)
    curl = Array(VT, False)
    Source = Array(VT) # Possible source term initialized to zero
    work = work_arrays()

    hdf5file = NSWriter({"U":U[0], "V":U[1], "W":U[2], "P":P},
                        chkpoint={"current":{"U":U, "P":P}, "previous":{}},
                        filename=params.h5filename+".h5")

    return config.AttributeDict(locals())
コード例 #5
0
ファイル: test_curl.py プロジェクト: mstf1985/shenfun
def test_curl_cc():
    theta, phi = sp.symbols('x,y', real=True, positive=True)
    psi = (theta, phi)
    r = 1
    rv = (r * sp.sin(theta) * sp.cos(phi), r * sp.sin(theta) * sp.sin(phi),
          r * sp.cos(theta))

    # Manufactured solution
    sph = sp.functions.special.spherical_harmonics.Ynm
    ue = sph(6, 3, theta, phi)

    N, M = 16, 12
    L0 = FunctionSpace(N, 'C', domain=(0, np.pi))
    F1 = FunctionSpace(M, 'F', dtype='D')
    T = TensorProductSpace(comm, (L0, F1), coordinates=(psi, rv))
    u_hat = Function(T, buffer=ue)
    du = curl(grad(u_hat))
    du.terms() == [[]]

    r, theta, z = psi = sp.symbols('x,y,z', real=True, positive=True)
    rv = (r * sp.cos(theta), r * sp.sin(theta), z)

    # Manufactured solution
    ue = (r * (1 - r) * sp.cos(4 * theta) - 1 * (r - 1)) * sp.cos(4 * z)

    N = 12
    F0 = FunctionSpace(N, 'F', dtype='D')
    F1 = FunctionSpace(N, 'F', dtype='d')
    L = FunctionSpace(N, 'L', bc='Dirichlet', domain=(0, 1))
    T = TensorProductSpace(comm, (L, F0, F1), coordinates=(psi, rv))
    T1 = T.get_orthogonal()
    V = VectorTensorProductSpace(T1)
    u_hat = Function(T, buffer=ue)
    du = project(curl(grad(u_hat)), V)
    assert np.linalg.norm(du) < 1e-10
コード例 #6
0
def test_mixed_3D(backend, forward_output, as_scalar):
    if (backend == 'netcdf4' and forward_output is True) or skip[backend]:
        return
    K0 = FunctionSpace(N[0], 'F', dtype='D', domain=(0, np.pi))
    K1 = FunctionSpace(N[1], 'F', dtype='d', domain=(0, 2 * np.pi))
    K2 = FunctionSpace(N[2], 'C')
    T = TensorProductSpace(comm, (K0, K1, K2))
    TT = VectorTensorProductSpace(T)
    filename = 'test3Dm_{}'.format(ex[forward_output])
    hfile = writer(filename, TT, backend=backend)
    uf = Function(TT, val=2) if forward_output else Array(TT, val=2)
    uf[0] = 1
    data = {
        'ux': (uf[0], (uf[0], [slice(None), 4,
                               slice(None)]), (uf[0], [slice(None), 4, 4])),
        'uy': (uf[1], (uf[1], [slice(None), 4,
                               slice(None)]), (uf[1], [slice(None), 4, 4])),
        'u': [uf, (uf, [slice(None), 4, slice(None)])]
    }
    hfile.write(0, data, as_scalar=as_scalar)
    hfile.write(1, data, as_scalar=as_scalar)
    if not forward_output and backend == 'hdf5' and comm.Get_rank() == 0:
        generate_xdmf(filename + '.h5')

    if as_scalar is False:
        u0 = Function(TT) if forward_output else Array(TT)
        read = reader(filename, TT, backend=backend)
        read.read(u0, 'u', step=1)
        assert np.allclose(u0, uf)
    else:
        u0 = Function(T) if forward_output else Array(T)
        read = reader(filename, T, backend=backend)
        read.read(u0, 'u0', step=1)
        assert np.allclose(u0, uf[0])
コード例 #7
0
def test_curl(typecode):
    K0 = Basis(N[0], 'F', dtype=typecode.upper())
    K1 = Basis(N[1], 'F', dtype=typecode.upper())
    K2 = Basis(N[2], 'F', dtype=typecode)
    T = TensorProductSpace(comm, (K0, K1, K2), dtype=typecode)
    X = T.local_mesh(True)
    K = T.local_wavenumbers()
    Tk = VectorTensorProductSpace(T)
    u = TrialFunction(Tk)
    v = TestFunction(Tk)

    U = Array(Tk)
    U_hat = Function(Tk)
    curl_hat = Function(Tk)
    curl_ = Array(Tk)

    # Initialize a Taylor Green vortex
    U[0] = np.sin(X[0]) * np.cos(X[1]) * np.cos(X[2])
    U[1] = -np.cos(X[0]) * np.sin(X[1]) * np.cos(X[2])
    U[2] = 0
    U_hat = Tk.forward(U, U_hat)
    Uc = U_hat.copy()
    U = Tk.backward(U_hat, U)
    U_hat = Tk.forward(U, U_hat)
    assert allclose(U_hat, Uc)

    divu_hat = project(div(U_hat), T)
    divu = Array(T)
    divu = T.backward(divu_hat, divu)
    assert allclose(divu, 0)

    curl_hat[0] = 1j * (K[1] * U_hat[2] - K[2] * U_hat[1])
    curl_hat[1] = 1j * (K[2] * U_hat[0] - K[0] * U_hat[2])
    curl_hat[2] = 1j * (K[0] * U_hat[1] - K[1] * U_hat[0])

    curl_ = Tk.backward(curl_hat, curl_)

    w_hat = Function(Tk)
    w_hat = inner(v, curl(U_hat), output_array=w_hat)
    A = inner(v, u)
    for i in range(3):
        w_hat[i] = A[i].solve(w_hat[i])

    w = Array(Tk)
    w = Tk.backward(w_hat, w)
    #from IPython import embed; embed()
    assert allclose(w, curl_)

    u_hat = Function(Tk)
    u_hat = inner(v, U, output_array=u_hat)
    for i in range(3):
        u_hat[i] = A[i].solve(u_hat[i])

    uu = Array(Tk)
    uu = Tk.backward(u_hat, uu)

    assert allclose(u_hat, U_hat)
コード例 #8
0
def test_cylinder():
    T = get_function_space('cylinder')
    u = TrialFunction(T)
    du = div(grad(u))
    assert du.tolatex(
    ) == '\\frac{\\partial^2 u}{\\partial x^2 }+\\frac{1}{x}\\frac{\\partial  u}{\\partial x  }+\\frac{1}{x^{2}}\\frac{\\partial^2 u}{\\partial y^2 }+\\frac{\\partial^2 u}{\\partial z^2 }'
    V = VectorTensorProductSpace(T)
    u = TrialFunction(V)
    du = div(grad(u))
    assert du.tolatex(
    ) == '\\left( \\frac{\\partial^2 u^{x}}{\\partial x^2 }+\\frac{1}{x}\\frac{\\partial  u^{x}}{\\partial x  }+\\frac{1}{x^{2}}\\frac{\\partial^2 u^{x}}{\\partial y^2 }- \\frac{2}{x}\\frac{\\partial  u^{y}}{\\partial y  }- \\frac{1}{x^{2}}u^{x}+\\frac{\\partial^2 u^{x}}{\\partial z^2 }\\right) \\mathbf{b}_{x} \\\\+\\left( \\frac{\\partial^2 u^{y}}{\\partial x^2 }+\\frac{3}{x}\\frac{\\partial  u^{y}}{\\partial x  }+\\frac{2}{x^{3}}\\frac{\\partial  u^{x}}{\\partial y  }+\\frac{1}{x^{2}}\\frac{\\partial^2 u^{y}}{\\partial y^2 }+\\frac{\\partial^2 u^{y}}{\\partial z^2 }\\right) \\mathbf{b}_{y} \\\\+\\left( \\frac{\\partial^2 u^{z}}{\\partial x^2 }+\\frac{1}{x}\\frac{\\partial  u^{z}}{\\partial x  }+\\frac{1}{x^{2}}\\frac{\\partial^2 u^{z}}{\\partial y^2 }+\\frac{\\partial^2 u^{z}}{\\partial z^2 }\\right) \\mathbf{b}_{z} \\\\'
コード例 #9
0
def test_vector_laplace(space):
    """Test that

    div(grad(u)) = grad(div(u)) - curl(curl(u))

    """
    T = get_function_space(space)
    V = VectorTensorProductSpace(T)
    u = TrialFunction(V)
    v = _TestFunction(V)
    du = div(grad(u))
    dv = grad(div(u)) - curl(curl(u))
    u_hat = Function(V)
    u_hat[:] = np.random.random(
        u_hat.shape) + np.random.random(u_hat.shape) * 1j
    A0 = inner(v, du)
    A1 = inner(v, dv)
    a0 = BlockMatrix(A0)
    a1 = BlockMatrix(A1)
    b0 = Function(V)
    b1 = Function(V)
    b0 = a0.matvec(u_hat, b0)
    b1 = a1.matvec(u_hat, b1)
    assert np.linalg.norm(b0 - b1) < 1e-8
コード例 #10
0
def get_context():
    """Set up context for solver"""

    collapse_fourier = False if params.dealias == '3/2-rule' else True
    family = 'C'
    ST = Basis(params.N[0], family, bc=(0, 0), quad=params.Dquad)
    CT = Basis(params.N[0], family, quad=params.Dquad)
    CP = Basis(params.N[0], family, quad=params.Dquad)
    K0 = Basis(params.N[1], 'F', domain=(0, params.L[1]), dtype='D')
    K1 = Basis(params.N[2], 'F', domain=(0, params.L[2]), dtype='d')
    #CP.slice = lambda: slice(0, CP.N-2)

    constraints = ((3, 0, 0),
                   (3, params.N[0]-1, 0))

    kw0 = {'threads': params.threads,
           'planner_effort': params.planner_effort["dct"],
           'slab': (params.decomposition == 'slab'),
           'collapse_fourier': collapse_fourier}
    FST = TensorProductSpace(comm, (ST, K0, K1), **kw0)    # Dirichlet
    FCT = TensorProductSpace(comm, (CT, K0, K1), **kw0)    # Regular Chebyshev N
    FCP = TensorProductSpace(comm, (CP, K0, K1), **kw0)    # Regular Chebyshev N-2
    VFS = VectorTensorProductSpace(FST)
    VCT = VectorTensorProductSpace(FCT)
    VQ = MixedTensorProductSpace([VFS, FCP])

    mask = FST.mask_nyquist() if params.mask_nyquist else None

    # Padded
    kw = {'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
          'dealias_direct': params.dealias == '2/3-rule'}
    if params.dealias == '3/2-rule':
        # Requires new bases due to planning and transforms on different size arrays
        STp = Basis(params.N[0], family, bc=(0, 0), quad=params.Dquad)
        CTp = Basis(params.N[0], family, quad=params.Dquad)
    else:
        STp, CTp = ST, CT
    K0p = Basis(params.N[1], 'F', dtype='D', domain=(0, params.L[1]), **kw)
    K1p = Basis(params.N[2], 'F', dtype='d', domain=(0, params.L[2]), **kw)
    FSTp = TensorProductSpace(comm, (STp, K0p, K1p), **kw0)
    FCTp = TensorProductSpace(comm, (CTp, K0p, K1p), **kw0)
    VFSp = VectorTensorProductSpace(FSTp)
    VCp = MixedTensorProductSpace([FSTp, FCTp, FCTp])

    float, complex, mpitype = datatypes("double")

    # Mesh variables
    X = FST.local_mesh(True)
    x0, x1, x2 = FST.mesh()
    K = FST.local_wavenumbers(scaled=True)

    # Solution variables
    UP_hat = Function(VQ)
    UP_hat0 = Function(VQ)
    U_hat, P_hat = UP_hat
    U_hat0, P_hat0 = UP_hat0

    UP = Array(VQ)
    UP0 = Array(VQ)
    U, P = UP
    U0, P0 = UP0

    # RK parameters
    a = (8./15., 5./12., 3./4.)
    b = (0.0, -17./60., -5./12.)

    # primary variable
    u = UP_hat

    H_hat = Function(VFS)

    dU = Function(VQ)
    hv = np.zeros((2,)+H_hat.shape, dtype=np.complex)

    Source = Array(VFS) # Note - not using VQ. Only used for constant pressure gradient
    Sk = Function(VFS)

    K2 = K[1]*K[1]+K[2]*K[2]

    # Set Nyquist frequency to zero on K that is used for odd derivatives in nonlinear terms
    Kx = FST.local_wavenumbers(scaled=True, eliminate_highest_freq=True)

    for i in range(3):
        K[i] = K[i].astype(float)
        Kx[i] = Kx[i].astype(float)

    work = work_arrays()
    u_dealias = Array(VFSp)
    curl_hat = Function(VCp)
    curl_dealias = Array(VCp)

    nu, dt, N = params.nu, params.dt, params.N

    up = TrialFunction(VQ)
    vq = TestFunction(VQ)

    ut, pt = up
    vt, qt = vq

    M = []
    for rk in range(3):
        a0 = inner(vt, (2./nu/dt/(a[rk]+b[rk]))*ut-div(grad(ut)))
        a1 = inner(vt, (2./nu/(a[rk]+b[rk]))*grad(pt))
        a2 = inner(qt, (2./nu/(a[rk]+b[rk]))*div(ut))
        M.append(BlockMatrix(a0+a1+a2))

    # Collect all matrices
    if ST.family() == 'chebyshev':
        mat = config.AttributeDict(
            dict(AB=[HelmholtzCoeff(N[0], 1., -(K2 - 2./nu/dt/(a[rk]+b[rk])), 0, ST.quad) for rk in range(3)],))
    else:
        mat = config.AttributeDict(
            dict(ADD=inner_product((ST, 0), (ST, 2)),
                 BDD=inner_product((ST, 0), (ST, 0)))
        )

    la = None

    hdf5file = CoupledRK3File(config.params.solver,
                        checkpoint={'space': VQ,
                                    'data': {'0': {'UP': [UP_hat]}}},
                        results={'space': VFS,
                                 'data': {'U': [U]}})

    del rk
    return config.AttributeDict(locals())
コード例 #11
0
def get_context():
    """Set up context for classical (NS) solver"""
    float, complex, mpitype = datatypes(params.precision)
    collapse_fourier = False if params.dealias == '3/2-rule' else True
    dim = len(params.N)
    dtype = lambda d: float if d == dim - 1 else complex
    V = [
        Basis(params.N[i], 'F', domain=(0, params.L[i]), dtype=dtype(i))
        for i in range(dim)
    ]

    kw0 = {
        'threads': params.threads,
        'planner_effort': params.planner_effort['fft']
    }
    T = TensorProductSpace(comm,
                           V,
                           dtype=float,
                           slab=(params.decomposition == 'slab'),
                           collapse_fourier=collapse_fourier,
                           **kw0)
    VT = VectorTensorProductSpace(T)

    # Different bases for nonlinear term, either 2/3-rule or 3/2-rule
    kw = {
        'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
        'dealias_direct': params.dealias == '2/3-rule'
    }

    Vp = [
        Basis(params.N[i], 'F', domain=(0, params.L[i]), dtype=dtype(i), **kw)
        for i in range(dim)
    ]

    Tp = TensorProductSpace(comm,
                            Vp,
                            dtype=float,
                            slab=(params.decomposition == 'slab'),
                            collapse_fourier=collapse_fourier,
                            **kw0)
    VTp = VectorTensorProductSpace(Tp)

    # Mesh variables
    X = T.local_mesh(True)
    K = T.local_wavenumbers(scaled=True)
    for i in range(dim):
        X[i] = X[i].astype(float)
        K[i] = K[i].astype(float)
    K2 = np.zeros(T.shape(True), dtype=float)
    for i in range(dim):
        K2 += K[i] * K[i]

    # Set Nyquist frequency to zero on K that is, from now on, used for odd derivatives
    Kx = T.local_wavenumbers(scaled=True, eliminate_highest_freq=True)
    for i in range(dim):
        Kx[i] = Kx[i].astype(float)

    K_over_K2 = np.zeros(VT.shape(True), dtype=float)
    for i in range(dim):
        K_over_K2[i] = K[i] / np.where(K2 == 0, 1, K2)

    # Velocity and pressure. Use ndarray view for efficiency
    U = Array(VT)
    U_hat = Function(VT)
    P = Array(T)
    P_hat = Function(T)
    u_dealias = Array(VTp)

    # Primary variable
    u = U_hat

    # RHS array
    dU = Function(VT)
    curl = Array(VT)
    Source = Function(VT)  # Possible source term initialized to zero
    work = work_arrays()

    hdf5file = NSFile(config.params.solver,
                      checkpoint={
                          'space': VT,
                          'data': {
                              '0': {
                                  'U': [U_hat]
                              }
                          }
                      },
                      results={
                          'space': VT,
                          'data': {
                              'U': [U],
                              'P': [P]
                          }
                      })

    return config.AttributeDict(locals())
コード例 #12
0
def get_context():
    """Set up context for solver"""

    # Get points and weights for Chebyshev weighted integrals
    ST = ShenDirichletBasis(params.N[0], quad=params.Dquad)
    SB = ShenBiharmonicBasis(params.N[0], quad=params.Bquad)
    CT = Basis(params.N[0], quad=params.Dquad)
    ST0 = ShenDirichletBasis(params.N[0], quad=params.Dquad,
                             plan=True)  # For 1D problem
    K0 = C2CBasis(params.N[1], domain=(0, params.L[1]))
    K1 = R2CBasis(params.N[2], domain=(0, params.L[2]))

    #CT = ST.CT  # Chebyshev transform
    FST = TensorProductSpace(comm, (ST, K0, K1), **{
        'threads': params.threads,
        'planner_effort': params.planner_effort["dct"]
    })  # Dirichlet
    FSB = TensorProductSpace(comm, (SB, K0, K1), **{
        'threads': params.threads,
        'planner_effort': params.planner_effort["dct"]
    })  # Biharmonic
    FCT = TensorProductSpace(comm, (CT, K0, K1), **{
        'threads': params.threads,
        'planner_effort': params.planner_effort["dct"]
    })  # Regular Chebyshev
    VFS = VectorTensorProductSpace([FSB, FST, FST])

    # Padded
    STp = ShenDirichletBasis(params.N[0], quad=params.Dquad)
    SBp = ShenBiharmonicBasis(params.N[0], quad=params.Bquad)
    CTp = Basis(params.N[0], quad=params.Dquad)
    K0p = C2CBasis(params.N[1], padding_factor=1.5, domain=(0, params.L[1]))
    K1p = R2CBasis(params.N[2], padding_factor=1.5, domain=(0, params.L[2]))
    FSTp = TensorProductSpace(
        comm, (STp, K0p, K1p), **{
            'threads': params.threads,
            'planner_effort': params.planner_effort["dct"]
        })
    FSBp = TensorProductSpace(
        comm, (SBp, K0p, K1p), **{
            'threads': params.threads,
            'planner_effort': params.planner_effort["dct"]
        })
    FCTp = TensorProductSpace(
        comm, (CTp, K0p, K1p), **{
            'threads': params.threads,
            'planner_effort': params.planner_effort["dct"]
        })
    VFSp = VectorTensorProductSpace([FSBp, FSTp, FSTp])

    VFSp = VFS
    FCTp = FCT
    FSTp = FST
    FSBp = FSB

    Nu = params.N[0] - 2  # Number of velocity modes in Shen basis
    Nb = params.N[0] - 4  # Number of velocity modes in Shen biharmonic basis
    u_slice = slice(0, Nu)
    v_slice = slice(0, Nb)

    float, complex, mpitype = datatypes("double")

    # Mesh variables
    X = FST.local_mesh(True)
    x0, x1, x2 = FST.mesh()
    K = FST.local_wavenumbers(scaled=True)

    # Solution variables
    U = Array(VFS, False)
    U0 = Array(VFS, False)
    U_hat = Array(VFS)
    U_hat0 = Array(VFS)
    g = Array(FST)

    # primary variable
    u = (U_hat, g)

    H_hat = Array(VFS)
    H_hat0 = Array(VFS)
    H_hat1 = Array(VFS)

    dU = Array(VFS)
    hv = Array(FST)
    hg = Array(FST)
    Source = Array(VFS, False)
    Sk = Array(VFS)

    K2 = K[1] * K[1] + K[2] * K[2]
    K_over_K2 = np.zeros((2, ) + g.shape)
    for i in range(2):
        K_over_K2[i] = K[i + 1] / np.where(K2 == 0, 1, K2)

    work = work_arrays()

    nu, dt, N = params.nu, params.dt, params.N
    K4 = K2**2
    kx = K[0][:, 0, 0]

    alfa = K2[0] - 2.0 / nu / dt
    # Collect all matrices
    mat = config.AttributeDict(
        dict(
            CDD=inner_product((ST, 0), (ST, 1)),
            AB=HelmholtzCoeff(kx, -1.0, -alfa, ST.quad),
            AC=BiharmonicCoeff(kx,
                               nu * dt / 2., (1. - nu * dt * K2[0]),
                               -(K2[0] - nu * dt / 2. * K4[0]),
                               quad=SB.quad),
            # Matrices for biharmonic equation
            CBD=inner_product((SB, 0), (ST, 1)),
            ABB=inner_product((SB, 0), (SB, 2)),
            BBB=inner_product((SB, 0), (SB, 0)),
            SBB=inner_product((SB, 0), (SB, 4)),
            # Matrices for Helmholtz equation
            ADD=inner_product((ST, 0), (ST, 2)),
            BDD=inner_product((ST, 0), (ST, 0)),
            BBD=inner_product((SB, 0), (ST, 0)),
            CDB=inner_product((ST, 0), (SB, 1)),
            ADD0=inner_product((ST0, 0), (ST0, 2)),
            BDD0=inner_product((ST0, 0), (ST0, 0)),
        ))

    # Collect all linear algebra solvers
    #la = config.AttributeDict(dict(
    #HelmholtzSolverG = Helmholtz(N[0], np.sqrt(K2[0]+2.0/nu/dt), ST),
    #BiharmonicSolverU = Biharmonic(N[0], -nu*dt/2., 1.+nu*dt*K2[0],
    #-(K2[0] + nu*dt/2.*K4[0]), quad=SB.quad,
    #solver="cython"),
    #HelmholtzSolverU0 = Helmholtz(N[0], np.sqrt(2./nu/dt), ST),
    #TDMASolverD = TDMA(inner_product((ST, 0), (ST, 0)))
    #)
    #)
    mat.ADD.axis = 0
    mat.BDD.axis = 0
    mat.SBB.axis = 0

    la = config.AttributeDict(
        dict(HelmholtzSolverG=Helmholtz(mat.ADD, mat.BDD, -np.ones(
            (1, 1, 1)), (K2[0] + 2.0 / nu / dt)[np.newaxis, :, :]),
             BiharmonicSolverU=Biharmonic(
                 mat.SBB, mat.ABB, mat.BBB, -nu * dt / 2. * np.ones(
                     (1, 1, 1)), (1. + nu * dt * K2[0])[np.newaxis, :, :],
                 (-(K2[0] + nu * dt / 2. * K4[0]))[np.newaxis, :, :]),
             HelmholtzSolverU0=old_Helmholtz(N[0], np.sqrt(2. / nu / dt), ST),
             TDMASolverD=TDMA(inner_product((ST, 0), (ST, 0)))))

    hdf5file = KMMWriter({
        "U": U[0],
        "V": U[1],
        "W": U[2]
    },
                         chkpoint={
                             'current': {
                                 'U': U
                             },
                             'previous': {
                                 'U': U0
                             }
                         },
                         filename=params.solver + ".h5",
                         mesh={
                             "x": x0,
                             "y": x1,
                             "z": x2
                         })

    return config.AttributeDict(locals())
コード例 #13
0
from shenfun.chebyshev.bases import ShenBiharmonicBasis
from shenfun.fourier.bases import R2CBasis, C2CBasis
from shenfun import Function, TensorProductSpace, VectorTensorProductSpace, curl
from shenfun import inner, curl, TestFunction
import numpy as np
from mpi4py import MPI
comm = MPI.COMM_WORLD

N = (32, 33, 34)
K0 = ShenBiharmonicBasis(N[0])
K1 = C2CBasis(N[1])
K2 = R2CBasis(N[2])

T = TensorProductSpace(comm, (K0, K1, K2))
Tk = VectorTensorProductSpace([T, T, T])

v = TestFunction(Tk)
u_ = Function(Tk, False)
u_[:] = np.random.random(u_.shape)
u_hat = Function(Tk)
u_hat = Tk.forward(u_, u_hat)
w_hat = inner(v, curl(u_), uh_hat=u_hat)
コード例 #14
0
def test_transform(typecode, dim):
    s = (True, )
    if comm.Get_size() > 2 and dim > 2:
        s = (True, False)

    for slab in s:
        for shape in product(*([sizes] * dim)):
            bases = []
            for n in shape[:-1]:
                bases.append(Basis(n, 'F', dtype=typecode.upper()))
            bases.append(Basis(shape[-1], 'F', dtype=typecode))

            fft = TensorProductSpace(comm, bases, dtype=typecode, slab=slab)

            if comm.rank == 0:
                grid = [c.size for c in fft.subcomm]
                print('grid:{} shape:{} typecode:{}'.format(
                    grid, shape, typecode))

            U = random_like(fft.forward.input_array)

            F = fft.forward(U)
            V = fft.backward(F)
            assert allclose(V, U)

            # Alternative method
            fft.forward.input_array[...] = U
            fft.forward(fast_transform=False)
            fft.backward(fast_transform=False)
            V = fft.backward.output_array
            assert allclose(V, U)

            TT = VectorTensorProductSpace(fft)
            U = Array(TT)
            V = Array(TT)
            F = Function(TT)
            U[:] = random_like(U)
            F = TT.forward(U, F)
            V = TT.backward(F, V)
            assert allclose(V, U)

            TM = MixedTensorProductSpace([fft, fft])
            U = Array(TM)
            V = Array(TM)
            F = Function(TM)
            U[:] = random_like(U)
            F = TM.forward(U, F)
            V = TM.backward(F, V)
            assert allclose(V, U)

            fft.destroy()

            padding = 1.5
            bases = []
            for n in shape[:-1]:
                bases.append(
                    Basis(n,
                          'F',
                          dtype=typecode.upper(),
                          padding_factor=padding))
            bases.append(
                Basis(shape[-1], 'F', dtype=typecode, padding_factor=padding))

            fft = TensorProductSpace(comm, bases, dtype=typecode)

            if comm.rank == 0:
                grid = [c.size for c in fft.subcomm]
                print('grid:{} shape:{} typecode:{}'.format(
                    grid, shape, typecode))

            U = random_like(fft.forward.input_array)
            F = fft.forward(U)

            Fc = F.copy()
            V = fft.backward(F)
            F = fft.forward(V)
            assert allclose(F, Fc)

            # Alternative method
            fft.backward.input_array[...] = F
            fft.backward()
            fft.forward()
            V = fft.forward.output_array
            assert allclose(F, V)

            fft.destroy()
コード例 #15
0
K0 = Basis(N[0], 'F', dtype='D', domain=(-1., 1.))
K1 = Basis(N[1], 'F', dtype='d', domain=(-1., 1.))
T = TensorProductSpace(comm, (K0, K1))
X = T.local_mesh(True)
u = TrialFunction(T)
v = TestFunction(T)

# For nonlinear term we can use the 3/2-rule with padding
Tp = T.get_dealiased((1.5, 1.5))

# Turn on padding by commenting
#Tp = T

# Create vector spaces and a test function for the regular vector space
TV = VectorTensorProductSpace(T)
TVp = VectorTensorProductSpace(Tp)
vv = TestFunction(TV)
uu = TrialFunction(TV)

# Declare solution arrays and work arrays
UV = Array(TV)
UVp = Array(TVp)
U, V = UV  # views into vector components
UV_hat = Function(TV)
w0 = Function(TV)  # Work array spectral space
w1 = Array(TVp)  # Work array physical space

e1 = 0.00002
e2 = 0.00001
b0 = 0.03
コード例 #16
0
    def refine(self, N, output_array=None):
        """Return self with new number of quadrature points

        Parameters
        ----------
        N : number or sequence of numbers
            The new number of quadrature points

        Note
        ----
        If N is smaller than for self, then a truncated array
        is returned. If N is greater than before, then the
        returned array is padded with zeros.

        """
        from shenfun.fourier.bases import R2CBasis
        from shenfun import VectorTensorProductSpace

        if self.ndim == 1:
            assert isinstance(N, Number)
            space = self.function_space()
            if output_array is None:
                refined_basis = space.get_refined(N)
                output_array = Function(refined_basis)
            output_array = self.assign(output_array)
            return output_array

        space = self.function_space()

        if isinstance(space, VectorTensorProductSpace):
            if output_array is None:
                output_array = [None]*len(self)
            for i, array in enumerate(self):
                output_array[i] = array.refine(N, output_array=output_array[i])
            if isinstance(output_array, list):
                T = output_array[0].function_space()
                VT = VectorTensorProductSpace(T)
                output_array = np.array(output_array)
                output_array = Function(VT, buffer=output_array)
            return output_array

        axes = [bx for ax in space.axes for bx in ax]
        base = space.bases[axes[0]]
        global_shape = list(self.global_shape) # Global shape in spectral space
        factor = N[axes[0]]/self.function_space().bases[axes[0]].N
        if isinstance(base, R2CBasis):
            global_shape[axes[0]] = int((2*global_shape[axes[0]]-2)*factor)//2+1
        else:
            global_shape[axes[0]] = int(global_shape[axes[0]]*factor)
        c1 = DistArray(global_shape,
                       subcomm=self.pencil.subcomm,
                       dtype=self.dtype,
                       alignment=self.alignment)
        if self.global_shape[axes[0]] <= global_shape[axes[0]]:
            base._padding_backward(self, c1)
        else:
            base._truncation_forward(self, c1)
        for ax in axes[1:]:
            c0 = c1.redistribute(ax)
            factor = N[ax]/self.function_space().bases[ax].N

            # Get a new padded array
            base = space.bases[ax]
            if isinstance(base, R2CBasis):
                global_shape[ax] = int(base.N*factor)//2+1
            else:
                global_shape[ax] = int(global_shape[ax]*factor)
            c1 = DistArray(global_shape,
                           subcomm=c0.pencil.subcomm,
                           dtype=c0.dtype,
                           alignment=ax)

            # Copy from c0 to d0
            if self.global_shape[ax] <= global_shape[ax]:
                base._padding_backward(c0, c1)
            else:
                base._truncation_forward(c0, c1)

        # Reverse transfer to get the same distribution as u_hat
        for ax in reversed(axes[:-1]):
            c1 = c1.redistribute(ax)

        if output_array is None:
            refined_space = space.get_refined(N)
            output_array = Function(refined_space, buffer=c1)
        else:
            output_array[:] = c1
        return output_array
コード例 #17
0
N = (200, 200)

K0 = FunctionSpace(N[0], 'F', dtype='D', domain=(-1., 1.))
K1 = FunctionSpace(N[1], 'F', dtype='d', domain=(-1., 1.))
T = TensorProductSpace(comm, (K0, K1))
u = TrialFunction(T)
v = TestFunction(T)

# For nonlinear term we can use the 3/2-rule with padding
Tp = T.get_dealiased((1.5, 1.5))

# Turn on padding by commenting
#Tp = T

# Create vector spaces and a test function for the regular vector space
TV = VectorTensorProductSpace(T)
TVp = VectorTensorProductSpace(Tp)
vv = TestFunction(TV)
uu = TrialFunction(TV)

# Declare solution arrays and work arrays
UV = Array(TV, buffer=(u0, v0))
UVp = Array(TVp)
U, V = UV  # views into vector components
UV_hat = Function(TV)
w0 = Function(TV)  # Work array spectral space
w1 = Array(TVp)  # Work array physical space

e1 = 0.00002
e2 = 0.00001
b0 = 0.03
コード例 #18
0
def get_context():
    """Set up context for solver"""

    # Get points and weights for Chebyshev weighted integrals
    assert params.Dquad == params.Bquad
    collapse_fourier = False if params.dealias == '3/2-rule' else True
    ST = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
    CT = Basis(params.N[0], 'C', quad=params.Dquad)
    CP = Basis(params.N[0], 'C', quad=params.Dquad)
    K0 = Basis(params.N[1], 'F', domain=(0, params.L[1]), dtype='D')
    K1 = Basis(params.N[2], 'F', domain=(0, params.L[2]), dtype='d')
    CP.slice = lambda: slice(0, CT.N)

    kw0 = {'threads': params.threads,
           'planner_effort': params.planner_effort["dct"],
           'slab': (params.decomposition == 'slab'),
           'collapse_fourier': collapse_fourier}
    FST = TensorProductSpace(comm, (ST, K0, K1), **kw0)    # Dirichlet
    FCT = TensorProductSpace(comm, (CT, K0, K1), **kw0)    # Regular Chebyshev N
    FCP = TensorProductSpace(comm, (CP, K0, K1), **kw0)    # Regular Chebyshev N-2
    VFS = VectorTensorProductSpace(FST)
    VCT = VectorTensorProductSpace(FCT)
    VQ = MixedTensorProductSpace([VFS, FCP])

    mask = FST.get_mask_nyquist() if params.mask_nyquist else None

    # Padded
    kw = {'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
          'dealias_direct': params.dealias == '2/3-rule'}
    if params.dealias == '3/2-rule':
        # Requires new bases due to planning and transforms on different size arrays
        STp = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
        CTp = Basis(params.N[0], 'C', quad=params.Dquad)
    else:
        STp, CTp = ST, CT
    K0p = Basis(params.N[1], 'F', dtype='D', domain=(0, params.L[1]), **kw)
    K1p = Basis(params.N[2], 'F', dtype='d', domain=(0, params.L[2]), **kw)
    FSTp = TensorProductSpace(comm, (STp, K0p, K1p), **kw0)
    FCTp = TensorProductSpace(comm, (CTp, K0p, K1p), **kw0)
    VFSp = VectorTensorProductSpace(FSTp)
    VCp = MixedTensorProductSpace([FSTp, FCTp, FCTp])

    float, complex, mpitype = datatypes("double")

    constraints = ((3, 0, 0),
                   (3, params.N[0]-1, 0))

    # Mesh variables
    X = FST.local_mesh(True)
    x0, x1, x2 = FST.mesh()
    K = FST.local_wavenumbers(scaled=True)

    # Solution variables
    UP_hat = Function(VQ)
    UP_hat0 = Function(VQ)
    U_hat, P_hat = UP_hat
    U_hat0, P_hat0 = UP_hat0

    UP = Array(VQ)
    UP0 = Array(VQ)
    U, P = UP
    U0, P0 = UP0

    # primary variable
    u = UP_hat

    H_hat = Function(VFS)
    H_hat0 = Function(VFS)
    H_hat1 = Function(VFS)

    dU = Function(VQ)
    Source = Array(VFS) # Note - not using VQ. Only used for constant pressure gradient
    Sk = Function(VFS)

    K2 = K[1]*K[1]+K[2]*K[2]

    for i in range(3):
        K[i] = K[i].astype(float)

    work = work_arrays()
    u_dealias = Array(VFSp)
    curl_hat = Function(VCp)
    curl_dealias = Array(VCp)

    nu, dt, N = params.nu, params.dt, params.N

    up = TrialFunction(VQ)
    vq = TestFunction(VQ)

    ut, pt = up
    vt, qt = vq

    alfa = 2./nu/dt
    a0 = inner(vt, (2./nu/dt)*ut-div(grad(ut)))
    a1 = inner(vt, (2./nu)*grad(pt))
    a2 = inner(qt, (2./nu)*div(ut))

    M = BlockMatrix(a0+a1+a2)

    # Collect all matrices
    mat = config.AttributeDict(
        dict(CDD=inner_product((ST, 0), (ST, 1)),
             AB=HelmholtzCoeff(N[0], 1., alfa-K2, 0, ST.quad),))

    la = None

    hdf5file = CoupledFile(config.params.solver,
                        checkpoint={'space': VQ,
                                    'data': {'0': {'UP': [UP_hat]},
                                             '1': {'UP': [UP_hat0]}}},
                        results={'space': VFS,
                                 'data': {'U': [U]}})

    return config.AttributeDict(locals())
コード例 #19
0
def get_context():
    """Set up context for solver"""

    # Get points and weights for Chebyshev weighted integrals
    assert params.Dquad == params.Bquad
    ST = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
    SB = Basis(params.N[0], 'C', bc='Biharmonic', quad=params.Bquad)
    CT = Basis(params.N[0], 'C', quad=params.Dquad)
    ST0 = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad,
                plan=True)  # For 1D problem
    K0 = Basis(params.N[1], 'F', domain=(0, params.L[1]), dtype='D')
    K1 = Basis(params.N[2], 'F', domain=(0, params.L[2]), dtype='d')

    FST = TensorProductSpace(comm, (ST, K0, K1), **{
        'threads': params.threads,
        'planner_effort': params.planner_effort["dct"]
    })  # Dirichlet
    FSB = TensorProductSpace(comm, (SB, K0, K1), **{
        'threads': params.threads,
        'planner_effort': params.planner_effort["dct"]
    })  # Biharmonic
    FCT = TensorProductSpace(comm, (CT, K0, K1), **{
        'threads': params.threads,
        'planner_effort': params.planner_effort["dct"]
    })  # Regular Chebyshev
    VFS = VectorTensorProductSpace([FSB, FST, FST])

    # Padded
    kw = {
        'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
        'dealias_direct': params.dealias == '2/3-rule'
    }
    if params.dealias == '3/2-rule':
        # Requires new bases due to planning and transforms on different size arrays
        STp = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
        SBp = Basis(params.N[0], 'C', bc='Biharmonic', quad=params.Bquad)
        CTp = Basis(params.N[0], 'C', quad=params.Dquad)
    else:
        STp, SBp, CTp = ST, SB, CT

    K0p = Basis(params.N[1], 'F', dtype='D', domain=(0, params.L[1]), **kw)
    K1p = Basis(params.N[2], 'F', dtype='d', domain=(0, params.L[2]), **kw)
    FSTp = TensorProductSpace(
        comm, (STp, K0p, K1p), **{
            'threads': params.threads,
            'planner_effort': params.planner_effort["dct"]
        })
    FSBp = TensorProductSpace(
        comm, (SBp, K0p, K1p), **{
            'threads': params.threads,
            'planner_effort': params.planner_effort["dct"]
        })
    FCTp = TensorProductSpace(
        comm, (CTp, K0p, K1p), **{
            'threads': params.threads,
            'planner_effort': params.planner_effort["dct"]
        })
    VFSp = VectorTensorProductSpace([FSBp, FSTp, FSTp])

    Nu = params.N[0] - 2  # Number of velocity modes in Shen basis
    Nb = params.N[0] - 4  # Number of velocity modes in Shen biharmonic basis
    u_slice = slice(0, Nu)
    v_slice = slice(0, Nb)

    float, complex, mpitype = datatypes("double")

    # Mesh variables
    X = FST.local_mesh(True)
    x0, x1, x2 = FST.mesh()
    K = FST.local_wavenumbers(scaled=True)

    # Solution variables
    U = Array(VFS)
    U0 = Array(VFS)
    U_hat = Function(VFS)
    U_hat0 = Function(VFS)
    g = Function(FST)

    # primary variable
    u = (U_hat, g)

    H_hat = Function(VFS)
    H_hat0 = Function(VFS)
    H_hat1 = Function(VFS)

    dU = Function(VFS)
    hv = Function(FST)
    hg = Function(FST)
    Source = Array(VFS)
    Sk = Function(VFS)

    K2 = K[1] * K[1] + K[2] * K[2]
    K4 = K2**2

    # Set Nyquist frequency to zero on K that is used for odd derivatives in nonlinear terms
    Kx = FST.local_wavenumbers(scaled=True, eliminate_highest_freq=True)
    K_over_K2 = np.zeros((2, ) + g.shape)
    for i in range(2):
        K_over_K2[i] = K[i + 1] / np.where(K2 == 0, 1, K2)

    work = work_arrays()

    nu, dt, N = params.nu, params.dt, params.N

    alfa = K2[0] - 2.0 / nu / dt
    # Collect all matrices
    mat = config.AttributeDict(
        dict(
            CDD=inner_product((ST, 0), (ST, 1)),
            AB=HelmholtzCoeff(N[0], 1.0, -alfa, ST.quad),
            AC=BiharmonicCoeff(N[0],
                               nu * dt / 2., (1. - nu * dt * K2[0]),
                               -(K2[0] - nu * dt / 2. * K4[0]),
                               quad=SB.quad),
            # Matrices for biharmonic equation
            CBD=inner_product((SB, 0), (ST, 1)),
            ABB=inner_product((SB, 0), (SB, 2)),
            BBB=inner_product((SB, 0), (SB, 0)),
            SBB=inner_product((SB, 0), (SB, 4)),
            # Matrices for Helmholtz equation
            ADD=inner_product((ST, 0), (ST, 2)),
            BDD=inner_product((ST, 0), (ST, 0)),
            BBD=inner_product((SB, 0), (ST, 0)),
            CDB=inner_product((ST, 0), (SB, 1)),
            ADD0=inner_product((ST0, 0), (ST0, 2)),
            BDD0=inner_product((ST0, 0), (ST0, 0)),
        ))

    ## Collect all linear algebra solvers
    #la = config.AttributeDict(dict(
    #HelmholtzSolverG = old_Helmholtz(N[0], np.sqrt(K2[0]+2.0/nu/dt), ST),
    #BiharmonicSolverU = old_Biharmonic(N[0], -nu*dt/2., 1.+nu*dt*K2[0],
    #-(K2[0] + nu*dt/2.*K4[0]), quad=SB.quad,
    #solver="cython"),
    #HelmholtzSolverU0 = old_Helmholtz(N[0], np.sqrt(2./nu/dt), ST),
    #TDMASolverD = TDMA(inner_product((ST, 0), (ST, 0)))
    #)
    #)

    mat.ADD.axis = 0
    mat.BDD.axis = 0
    mat.SBB.axis = 0

    la = config.AttributeDict(
        dict(HelmholtzSolverG=Helmholtz(mat.ADD, mat.BDD, -np.ones(
            (1, 1, 1)), (K2[0] + 2.0 / nu / dt)[np.newaxis, :, :]),
             BiharmonicSolverU=Biharmonic(
                 mat.SBB, mat.ABB, mat.BBB, -nu * dt / 2. * np.ones(
                     (1, 1, 1)), (1. + nu * dt * K2[0])[np.newaxis, :, :],
                 (-(K2[0] + nu * dt / 2. * K4[0]))[np.newaxis, :, :]),
             HelmholtzSolverU0=old_Helmholtz(N[0], np.sqrt(2. / nu / dt), ST),
             TDMASolverD=TDMA(inner_product((ST, 0), (ST, 0)))))

    hdf5file = KMMWriter({
        "U": U[0],
        "V": U[1],
        "W": U[2]
    },
                         chkpoint={
                             'current': {
                                 'U': U
                             },
                             'previous': {
                                 'U': U0
                             }
                         },
                         filename=params.solver + ".h5",
                         mesh={
                             "x": x0,
                             "y": x1,
                             "z": x2
                         })

    return config.AttributeDict(locals())
コード例 #20
0
ファイル: KMM.py プロジェクト: minhbau/spectralDNS
def get_context():
    """Set up context for solver"""

    # Get points and weights for Chebyshev weighted integrals
    assert params.Dquad == params.Bquad
    collapse_fourier = False if params.dealias == '3/2-rule' else True
    ST = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
    SB = Basis(params.N[0], 'C', bc='Biharmonic', quad=params.Bquad)
    CT = Basis(params.N[0], 'C', quad=params.Dquad)
    ST0 = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad) # For 1D problem
    K0 = Basis(params.N[1], 'F', domain=(0, params.L[1]), dtype='D')
    K1 = Basis(params.N[2], 'F', domain=(0, params.L[2]), dtype='d')

    kw0 = {'threads': params.threads,
           'planner_effort': params.planner_effort["dct"],
           'slab': (params.decomposition == 'slab'),
           'collapse_fourier': collapse_fourier}
    FST = TensorProductSpace(comm, (ST, K0, K1), **kw0)    # Dirichlet
    FSB = TensorProductSpace(comm, (SB, K0, K1), **kw0)    # Biharmonic
    FCT = TensorProductSpace(comm, (CT, K0, K1), **kw0)    # Regular Chebyshev
    VFS = VectorTensorProductSpace([FSB, FST, FST])
    VFST = VectorTensorProductSpace([FST, FST, FST])
    VUG = MixedTensorProductSpace([FSB, FST])
    VCT = VectorTensorProductSpace(FCT)

    mask = FST.get_mask_nyquist() if params.mask_nyquist else None

    # Padded
    kw = {'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
          'dealias_direct': params.dealias == '2/3-rule'}
    if params.dealias == '3/2-rule':
        # Requires new bases due to planning and transforms on different size arrays
        STp = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
        SBp = Basis(params.N[0], 'C', bc='Biharmonic', quad=params.Bquad)
        CTp = Basis(params.N[0], 'C', quad=params.Dquad)
    else:
        STp, SBp, CTp = ST, SB, CT
    K0p = Basis(params.N[1], 'F', dtype='D', domain=(0, params.L[1]), **kw)
    K1p = Basis(params.N[2], 'F', dtype='d', domain=(0, params.L[2]), **kw)
    FSTp = TensorProductSpace(comm, (STp, K0p, K1p), **kw0)
    FSBp = TensorProductSpace(comm, (SBp, K0p, K1p), **kw0)
    FCTp = TensorProductSpace(comm, (CTp, K0p, K1p), **kw0)
    VFSp = VectorTensorProductSpace([FSBp, FSTp, FSTp])

    float, complex, mpitype = datatypes("double")

    # Mesh variables
    X = FST.local_mesh(True)
    x0, x1, x2 = FST.mesh()
    K = FST.local_wavenumbers(scaled=True)

    # Solution variables
    U = Array(VFS)
    U0 = Array(VFS)
    U_hat = Function(VFS)
    U_hat0 = Function(VFS)
    g = Function(FST)

    # primary variable
    u = (U_hat, g)

    H_hat = Function(VFST)
    H_hat0 = Function(VFST)
    H_hat1 = Function(VFST)

    dU = Function(VFS)
    hv = Function(FSB)
    hg = Function(FST)
    Source = Array(VFS)
    Sk = Function(VFS)

    K2 = K[1]*K[1]+K[2]*K[2]
    K4 = K2**2

    K_over_K2 = np.zeros((2,)+g.shape)
    for i in range(2):
        K_over_K2[i] = K[i+1] / np.where(K2 == 0, 1, K2)

    for i in range(3):
        K[i] = K[i].astype(float)

    work = work_arrays()
    u_dealias = Array(VFSp)
    u0_hat = np.zeros((2, params.N[0]), dtype=complex)
    h0_hat = np.zeros((2, params.N[0]), dtype=complex)
    w = np.zeros((params.N[0], ), dtype=complex)
    w1 = np.zeros((params.N[0], ), dtype=complex)

    nu, dt, N = params.nu, params.dt, params.N

    alfa = K2[0] - 2.0/nu/dt
    # Collect all matrices
    mat = config.AttributeDict(
        dict(CDD=inner_product((ST, 0), (ST, 1)),
             AB=HelmholtzCoeff(N[0], 1., -(K2 - 2.0/nu/dt), 0, ST.quad),
             AC=BiharmonicCoeff(N[0], nu*dt/2., (1. - nu*dt*K2), -(K2 - nu*dt/2.*K4), 0, SB.quad),
             # Matrices for biharmonic equation
             CBD=inner_product((SB, 0), (ST, 1)),
             ABB=inner_product((SB, 0), (SB, 2)),
             BBB=inner_product((SB, 0), (SB, 0)),
             SBB=inner_product((SB, 0), (SB, 4)),
             # Matrices for Helmholtz equation
             ADD=inner_product((ST, 0), (ST, 2)),
             BDD=inner_product((ST, 0), (ST, 0)),
             BBD=inner_product((SB, 0), (ST, 0)),
             CDB=inner_product((ST, 0), (SB, 1)),
             ADD0=inner_product((ST0, 0), (ST0, 2)),
             BDD0=inner_product((ST0, 0), (ST0, 0)),))

    la = config.AttributeDict(
        dict(HelmholtzSolverG=Helmholtz(mat.ADD, mat.BDD, -np.ones((1, 1, 1)),
                                        (K2+2.0/nu/dt)),
             BiharmonicSolverU=Biharmonic(mat.SBB, mat.ABB, mat.BBB, -nu*dt/2.*np.ones((1, 1, 1)),
                                          (1.+nu*dt*K2),
                                          (-(K2 + nu*dt/2.*K4))),
             HelmholtzSolverU0=Helmholtz(mat.ADD0, mat.BDD0, np.array([-1.]), np.array([2./nu/dt])),
             TDMASolverD=TDMA(inner_product((ST, 0), (ST, 0)))))

    hdf5file = KMMFile(config.params.solver,
                       checkpoint={'space': VFS,
                                   'data': {'0': {'U': [U_hat]},
                                            '1': {'U': [U_hat0]}}},
                       results={'space': VFS,
                                'data': {'U': [U]}})

    return config.AttributeDict(locals())
コード例 #21
0
ファイル: NS.py プロジェクト: spectralDNS/spectralDNS
def get_context():
    """Set up context for classical (NS) solver"""
    float, complex, mpitype = datatypes(params.precision)
    collapse_fourier = False if params.dealias == '3/2-rule' else True
    dim = len(params.N)
    dtype = lambda d: float if d == dim-1 else complex
    V = [Basis(params.N[i], 'F', domain=(0, params.L[i]),
               dtype=dtype(i)) for i in range(dim)]

    kw0 = {'threads': params.threads,
           'planner_effort': params.planner_effort['fft']}
    T = TensorProductSpace(comm, V, dtype=float,
                           slab=(params.decomposition == 'slab'),
                           collapse_fourier=collapse_fourier, **kw0)
    VT = VectorTensorProductSpace(T)

    # Different bases for nonlinear term, either 2/3-rule or 3/2-rule
    kw = {'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
          'dealias_direct': params.dealias == '2/3-rule'}

    Vp = [Basis(params.N[i], 'F', domain=(0, params.L[i]),
                dtype=dtype(i), **kw) for i in range(dim)]

    Tp = TensorProductSpace(comm, Vp, dtype=float,
                            slab=(params.decomposition == 'slab'),
                            collapse_fourier=collapse_fourier, **kw0)
    VTp = VectorTensorProductSpace(Tp)

    # Mesh variables
    X = T.local_mesh(True)
    K = T.local_wavenumbers(scaled=True)
    for i in range(dim):
        X[i] = X[i].astype(float)
        K[i] = K[i].astype(float)
    K2 = np.zeros(T.shape(True), dtype=float)
    for i in range(dim):
        K2 += K[i]*K[i]

    # Set Nyquist frequency to zero on K that is, from now on, used for odd derivatives
    Kx = T.local_wavenumbers(scaled=True, eliminate_highest_freq=True)
    for i in range(dim):
        Kx[i] = Kx[i].astype(float)

    K_over_K2 = np.zeros(VT.shape(True), dtype=float)
    for i in range(dim):
        K_over_K2[i] = K[i] / np.where(K2 == 0, 1, K2)

    # Velocity and pressure. Use ndarray view for efficiency
    U = Array(VT)
    U_hat = Function(VT)
    P = Array(T)
    P_hat = Function(T)
    u_dealias = Array(VTp)

    # Primary variable
    u = U_hat

    # RHS array
    dU = Function(VT)
    curl = Array(VT)
    Source = Function(VT) # Possible source term initialized to zero
    work = work_arrays()

    hdf5file = NSFile(config.params.solver,
                      checkpoint={'space': VT,
                                  'data': {'0': {'U': [U_hat]}}},
                      results={'space': VT,
                               'data': {'U': [U], 'P': [P]}})

    return config.AttributeDict(locals())
コード例 #22
0
def get_context():
    float, complex, mpitype = datatypes(params.precision)
    collapse_fourier = False if params.dealias == '3/2-rule' else True
    dim = len(params.N)
    dtype = lambda d: float if d == dim - 1 else complex
    V = [
        Basis(params.N[i], 'F', domain=(0, params.L[i]), dtype=dtype(i))
        for i in range(dim)
    ]

    kw0 = {
        'threads': params.threads,
        'planner_effort': params.planner_effort['fft']
    }
    T = TensorProductSpace(comm,
                           V,
                           dtype=float,
                           slab=(params.decomposition == 'slab'),
                           collapse_fourier=collapse_fourier,
                           **kw0)
    VT = VectorTensorProductSpace(T)
    VM = MixedTensorProductSpace([T] * 2 * dim)

    mask = T.mask_nyquist() if params.mask_nyquist else None

    kw = {
        'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
        'dealias_direct': params.dealias == '2/3-rule'
    }

    Vp = [
        Basis(params.N[i], 'F', domain=(0, params.L[i]), dtype=dtype(i), **kw)
        for i in range(dim)
    ]

    Tp = TensorProductSpace(comm,
                            Vp,
                            dtype=float,
                            slab=(params.decomposition == 'slab'),
                            collapse_fourier=collapse_fourier,
                            **kw0)
    VTp = VectorTensorProductSpace(Tp)
    VMp = MixedTensorProductSpace([Tp] * 2 * dim)

    # Mesh variables
    X = T.local_mesh(True)
    K = T.local_wavenumbers(scaled=True)
    for i in range(dim):
        X[i] = X[i].astype(float)
        K[i] = K[i].astype(float)
    K2 = np.zeros(T.shape(True), dtype=float)
    for i in range(dim):
        K2 += K[i] * K[i]

    # Set Nyquist frequency to zero on K that is, from now on, used for odd derivatives
    Kx = T.local_wavenumbers(scaled=True, eliminate_highest_freq=True)
    for i in range(dim):
        Kx[i] = Kx[i].astype(float)

    K_over_K2 = np.zeros(VT.shape(True), dtype=float)
    for i in range(dim):
        K_over_K2[i] = K[i] / np.where(K2 == 0, 1, K2)

    UB = Array(VM)
    P = Array(T)
    curl = Array(VT)
    UB_hat = Function(VM)
    P_hat = Function(T)
    dU = Function(VM)
    Source = Array(VM)
    ub_dealias = Array(VMp)
    ZZ_hat = np.zeros((3, 3) + Tp.shape(True), dtype=complex)  # Work array

    # Create views into large data structures
    U = UB[:3]
    U_hat = UB_hat[:3]
    B = UB[3:]
    B_hat = UB_hat[3:]

    # Primary variable
    u = UB_hat

    hdf5file = MHDFile(config.params.solver,
                       checkpoint={
                           'space': VM,
                           'data': {
                               '0': {
                                   'UB': [UB_hat]
                               }
                           }
                       },
                       results={
                           'space': VM,
                           'data': {
                               'UB': [UB]
                           }
                       })

    return config.AttributeDict(locals())
コード例 #23
0
ファイル: MHD.py プロジェクト: spectralDNS/spectralDNS
def get_context():
    float, complex, mpitype = datatypes(params.precision)
    collapse_fourier = False if params.dealias == '3/2-rule' else True
    dim = len(params.N)
    dtype = lambda d: float if d == dim-1 else complex
    V = [Basis(params.N[i], 'F', domain=(0, params.L[i]),
               dtype=dtype(i)) for i in range(dim)]

    kw0 = {'threads': params.threads,
           'planner_effort': params.planner_effort['fft']}
    T = TensorProductSpace(comm, V, dtype=float,
                           slab=(params.decomposition == 'slab'),
                           collapse_fourier=collapse_fourier, **kw0)
    VT = VectorTensorProductSpace(T)
    VM = MixedTensorProductSpace([T]*2*dim)

    kw = {'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
          'dealias_direct': params.dealias == '2/3-rule'}

    Vp = [Basis(params.N[i], 'F', domain=(0, params.L[i]),
                dtype=dtype(i), **kw) for i in range(dim)]

    Tp = TensorProductSpace(comm, Vp, dtype=float,
                            slab=(params.decomposition == 'slab'),
                            collapse_fourier=collapse_fourier, **kw0)
    VTp = VectorTensorProductSpace(Tp)
    VMp = MixedTensorProductSpace([Tp]*2*dim)

    # Mesh variables
    X = T.local_mesh(True)
    K = T.local_wavenumbers(scaled=True)
    for i in range(dim):
        X[i] = X[i].astype(float)
        K[i] = K[i].astype(float)
    K2 = np.zeros(T.shape(True), dtype=float)
    for i in range(dim):
        K2 += K[i]*K[i]

    # Set Nyquist frequency to zero on K that is, from now on, used for odd derivatives
    Kx = T.local_wavenumbers(scaled=True, eliminate_highest_freq=True)
    for i in range(dim):
        Kx[i] = Kx[i].astype(float)

    K_over_K2 = np.zeros(VT.shape(True), dtype=float)
    for i in range(dim):
        K_over_K2[i] = K[i] / np.where(K2 == 0, 1, K2)

    UB = Array(VM)
    P = Array(T)
    curl = Array(VT)
    UB_hat = Function(VM)
    P_hat = Function(T)
    dU = Function(VM)
    Source = Array(VM)
    ub_dealias = Array(VMp)
    ZZ_hat = np.zeros((3, 3) + Tp.shape(True), dtype=complex) # Work array

    # Create views into large data structures
    U = UB[:3]
    U_hat = UB_hat[:3]
    B = UB[3:]
    B_hat = UB_hat[3:]

    # Primary variable
    u = UB_hat

    hdf5file = MHDFile(config.params.solver,
                       checkpoint={'space': VM,
                                   'data': {'0': {'UB': [UB_hat]}}},
                       results={'space': VM,
                                'data': {'UB': [UB]}})

    return config.AttributeDict(locals())