コード例 #1
0
ファイル: core.py プロジェクト: vorugantia/gammapy
    def to_sherpa_data2d(self, dstype='Data2D'):
        """
        Convert image to `~sherpa.data.Data2D` or `~sherpa.data.Data2DInt` class.

        Parameters
        ----------
        dstype : {'Data2D', 'Data2DInt'}
            Sherpa data type.
        """
        from sherpa.data import Data2D, Data2DInt

        if dstype == 'Data2D':
            coordinates = self.coordinates(mode='center')
            x = coordinates.data.lon.degree
            y = coordinates.data.lat.degree
            return Data2D(self.name, x.ravel(), y.ravel(), self.data.ravel(),
                          self.data.shape)
        elif dstype == 'Data2DInt':
            coordinates = self.coordinates(mode='edges')
            x = coordinates.data.lon
            y = coordinates.data.lat
            xlo, xhi = x[:-1], x[1:]
            ylo, yhi = y[:-1], y[1:]
            return Data2DInt(self.name, xlo.ravel(), xhi.ravel(), ylo.ravel(),
                             yhi.ravel(), self.data.ravel(), self.data.shape)
        else:
            raise ValueError('Invalid sherpa data type.')
コード例 #2
0
ファイル: test_data.py プロジェクト: wsf1990/sherpa
def test_data2d_int_wrong_y_array_size(array_sizes_fixture):
    x0, x1, dx, y = array_sizes_fixture

    with pytest.raises(TypeError):
        Data2DInt('name',
                  x0.flatten(),
                  x0.flatten(),
                  x1.flatten(),
                  x1.flatten(),
                  y,
                  staterror=numpy.sqrt(y).flatten())
コード例 #3
0
def make_data(data_class):
    """Create a test data object of the given class.

    Using a string means it is easier to support the various PHA
    "types" - eg basic, grouping, grouping+quality.

    """

    x0 = np.asarray([1, 3, 7, 12])
    y = np.asarray([2, 3, 4, 5])
    if data_class == "1d":
        return Data1D('x1', x0, y)

    if data_class == "1dint":
        return Data1DInt('xint1', x0, np.asarray([3, 5, 8, 15]), y)

    chans = np.arange(1, 5)
    if data_class == "pha":
        return DataPHA('pha', chans, y)

    # We want to provide PHA tests that check out the grouping and
    # quality handling (but it is not worth trying all different
    # variants), so we have "grp" for grouping and no quality [*], and
    # "qual" for grouping and quality.
    #
    # [*] by which I mean we have not called ignore_bad, not that
    # there is no quality array.
    #
    grp = np.asarray([1, -1, 1, 1])
    qual = np.asarray([0, 0, 2, 0])
    pha = DataPHA('pha', chans, y, grouping=grp, quality=qual)
    if data_class == "grp":
        return pha

    if data_class == "qual":
        pha.ignore_bad()
        return pha

    x0 = np.asarray([1, 2, 3] * 2)
    x1 = np.asarray([1, 1, 1, 2, 2, 2])
    y = np.asarray([2, 3, 4, 5, 6, 7])
    if data_class == "2d":
        return Data2D('x2', x0, x1, y, shape=(2, 3))

    if data_class == "2dint":
        return Data2DInt('xint2', x0, x1, x0 + 1, x1 + 1, y, shape=(2, 3))

    if data_class == "img":
        return DataIMG('img', x0, x1, y, shape=(2, 3))

    if data_class == "imgint":
        return DataIMGInt('imgi', x0, x1, x0 + 1, x1 + 1, y, shape=(2, 3))

    assert False
コード例 #4
0
def test_data2d_int_eval_model_to_fit(array_sizes_fixture):
    from sherpa.fit import Fit
    from sherpa.optmethods import LevMar
    from sherpa.stats import Chi2
    from sherpa.models import Gauss2D

    x0, x1, dx, y = array_sizes_fixture
    data2 = Data2DInt('name', x0.flatten(), x0.flatten() + dx, x1.flatten(), x1.flatten() + dx, y.flatten(),
                      staterror=numpy.sqrt(y).flatten())

    model2 = Gauss2D()
    fitter = Fit(data2, model2, Chi2(), LevMar())
    fitter.fit()  # Failed in Sherpa 4.11.0
コード例 #5
0
    def to_sherpa_data2d(self, dstype='Data2D'):
        """
        Convert sky map to `~sherpa.data.Data2D` or `~sherpa.data.Data2DInt` class.

        Parameter
        ---------
        dstype : {'Data2D', 'Data2DInt'}
            Sherpa data type.
        """
        from sherpa.data import Data2D, Data2DInt

        if dstype == 'Data2D':
            x, y = self.coordinates('galactic', mode='center')
            return Data2D(self.name, x.ravel(), y.ravel(), self.data.ravel(),
                          self.data.shape)
        elif dstype == 'Data2DInt':
            x, y = self.coordinates('galactic', mode='edges')
            xlo, xhi = x[:-1], x[1:]
            ylo, yhi = y[:-1], y[1:]
            return Data2DInt(self.name, xlo.ravel(), xhi.ravel(), ylo.ravel(),
                             yhi.ravel(), self.data.ravel(), self.data.shape)
        else:
            raise ValueError('Invalid sherpa data type.')
コード例 #6
0
ファイル: main.py プロジェクト: pllim/saba
    def _make_dataset(n_dim, x, y, z=None, xbinsize=None, ybinsize=None, err=None, bkg=None, bkg_scale=1, n=0):
        """
        Parameters
        ----------
        n_dim: int
            Used to veirfy required number of dimentions.
        x : array
            input coordinates
        y : array
            input coordinates
        z : array (optional)
            input coordinatesbkg
        xbinsize : array (optional)
            an array of errors in x
        ybinsize : array (optional)
            an array of errors in y
        err : array (optional)
            an array of errors in z
        n  : int
            used in error reporting

        Returns
        -------
        _data: a sherpa dataset
        """

        if (z is None and n_dim > 1) or (z is not None and n_dim == 1):
            raise ValueError("Model and data dimentions don't match in dataset %i" % n)

        if z is None:
            assert x.shape == y.shape, "shape of x and y don't match in dataset %i" % n
        else:
            z = np.asarray(z)
            assert x.shape == y.shape == z.shape, "shapes x,y and z don't match in dataset %i" % n

        if xbinsize is not None:
            xbinsize = np.array(xbinsize)
            assert x.shape == xbinsize.shape, "x's and xbinsize's shapes do not match in dataset %i" % n

        if z is not None and err is not None:
            err = np.array(err)
            assert z.shape == err.shape, "z's and err's shapes do not match in dataset %i" % n

            if ybinsize is not None:
                ybinsize = np.array(ybinsize)
                assert y.shape == ybinsize.shape, "y's and ybinsize's shapes do not match in dataset %i" % n

        else:
            if err is not None:
                err = np.array(err)
                assert y.shape == err.shape, "y's and err's shapes do not match in dataset %i" % n

        if xbinsize is not None:
            bs = xbinsize / 2.0

        if z is None:
            if xbinsize is None:
                if err is None:
                    if bkg is None:
                        data = Data1D("wrapped_data", x=x, y=y)
                    else:
                        data = Data1DBkg("wrapped_data", x=x, y=y, bkg=bkg, bkg_scale=bkg_scale)
                else:
                    if bkg is None:
                        data = Data1D("wrapped_data", x=x, y=y, staterror=err)
                    else:
                        data = Data1DBkg("wrapped_data", x=x, y=y, staterror=err, bkg=bkg, bkg_scale=bkg_scale)
            else:
                if err is None:
                    if bkg is None:

                        data = Data1DInt("wrapped_data", xlo=x - bs, xhi=x + bs, y=y)
                    else:
                        data = Data1DIntBkg("wrapped_data", xlo=x - bs, xhi=x + bs, y=y, bkg=bkg, bkg_scale=bkg_scale)
                else:
                    if bkg is None:
                        data = Data1DInt("wrapped_data", xlo=x - bs, xhi=x + bs, y=y, staterror=err)
                    else:
                        data = Data1DIntBkg("wrapped_data", xlo=x - bs, xhi=x + bs, y=y, staterror=err, bkg=bkg, bkg_scale=bkg_scale)
        else:
            if xbinsize is None and ybinsize is None:
                if err is None:
                    if bkg is None:
                        data = Data2D("wrapped_data", x0=x, x1=y, y=z)
                    else:
                        data = Data2DBkg("wrapped_data", x0=x, x1=y, y=z, bkg=bkg, bkg_scale=bkg_scale)
                else:
                    if bkg is None:
                        data = Data2D("wrapped_data", x0=x, x1=y, y=z, staterror=err)
                    else:
                        data = Data2DBkg("wrapped_data", x0=x, x1=y, y=z, staterror=err, bkg=bkg, bkg_scale=bkg_scale)
            elif xbinsize is not None and ybinsize is not None:
                ys = ybinsize / 2.0
                if err is None:
                    if bkg is None:
                        data = Data2DInt("wrapped_data", x0lo=x - bs, x0hi=x + bs, x1lo=y - ys, x1hi=y + ys, y=z)
                    else:
                        data = Data2DIntBkg("wrapped_data", x0lo=x - bs, x0hi=x + bs, x1lo=y - ys, x1hi=y + ys, y=z, bkg=bkg, bkg_scale=bkg_scale)
                else:
                    if bkg is None:
                        data = Data2DInt("wrapped_data", x0lo=x - bs, x0hi=x + bs, x1lo=y - ys, x1hi=y + ys, y=z, staterror=err)
                    else:
                        data = Data2DIntBkg("wrapped_data", x0lo=x - bs, x0hi=x + bs, x1lo=y - ys, x1hi=y + ys, y=z, staterror=err, bkg=bkg, bkg_scale=bkg_scale)
            else:
                raise ValueError("Set xbinsize and ybinsize, or set neither!")

        return data