コード例 #1
0
ファイル: test_wstat.py プロジェクト: wsf1990/sherpa
    def setUp(self):

        self._old_logger_level = logger.getEffectiveLevel()
        logger.setLevel(logging.ERROR)

        ui.set_stat('wstat')

        infile = self.make_path('3c273.pi')
        ui.load_pha(1, infile)

        # Change the backscale value slightly so that the
        # results are different to other runs with this file.
        #
        nbins = ui.get_data(1).get_dep(False).size
        bscal = 0.9 * np.ones(nbins) * ui.get_backscal(1)
        ui.set_backscal(1, backscale=bscal)

        ui.set_source(1, ui.powlaw1d.pl)

        # The powerlaw slope and normalization are
        # intended to be "a reasonable approximation"
        # to the data, just to make sure that any statistic
        # calculation doesn't blow-up too much.
        #
        ui.set_par("pl.gamma", 1.7)
        ui.set_par("pl.ampl", 1.7e-4)
コード例 #2
0
ファイル: test_wstat.py プロジェクト: DougBurke/sherpa
    def setUp(self):

        self._old_logger_level = logger.getEffectiveLevel()
        logger.setLevel(logging.ERROR)

        ui.set_stat('wstat')

        infile = self.make_path('3c273.pi')
        ui.load_pha(1, infile)

        # Change the backscale value slightly so that the
        # results are different to other runs with this file.
        #
        nbins = ui.get_data(1).get_dep(False).size
        bscal = 0.9 * np.ones(nbins) * ui.get_backscal(1)
        ui.set_backscal(1, backscale=bscal)

        ui.set_source(1, ui.powlaw1d.pl)

        # The powerlaw slope and normalization are
        # intended to be "a reasonable approximation"
        # to the data, just to make sure that any statistic
        # calculation doesn't blow-up too much.
        #
        ui.set_par("pl.gamma", 1.7)
        ui.set_par("pl.ampl", 1.7e-4)
コード例 #3
0
def test_fake_pha_background_model(clean_astro_ui, reset_seed):
    """Check we can add a background component.

    See also test_fake_pha_basic.

    For simplicity we use perfect responses.
    """

    np.random.seed(27347)

    id = 'qwerty'
    channels = np.arange(1, 4, dtype=np.int16)
    counts = np.ones(3, dtype=np.int16)
    bcounts = 100 * counts

    ui.load_arrays(id, channels, counts, ui.DataPHA)
    ui.set_exposure(id, 100)
    ui.set_backscal(id, 0.1)

    bkg = ui.DataPHA('bkg', channels, bcounts, exposure=200, backscal=0.4)

    ebins = np.asarray([1.1, 1.2, 1.4, 1.6])
    elo = ebins[:-1]
    ehi = ebins[1:]
    arf = ui.create_arf(elo, ehi)
    rmf = ui.create_rmf(elo, ehi, e_min=elo, e_max=ehi)

    mdl = ui.create_model_component('const1d', 'mdl')
    mdl.c0 = 0
    bkgmdl = ui.create_model_component('const1d', 'mdl')
    bkgmdl.c0 = 2
    ui.set_source(id, mdl)
    ui.set_bkg(id, bkg)
    ui.set_bkg_source(id, bkgmdl)
    ui.set_arf(id, arf, bkg_id=1)
    ui.set_rmf(id, rmf, bkg_id=1)

    ui.fake_pha(id, arf, rmf, 1000.0, bkg='model')

    faked = ui.get_data(id)
    assert faked.exposure == pytest.approx(1000.0)
    assert (faked.channel == channels).all()

    # check we've faked counts (the scaling is such that it is
    # very improbable that this condition will fail)
    assert (faked.counts > counts).all()

    # For reference the predicted source signal is
    #    [200, 400, 400]
    # and the background signal is
    #    [125, 125, 125]
    # so, even with randomly drawn values, the following
    # checks should be robust.
    #
    predicted_by_source = 1000 * mdl(elo, ehi)
    predicted_by_bkg = (1000 / 200) * (0.1 / 0.4) * bcounts
    assert (faked.counts > predicted_by_source).all()
    assert (faked.counts > predicted_by_bkg).all()
コード例 #4
0
def single_array_setup(make_data_path):

    ui.set_stat('wstat')

    infile = make_data_path('3c273.pi')
    ui.load_pha(1, infile)

    # Change the backscale value slightly so that the
    # results are different to other runs with this file.
    #
    nbins = ui.get_data(1).get_dep(False).size
    bscal = 0.9 * np.ones(nbins) * ui.get_backscal(1)
    ui.set_backscal(1, backscale=bscal)

    ui.set_source(1, ui.powlaw1d.pl)

    # The powerlaw slope and normalization are
    # intended to be "a reasonable approximation"
    # to the data, just to make sure that any statistic
    # calculation doesn't blow-up too much.
    #
    ui.set_par("pl.gamma", 1.7)
    ui.set_par("pl.ampl", 1.7e-4)